AMENABILITY (RIGIDITY VIA ERGODIC METHODS)

Hereafter Γ is assumed to be a countable discrete group, but the definitions and proofs can be extended to locally compact secondly countable groups. The left regular representation $\lambda : \Gamma \to U(\ell^2 \Gamma)$ by

$$(\lambda(g)f)(x) = f(g^{-1}x).$$

We shall use the same formula to define the linear isometric representation of Γ on $\ell^1(\Gamma)$, on $\ell^{\infty}\Gamma$, etc.

Theorem A. For a group Γ the following conditions are equivalent:

(1) There exist a sequence $\{F_n\}$ of finite subsets of Γ so that for every $g \in \Gamma$

$$\lim_{n\to\infty}\frac{|gF_n\triangle F_n|}{|F_n|}=0.$$

(2) There exist $f_n \in \ell^2 \Gamma$ with $||f_n||_2 = 1$ so that for every $g \in \Gamma$

 $\lim_{n\to\infty}\|\lambda(g)f_n-f_n\|_2=0.$

(3) There exist $f_n \in \ell^1 \Gamma$ with $||f_n||_1 = 1$ so that for every $g \in \Gamma$

$$\lim_{n \to \infty} \|\lambda(g)f_n - f_n\|_1 = 0.$$

- (4) There exists a Γ-invariant point in the space MEAN(Γ) ⊂ (ℓ[∞]Γ)*, i.e. a linear functional M on ℓ[∞]Γ that is positive (f ≥ 0 implies M(f) ≥ 0), normalized (M(1) = 1), and Γ-invariant (M(λ(g)f f) = 0 for g ∈ Γ, f ∈ ℓ[∞]Γ).
- (5) For any convex compact subset $Q \subset V$ in a locally convex topological vector space V, and Γ -action on Q by continuous affine maps, there is a Γ -fixed point:

$$\forall a: \Gamma \to \operatorname{Aff}(Q), \qquad Q^{\Gamma} \neq \emptyset$$

(6) For any action $\Gamma \curvearrowright X$ by homeomorphisms, on a compact metrizable space X, there is Γ -invariant probability measure μ on X:

$$\forall \Gamma \rightarrow \text{Homeo}(X), \quad \text{Prob}(X)^{\Gamma} \neq \emptyset.$$

Groups satisfying these equivalent conditions are called amenable.

Problem 1. Prove that if condition (1) above (called **Fölner condition**) is satisfied, one may replace the sequence $\{F_n\}$ by a sequence $\{F'_n\}$ of finite subsets that in addition to the almost invariance satisfies:

$$F'_n \subset F'_2 \subset \ldots F'_n \to \Gamma.$$

Problem 2. Prove that in conditions (2) and (3) one may assume f_n to be positive.

Date: Aug, 2017.

Problem 3. Prove: $(1) \implies (2) \implies (3) \implies (4) \implies (5) \implies (6)$. Suggestions:

For (2) use $f_n = |F_n|^{-1/2} \cdot 1_{F_n}$.

For (3) apply Cauchy-Schwarz

$$|\lambda(g)f_n^2 - f_n^2| = |\lambda(g)f_n - f_n| \cdot |\lambda(g)f_n + f_n|.$$

For (4) embed $\ell^1 \Gamma \subset \ell^{\infty}(\Gamma)^*$ and use weak-* compactness of MEAN(Γ).

For (5) fix a point $q_0 \in Q$ and for $\phi \in V^*$ apply M to the function $f_{\phi}(g) := \phi(a(g).q_0)$ to find $q \in Q$ with $\phi(q) = M(f_{\phi})$.

For (6) note that Prob(X) is an example of a convex compact with respect to the weak-* convergence (see below).

Let X be a metrizable compact space. Recall that any $\mu \in Prob(X)$ defines linear functional on C(X) by

$$\mu(f) := \int_X f \, d\mu$$

which is positive ($f \ge 0$ implies $\mu(f) \ge 0$) and normalized ($\mu(\mathbf{1}) = 1$). By Riesz representation theorem every positive, normalized, linear functional comes from a unique $\mu \in \text{Prob}(X)$. The weak-* topology on Prob(X) is defined by sets

$$U(\mu, f_1, \dots, f_k, \epsilon) = \left\{ \nu \in \operatorname{Prob}(X) \mid \max_{1 \le j \le k} |\mu(f_j) - \nu(f_j)| < \epsilon \right\}$$

as a basis for the topology, where $\mu \in \operatorname{Prob}(X)$, $f_1, \ldots, f_k \in C(X)$, $\epsilon > 0$ are fixed.

Problem 4. Prove that $\operatorname{Prob}(X)$ with the weak-* topology is a convex compact metrizable space, the map $X \to \operatorname{Prob}(X)$, $x \mapsto \delta_x$, is a homeomorphic embedding of X as the set of **extremal points**, i.e. probability measures μ that can be written as $\mu = \frac{1}{2}\mu_1 + \frac{1}{2}\mu_2$ with $\mu_1, \mu_2 \in \operatorname{Prob}(X)$ only for $\mu = \mu_1 = \mu_2$.

Suggestion: To show that $\operatorname{Prob}(X)$ is a metrizable compact, fix a sequence $\{f_j\}_{j=1}^{\infty}$ of continuous functions $f_j : X \to [0,1]$ that span a dense subspace in C(X) (prove that such a sequence exists, first), and show that the map $\operatorname{Prob}(X) \to [0,1]^{\mathbb{N}}$, $\mu \mapsto \{\mu(f_j)\}_{j=1}^{\infty}$, is an embedding with a closed image.

Problem 5. Prove that finite groups and the integers \mathbb{Z} are amenable groups by verifying as many of the properties (1)-(6) in Theorem A as possible.

Problem 6. Prove that the free group $F_2 = \mathbb{Z} * \mathbb{Z}$ is not amenable by observing the failure of as of the properties (1)-(6) in Theorem A as possible.

A finitely generated group is said to have sub-exponential growth if

$$\limsup_{n \to \infty} n^{-1} \log |B_n| = 0$$

where B_n denotes the ball of radius *n* with respect to a fixed word metric on the group (check that this property is independent of the choice of a metric).

Problem 7. Prove that any finitely generated group of sub-exponential growth is amenable.

Suggestion: Prove that some sub-sequence of balls $\{B_{n_j}\}_{j=1}^{\infty}$ forms a Fölner sequence.

Theorem B. *Prove that the class Amen of amenable groups is closed under the following operations:*

2

AMENABILITY

- (1) Forming extensions: if $1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1$ is an exact sequence of groups with A and C amenable, then B is amenable.
- (2) Taking subgroups: if A < B and B is amenable, then also A is amenable.
- (3) Taking quotients: if $B \rightarrow C$ is a surjective homomorphism and B is amenable, then C is amenable.
- (4) Forming direct limits: in particular, if $A_1 < A_2 < ...$ is an increasing sequence of amenable groups then their union is also amenable.

Problem 8. Prove properties (1), (3), (4) in Theorem B using the fixed point characterization of amenability as in Theorem A.(5).

Problem 9 (Important). Prove that a finite extension of a solvable group has the fixed point characterization of amenability as in Theorem A.(5).

Theorem C. Let *G* be a lcsc group, P < G a closed amenable subgroup, $\Gamma <_L G$ a lattice, *X* and a compact metrizable space and $\rho : \Gamma \to \text{Homeo}(X)$ a homomorphism.

Prove that there exists a measurable map

 $\phi: G/P \to \operatorname{Prob}(X)$ satisfying a.e. $\phi \circ \gamma = \rho(\gamma) \circ \phi$ $(\gamma \in \Gamma)$.

Proof. Consider the collection of equivalence classes (up to agreement on co-null sets) of measurable maps

$$Q = \{ f : G \to \operatorname{Prob}(X) \mid f(\gamma g) = \rho(\gamma)\phi(g) \quad \gamma \in \Gamma, \text{ a.e. } g \in G \} / \sim$$

This set is non-empty, convex, and compact w.r.to convergence in measure on finite measure subsets. One can also view *Q* as a subset of the unit ball in

$$L^{\infty}(\Gamma \setminus G, \operatorname{Prob}(X)) \subset L^{\infty}(\Gamma \setminus G, C(X)^*) = L^1(\Gamma \setminus G, C(X))^*.$$

G acts by left translations on *Q*; this action is affine and continuous in the above topology. The restriction of this action has a *P*-fixed point $\Phi : G \to \operatorname{Prob}(X)$ in *Q*, that gives a measurable Γ -equivariant map $\phi : G/P \to \operatorname{Prob}(X)$.

Let Γ be a group. A function $\rho : \Gamma \to \mathbb{R}$ is called a **quasi-morphism** if

$$\sup_{g,h\in\Gamma}|\rho(xy)-\rho(x)-\rho(y)|<+\infty.$$

The set of all quasi-morphisms forms a vector space w.r.to pointwise operations of addition and multiplication by a scalar. It contains all bounded functions $\ell^{\infty}\Gamma$ and the space of characters $H^1(\Gamma, \mathbb{R})$ as subspaces.

Problem 10. Prove that if Γ is amenable than any quasi-morphism $\rho : \Gamma \to \mathbb{R}$ is a sum of a character and a bounded function.