GALOIS CORRESPONDENCE (RIGIDITY VIA ERGODIC METHODS)

Definition 1. Let A and B be two **partially ordered sets** (hereafter POSets). A **Galois Correspondence** between these POSets is a pair of order-reversing maps

$$\alpha: \mathcal{B} \longrightarrow \mathcal{A}, \qquad \beta \mathcal{A} \longrightarrow \mathcal{B}$$

such that for any $A \in \mathcal{A}$ and $B \in \mathcal{B}$ one has

$$A \le \alpha(B) \iff \beta(A) \ge B.$$

Hereafter we fix a Galois Correspondence as above.

Problem 2. Consider the maps

$$\alpha \circ \beta : \mathcal{A} \to \mathcal{A}$$
, $\beta \circ \alpha : \mathcal{B} \to \mathcal{B}$.

and denote $\bar{A} := \alpha \circ \beta(A)$ and $\bar{B} := \beta \circ \alpha(B)$ for $A \in \mathcal{A}$, $B \in \mathcal{B}$. Prove

- (1) $A \mapsto \bar{A}$ and $B \mapsto \bar{B}$ are order preserving.
- (2) $A \leq \bar{A}$ and $B \leq \bar{B}$ for every $A \in A$, $B \in B$.
- (3) $\bar{A} = \bar{A}$ and $\bar{B} = \bar{B}$ for every $A \in A$, $B \in B$.

Problem 3. Prove that in a Galois Correspondence each one of the maps $\alpha : \mathcal{B} \to \mathcal{A}$, $\beta : \mathcal{A} \to \mathcal{B}$, is determined by the other by proving that

$$\beta(A) = \max \{ B' \in \mathcal{B} \mid A \le \alpha(B') \}$$

and similarly for α in terms of β .

The operations $A \leq \bar{A}$ are called the **closure** operation, and elements with

$$A = \bar{A}$$

are called **closed** in \mathcal{A} . Similarly for \mathcal{B} . Denote the collections of closed objects by a bar:

$$\bar{\mathcal{A}} := \left\{ \bar{A} \mid A \in \mathcal{A} \right\}, \qquad \bar{\mathcal{B}} := \left\{ \bar{B} \mid B \in \mathcal{B} \right\}.$$

Problem 4. Prove that \bar{A} is a POSet which is a "retract" of A: it is a sub-POSet and the image under $A \mapsto \bar{A}$ idempotent. Prove that α and β induce and anti-isomorphism of POSets

$$\bar{\beta} = \bar{\alpha}^{-1} : \bar{\mathcal{A}} \xrightarrow{\cong} \bar{\mathcal{B}}.$$

Date: Aug, 2017.