Problem sheet: Differential operators

Jack Jeffries

May 7–11, 2018

Lecture one exercises

- 1. If $\partial \in \text{Der}_A(R)$, then $\partial(1) = 0$, and $\partial(a) = 0$ for all $a \in A$.
- 2. Use the definition to show that each $D^i_{R|A}$ is an *R*-module by the rule $r \cdot \delta = \bar{r} \circ \delta$.
- 3. Show that if $\alpha \in D_{R|A}^m$ and $\beta \in D_{R|A}^n$, then $\alpha \circ \beta \in D_{R|A}^{m+n}$. Conclude that $D_{R|A}$ is a (not-necessarily commutative) ring where the multiplication is composition.
- 4. Let R = A[x]. What is the difference between $\frac{\partial}{\partial x}\bar{x}$ and $\frac{\partial}{\partial x}(x)$?
- 5. Show that if $\alpha \in D_{R|A}^m$ and $\beta \in D_{R|A}^n$, then $\alpha\beta \beta\alpha \in D_{R|A}^{m+n-1}$. Conclude that the graded ring $\bigoplus_{i \in \mathbb{N}} \frac{D_{R|A}^i}{D_{R|A}^{i-1}}$ is commutative.
- 6. Let $A \subseteq R \subseteq S$ be rings. Let $\iota : R \to S$ be the inclusion map, and $\pi : S \to R$ be an R-linear map. If $\delta \in D^i_{S|A}$, then $\pi \circ \delta \circ \iota \in D^i_{R|A}$.
- 7. Let $R = \frac{\Bbbk[x, y, z]}{(xy z^2)}$. Compute $P_{R|\Bbbk}^2$ and compute $D_{R|\Bbbk}^2$.
- 8. Let k be a field, and (R, \mathfrak{m}, \Bbbk) be a finite length local k-algebra. Show that $D_{R|\Bbbk} = \operatorname{Hom}_A(R, R)$.
- 9. Prove the two bullet points

•
$$f(\underline{x} + \underline{z}) = \sum_{\lambda \in \mathbb{N}^n} \partial_\lambda(f(\underline{x})) z_1^{\lambda_1} \cdots z_n^{\lambda_n} \text{ for all } f(\underline{x}) \in R.$$

• If $\frac{1}{\lambda_1! \cdots \lambda_n!} \in A$, then $\partial_\lambda(f(\underline{x})) = \frac{1}{\lambda_1! \cdots \lambda_n!} \frac{\partial^{|\lambda|} f}{\partial x_1^{\lambda_1} \cdots \partial x_n^{\lambda_n}}$

about the general case of Taylor's formula.

- 10. Let $A \subseteq R$ be an inclusion of rings that is essentially of finite type, and $W \subseteq R$ be a multiplicative set.
 - (a) Show that $W^{-1}P_{R|A}^i \cong P_{W^{-1}R|A}^i$. Note that in the LHS, the localization is over R. (Hint: a unit + a nilpotent is a unit.)

- (b) Show that each $P_{R|A}^i$ is a finitely generated *R*-module.
- (c) Show that $W^{-1}D^i_{R|A} \cong D^i_{W^{-1}R|A}$ for all *i*, as *R*-modules.
- (d) Verify that the localization map $D^i_{R|A} \to W^{-1}D^i_{R|A} \cong D^i_{W^{-1}R|A}$ sends a differential operator δ on R to a differential operator $\widetilde{\delta}$ on $W^{-1}R$ such that $\widetilde{\delta}|_R = \delta$.
- 11. Use the description of $D_{R|k}$ in the Bernstein-Gelfand-Gelfand example to show that this ring of differential operators is *not* finitely generated as a k-algebra.
- 12. Show that the hypothesis n > 1 is necessary in the description of differential operators on Veronese rings.

Lecture two exercises

- 1. Let $R = \mathbb{F}_3[x]$. Check directly that $\frac{\partial}{\partial x}$ is R^3 -linear. Write out a free R^3 -basis for $\operatorname{Hom}_{R^3}(R, R)$, and express $\frac{\partial}{\partial x}$ in terms of this basis. Then, express the *R*-generator of $\operatorname{Hom}_{R^3}(R, R^3)$ as a function of $\frac{\partial}{\partial x}$.
- 2. Let k be a field of characteristic zero. Show that k[x, y] and $k[x^2, xy, y^2]$ are D-simple, while $\frac{k[x, y, z]}{(x^3 + y^3 + z^3)}$ is not. Compute the ideal \mathcal{J} in each case.
- 3. Let k be a field of characteristic $p \equiv 1 \pmod{3}$. Is $\frac{\Bbbk[x, y, z]}{(x^3 + y^3 + z^3)}$ D-simple?
- 4. Show that if (R, \mathfrak{m}) is a direct summand of (S, \mathfrak{n}) , and S is D-simple, then R is as well.
- 5. Let k be a field of characteristic $p \equiv 1 \pmod{3}$, and $R = \frac{\Bbbk[x, y, z]}{(x^3 + y^3 + z^3)}$. Find a homogeneous differential operator of degree zero whose image (in R) is exactly R^p . Show that the operator you found *cannot* occur as the base change (by $\mathbb{F}_p = \mathbb{Z}_p/p\mathbb{Z}_p$) of a \mathbb{Z}_p -linear differential operator on $R = \frac{\mathbb{Z}_p[x, y, z]}{(x^3 + y^3 + z^3)}$.
- 6. Show that, for $I \subseteq R$, $I^{\langle n \rangle_R} = I^n$ for all n.
- 7. Show that if (R, \mathfrak{m}) is a regular local ring essentially of finite type over a perfect field \mathbb{k} , then $\mathfrak{m}^{\langle n \rangle_{\mathbb{k}}} = \mathfrak{m}^n$ for all n.
- 8. Let k be a field of characteristic zero, $S = k[x_1, \ldots, x_n]$ be a polynomial ring, and $R = S^{(d)}$ be the *d*-th Veronese subring of *S*. Compute the differential powers of the homogeneous maximal ideal of *R*.
- 9. Let *R* be essentially of finite type over a perfect field k. Suppose that \mathfrak{p} is a prime with $\mathfrak{p} = \bigcap_{\mathfrak{m}\in \operatorname{Max}(R), \mathfrak{m}\supseteq\mathfrak{p}} \mathfrak{m}$, and $R_{\mathfrak{p}}$ is regular. Show that $\mathfrak{p}^{(n)} = \bigcap_{\mathfrak{m}\in \operatorname{Max}(R), \mathfrak{m}\supseteq\mathfrak{p}} \mathfrak{m}^{n}$.
- 10. Show that if R is essentially of finite type over a perfect field k, and R is F-pure, then

$$I_e(R) = \{ r \in R \mid \delta(r) \in \mathfrak{m} \text{ for all } \delta \in \operatorname{Hom}_{R^{p^e}}(R, R) \}.$$

11. Show that if R is F-pure and essentially of finite type over a perfect field \mathbb{k} , and \mathfrak{p} is prime, if there exists a constant c such that for all n, $\mathfrak{p}^{\langle cn \rangle_{\mathbb{k}}} \subseteq \mathfrak{p}^{(n)}$, then $R_{\mathfrak{p}}$ is strongly F-regular.

Bonus problems

- 1. Let $A \subseteq R$ be rings, and $S = \frac{R[t]}{(f(t))}$, where $f(t) \in R[t]$ is a polynomial such that $\frac{\partial f}{\partial t} \in S$ is a unit. Show that $S \otimes_R P^i_{R|A} \cong P^i_{S|A}$ for all *i*. (Hint: follow the outline of our computation of differential operators on polynomial rings. Use a similar change of coordinates with *t*, and use Taylor's formula on f(t).)
- 2. Let k be a field of characteristic zero, $S = k[x_1, \ldots, x_n]$ be a polynomial ring, and $R = S^{(d)}$ be the *d*-th Veronese subring of *S*, with n > 1.
 - (a) Show that $S_{x_j} \otimes_R P^i_{R_{x_j^d}|\Bbbk} \cong P^i_{S_{x_j}|\Bbbk}$ for all i, j.
 - (b) Use the previous part to show that for each $i, j, D^i_{S_{x_j}|\mathbb{k}} \cong D^i_{R_{x^d}|\mathbb{k}}(S_{x_j})$.
 - (c) Use the previous part to show that $D^i_{S|\Bbbk} \cong D^i_{R|\Bbbk}(S)$. (Hint: these are reflexive modules.)
 - (d) Let $\pi : S \to R$ be the *R*-linear map given by sending a homogenous element to itself if *d* divides its degree, and to zero if *d* does not divide its degree. Show that the map

 $\pi_*: D^i_{R|\Bbbk}(S) \to D^i_{R|\Bbbk} \qquad \delta \mapsto \pi \circ \delta$

gives a split surjection of R-modules for each i.

- (e) Show that $D^i_{R|k}$ matches the given description.
- 3. Let $A \subseteq R \subseteq S$ be rings, where R and S are normal domains. Suppose that the inclusion of R into S is étale in codimension one. Show that every differential operator in $D^i_{R|A}$ extends to a differential operator in $D^i_{S|A}$. (Hint: Use the local structure theory of étale maps.)
- 4. Let k be a field, $S = k[x_1, \ldots, x_n]$, and R = S/(f) for a homogenous form f.
 - (a) Show that, up to a graded shift, there is a graded isomorphism

$$D_{R|\Bbbk}^i \cong \operatorname{Hom}_{\Bbbk}^{\operatorname{gr}}(\omega_{P_{R|\Bbbk}^i}, \Bbbk),$$

where $\operatorname{Hom}_{\Bbbk}^{\operatorname{gr}}$ is the module of graded \Bbbk -linear homomorphisms and $\omega_{P_{R|\Bbbk}^{i}}$ is a graded canonical module for the ring $P_{R|\Bbbk}^{i}$.

(b) Show that, up to a graded shift, there is a graded isomorphism

$$\operatorname{Ext}_{R\otimes_{\Bbbk}R}^{n-1}(P_{R|\Bbbk}^{i}, R\otimes_{\Bbbk}R) \cong \operatorname{Hom}_{\Bbbk}^{\operatorname{gr}}(\omega_{P_{R|\Bbbk}^{i}}, \Bbbk).$$

(c) Show that, up to a graded shift, there is a graded isomorphism

$$D_{R|\Bbbk} \cong \mathrm{H}^{n-1}_{\Delta_{R|\Bbbk}}(R \otimes_{\Bbbk} R).$$

5. Let $S = \mathbb{Z}_p[x_1, \ldots, x_n]$, and R = S/(f) for a homogeneous form f, where \mathbb{Z}_p is the *p*-adic integers. Show that, up to a graded shift, there is a graded isomorphism

$$D_{R|\mathbb{Z}_p} \cong \mathrm{H}^{n-1}_{\Delta_{R|\mathbb{Z}_p}}(R \otimes_{\mathbb{Z}_p} R).$$

6. Let $S = \mathbb{Z}_p[x_1, \ldots, x_n]$, and R = S/(f) for a homogeneous form f, where \mathbb{Z}_p is the p-adic integers. Let $\bar{r} = R/pR$. Show that there is an exact sequence:

$$D_{R|\mathbb{Z}_p} \xrightarrow{\cdot p} D_{R|\mathbb{Z}_p} \to D_{\bar{R}|\mathbb{F}_p} \to \mathrm{H}^n_{\Delta_{R|\mathbb{Z}_p}}(R \otimes_{\mathbb{Z}_p} R) \xrightarrow{\cdot p} \mathrm{H}^n_{\Delta_{R|\mathbb{Z}_p}}(R \otimes_{\mathbb{Z}_p} R).$$

7. Let $p \equiv 1 \pmod{3}$. Show that there is a nonzero *p*-torsion element in

$$\mathrm{H}^{3}_{(x-\tilde{x},y-\tilde{y},z-\tilde{z})}\left(\frac{\mathbb{Z}_{p}[x,y,z,\tilde{x},\tilde{y},\tilde{z}]}{(x^{3}+y^{3}+z^{3},\tilde{x}^{3}+\tilde{y}^{3}+\tilde{z}^{3})}\right).$$

Conclude that

$$\mathrm{H}^{3}_{(x-\tilde{x},y-\tilde{y},z-\tilde{z})}\left(\frac{\mathbb{Z}[x,y,z,\tilde{x},\tilde{y},\tilde{z}]}{(x^{3}+y^{3}+z^{3},\tilde{x}^{3}+\tilde{y}^{3}+\tilde{z}^{3})}\right)$$

has infinitely many associated primes.