PROPER+CONVERGENCE ACTIONS (RIGIDITY VIA ERGODIC METHODS)

Problem 1. Let ϕ : $X \longrightarrow Y$ be a continuous map between locally compact spaces. Prove that TFAE:

- (1) For every compact $K \subset Y$ the preimage $\phi^{-1}(K)$ is compact in X.
- (2) The map $\hat{\phi} : \hat{X} \longrightarrow \hat{Y}$ between one point compactifications is continuous.
- (3) For every topological space *Z* the map $X \times Z \xrightarrow{\phi \times 1} Y \times Z$ is closed.

Maps ϕ : *X* \longrightarrow *Y* with these properties are called **proper**.

Definition 2. A continuous action $G \curvearrowright X$ of a lcsc group on a locally compact space is called **proper action** if the map

$$G \times M \longrightarrow M \times M$$
, $(g,m) \mapsto (g.m,m)$

is a proper map.

Problem 3. A continuous action $G \curvearrowright M$ on a locally compact space M is **proper** iff for any compact subset $C \subset M$ the set

$$\{g \in G \mid gC \cap C \neq \emptyset\}$$

is precompact in *G*.

Problem 4. Let $G \curvearrowright M$ be a proper action. Prove:

- (1) Each *G*-orbit *G*.*x* is closed in *M*.
- (2) For each $x \in M$ the stabilizer $G_x = \{g \in G \mid g.x = x\}$ is compact.
- (3) The space of orbits $G \setminus M$ is Hausdorff.

Problem 5. Let K < G be a compact subgroup in a lcsc group. Prove that there is a *G*-invariant compatible metric on G/K.

Problem 6. Prove that if $G \curvearrowright M$ is a proper action on a locally compact secondly countable space, then the action $G \curvearrowright \operatorname{Prob}(M)$ is also proper.

Suggestion: Prove that for any compact subset $Q \subset Prob(M)$ there is a compact set $C \subset M$ so that

$$\mu(C) > 1/2 \quad \forall \mu \in Q$$

Definition 7. Let *G* be a lcsc, *X* a compact metrizable space, $G \curvearrowright X$ a continuous action. The action $G \curvearrowright X$ is called a **convergence action** if the diagonal *G*-action on the space of distinct triples

$$X^{(3)} := \left\{ (x_1, x_2, x_3) \in X^3 \mid x_i \neq x_j, \ 1 \le i < j \le 3 \right\}$$

is proper. A closed subgroup H < G in a convergence action is said to be **elementary** if it fixes a point $x_0 \in X$, or a pair of points $\{x_1, x_2\} \subset X$.

Date: Aug, 2017.

Definition 8. Let *H* be a discrete countable group, or a lcsc group, *Y* a non-empty compact metrizable space, and $H \rightarrow \text{Homeo}(Y)$ a continuous homomorphism. The action $H \curvearrowright Y$ is said to be **minimal** if *Y* has no proper *H*-invariant closed subsets.

Problem 9. Prove that any continuous action $H \curvearrowright Y$ on a compact space has a non-empty *H*-invariant subset $Z \subset Y$ the action on which is minimal.

Problem 10. Prove that the following conditions on continuous action $H \curvearrowright Y$ on a compact space are equivalent:

- (1) $H \curvearrowright Y$ is minimal.
- (2) For any $y \in Y$ the orbit *H*.*y* is dense in *Y*.
- (3) For any non-empty open set $U \subset Y$ there is $n \in \mathbb{N}$ and $h_1, \ldots, h_n \in H$ so that $h_1U \cup \cdots \cup h_nU = Y$.

Problem 11. Let $G \curvearrowright X$ be a convergence action, H < G a closed non-compact and non-elementary subgroup. Prove:

- (1) The action $H \curvearrowright X$ is a convergence action.
- (2) There is a unique *H*-invariant minimal closed subset Λ_H ⊂ X (called the limit set of *H*).
- (3) The kernel $K_H := \text{Ker}(H \to \text{Homeo}(\Lambda_H))$ is a compact subgroup.

Hence the action of H/K_H on Λ_H is a non-elementary, faithful, minimal, convergence action.

Problem 12. Let *M* be a proper δ -hyperbolic space, and H < Isom(M, d) a closed subgroup. Prove that the action $H \curvearrowright \partial M$ is a convergence action. (The notions of elementary subgroups in the two contexts agree.)