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0 What am I?

These are notes from two lectures given at the RTG Minicourse on Topics in Commutative
Algebra that ran from May 7–11, 2018 at the University of Utah. The goal of these lectures
is to introduce rings of differential operators on commutative rings in general (as opposed
to just the polynomial / power series case), and to give some basic connections between
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F-singularities, symbolic powers, and differential operators. The notes were much improved
by suggestions of Elóısa Grifo, Luis Núñez-Betancourt, and the students in the workshop. I
thank Srikanth Iyengar and Anurag Singh for organizing the workshop and inviting me to
speak there. I also thank the NSF for funding the workshop by the grant DMS #1246989,
and for funding me by the grant DMS #1606353.

1 Introduction to differential operators

1.1 Why differential operators

Associated to any pair of rings A ⊆ R, there is a ring of A-linear differential operators DR|A
on R. These have proven to be a useful tool in many areas of commutative algebra (and in
mathematics more generally!).

1. Local cohomology: Local cohomology modules H i
I(R) often fail to be finitely gen-

erated R-modules, which makes them difficult to study. However, if A is a field and
R a polynomial ring over A, every local cohomology module H i

I(R) is not only finitely
generated, but even finite length as a module over the bigger noncommutative ring
DR|A. The consequences of this are perhaps the best known application of differential
operators in commutative algebra; there is no shortage of material on this topic, so I
won’t be saying any more about this.

2. Singularities

3. Symbolic powers

4. And more: Invariant theory, resolutions of singularities, multiplier ideals, Rees alge-
bras, etc.

In harmony with the other topics, we will focus on the connections with singularities and
symbolic powers here.

1.2 Derivations and differentials

Differential operators are a generalization of derivations, which you might be familiar with.
Let us start by recalling some basics of derivations and differentials. These will be just for
motivation, so don’t worry if some of it is unfamiliar. We refer to [Eis95, Chapter 16] or
[Mat89, Chapter 25].

Definition 1.1 (Derivations). Let A ⊆ R be a pair of rings, and M an R-module. An
A-linear derivation from R to M is an A-linear map ∂ : R → M that satisfies the rule
∂(ab) = a∂(b) + b∂(a) for all a, b ∈ R. The set of A-linear derivations from R to M is a
module, denoted DerA(M).

For example, on R = A[x], the map ∂
∂x

(as we know it from calculus) is an A-linear
derivation from R to R: the rule above is just the Leibniz rule of calculus. This map has
the appealing property of decreasing (x)-adic order, while being manageably structured.

Here is a nice warmup for those unfamiliar with the definition.
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Exercise 1.2. If ∂ ∈ DerA(R), then ∂(1) = 0, and ∂(a) = 0 for all a ∈ A.

The functor of “derivations from R to” can be represented. That is, there is a module
ΩR|A with the property that

derivations from R to M ←→ R-linear maps from ΩR|A to M.

We will recall a construction of this module, and then state properly the assertion above.

First, we define a map R ⊗A R
mult−−→ R defined on simple tensors by x ⊗ y 7→ xy. The

kernel of this map is the ideal of the diagonal

∆R|A := 〈{r ⊗ 1− 1⊗ r | r ∈ R}〉 = ker(R⊗A R
mult−−→ R).

Definition 1.3 (Kähler differentials). Let A ⊆ R be a pair of rings. The module of A-linear
Kähler differentials on R is

ΩR|A := ∆R|A/∆
2
R|A.

There is a natural map d : R→ ΩR|A, call the universal differential, given by

d(r) = (r ⊗ 1− 1⊗ r) + ∆2
R|A ∈ ΩR|A.

Proposition 1.4. Let A ⊆ R be a pair of rings. For any R-module M , there is an isomor-
phism of R-modules

DerA(M) ∼= HomR(ΩR|A,M).

This isomorphism is functorial in M .

Derivations and differentials have a close connection to singularities. The beloved Jaco-
bian criterion for regularity is really a criterion on the Kähler differentials.

Theorem 1.5 (Jacobian criterion). Let k be a perfect field, and (R,m) be a local ring
essentially of finite type over k: i.e., R is a localization of a finitely generated k-algebra.

Since R is essentially of finite type over k, we can write R =
(

k[x1,...,xn]
(f1,...,fm)

)
p
. Then, the

following are equivalent:

1. R is regular;

2. The matrix
[
∂fi
∂xj

]
ij

has rank = htk[x]((f)) when taken modulo p;

3. ΩR|k is free of rank n− htk[x]((f)).

Remark 1.6. We may suspect that, when the conditions above hold, if y1, . . . , yd generate
m modulo m2, then d(y1), . . . , d(yd) are a free basis for ΩR|k. This is not true in general, as
one can see from the ranks above. However, d(y1), . . . , d(yd) are part of a free basis in this
case.

The condition that k is perfect arises since the Jacobian criterion is really testing for
smoothness over k, a condition on the differentials that coincides with regularity in the case
above. The Jacobian criterion holds more generally when k ⊆ R/m is separable.
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1.3 Differential operators

Definition 1.7 (Differential operators). Let A ⊆ R be a pair of rings. We define the A-linear
differential operators on R of order at most i, Di

R|A, inductively in i.

• D0
R|A = HomR(R,R) (= {r̄ := “multiplication by r” | r ∈ R})

• Di
R|A = {δ ∈ HomA(R,R) | δ ◦ r̄ − r̄ ◦ δ ∈ Di−1

R|A for all r ∈ R }.

With no reference to order, the A-linear differential operators on R are DR|A =
⋃
i∈ND

i
R|A.

Exercise 1.8. Use the definition to show that each Di
R|A is an R-module by the rule r · δ =

r̄ ◦ δ. That is, R-linear combinations (in this sense) of differential operators of order at most
i are also differential operators of order at most i. In accordance with this, we will often
write Rδ to denote {r̄ ◦ δ | r ∈ R}.

As noted above, the operators of order 0 do not depend at all on A; they are just the
multiplications by elements ofR. Note that a function δ is R-linear if and only if δ◦r̄−r̄◦δ = 0
for all r ∈ R. Thus, we could have given the same definition by starting with the base case
D−1
R|A = 0 and stipulating the same inductive step. One way to think of the inductive step

is as saying that differential operators of order at most i are a little bit less R-linear that
differential operators of order at most i− 1.

Let’s understand the operators of order at most 1; let δ ∈ D1
R|A. Set δ′ = δ − δ(1). By

Exercise 1.8, δ′ ∈ D1
R|A. Note also that

δ′(1) = δ(1)− δ(1)(1) = δ(1)− δ(1) · 1 = 0.

Then, for any r ∈ R, there is some sr ∈ R such that

δ′ ◦ r̄ − r̄ ◦ δ′ = s̄r.

To compute it, we plug in 1: s̄r(1) = sr, while

(δ′ ◦ r̄ − r̄ ◦ δ′)(1) = (δ′ ◦ r̄)(1)− (r̄ ◦ δ′)(1) = δ′(r)− rδ′(1) = δ′(r),

so
δ′ ◦ r̄ − r̄ ◦ δ′ = δ′(r).

We then find that for any r, s ∈ R,

δ′(rs) = (δ′ ◦ r̄)(s) = (r̄ ◦ δ′)(s) + δ′(r)(s) = rδ′(s) + δ′(r)s.

Thus δ′ is a (A-linear) derivation! We see that we can write any element of D1
R|A as a sum of

a “multiplication by” and a derivation; it is a consequence of Exercise 1.2 that this expression
is unique. We summarize:

Proposition 1.9. Let A ⊆ R be rings. There is a direct sum decomposition D1
R|A
∼= R ⊕

DerA(R), where the copy of R is the “multiplications by.”
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Differential operators admit another structure.

Exercise 1.10. Show that if α ∈ Dm
R|A and β ∈ Dn

R|A, then α ◦ β ∈ Dm+n
R|A . Conclude that

DR|A is a (not-necessarily commutative) ring where the multiplication is composition.

In accordance with this structure, we often drop the composition circles: αβ denotes
α ◦ β in the notation above. By its construction, DR|A is a subring of EndA(R), so R is
tautologically a left DR|A-module.

Remark 1.11. It is worth making a note on the notation. Many authors use the same
symbol for an element r ∈ R and for the differential operator r̄ ∈ D0

R|A. (They don’t use the

bars.) The cost for us is slightly clunkier notation and a few more words to talk about the
module structure. The point is the following.

Exercise 1.12. Let R = A[x]. What is the difference between ∂
∂x
x̄ and ∂

∂x
(x)?

While the ring DR|A is not necessarily commutative, it is noncommutative in a relatively
mild way, as made precise by the following.

Exercise 1.13. Show that if α ∈ Dm
R|A and β ∈ Dn

R|A, then αβ − βα ∈ Dm+n−1
R|A . Conclude

that the graded ring
⊕

i∈N
Di
R|A

Di−1
R|A

is commutative.

Combining Proposition 1.9 and Exercise 1.10, we now have a recipe for a large number
of differential operators.

Proposition 1.14. Let A ⊆ R be rings. Any n-fold composition of A-linear derivations is
an element of Dn

R|A.

For example, if R = A[x1, . . . , xd], then any operator of the form∑
rα

∂α1

∂xα1
· · · ∂

αd

∂xαd

is a differential operator (of order at most |α|).

There is another recipe for differential operators that is very useful.

Exercise 1.15. Let A ⊆ R ⊆ S be rings. Let ι : R → S be the inclusion map, and
π : S → R be an R-linear map. If δ ∈ Di

S|A, then π ◦ δ ◦ ι ∈ Di
R|A.

Remark 1.16. We can unpackage the inductive definition a bit as follows. For r ∈ R
and α ∈ HomA(R,R), set ad(r)α = αr̄ − r̄α. Then, α ∈ Di

R|A if and only if for any

r1, . . . , ri+1 ∈ R, ad(r1) ad(r2) · · · ad(ri+1)α = 0. One also uses the notation [α, r̄] for ad(r)α.

1.4 Modules of principal parts

There is an analogue to Kähler differentials that we can use to compute differential operators.

Definition 1.17 (Principal parts). Let A ⊆ R be rings. The module of i-principal parts of
R over A is

P i
R|A :=

R⊗A R
∆i+1
R|A

.
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These modules naturally have the structure of a (cyclic) R ⊗A R-module. We will often
view them as R-modules; when we judge these by their R-module structures, it will be by
the action of the left copy of R; i.e., by r · (a⊗ b+ ∆i+1

R|A) = (ra⊗ b+ ∆i+1
R|A).

If A ⊆ R is of finite type, we can write R =
A[x1, . . . , xn]

(f1, . . . , fm)
. Then, we can write

R⊗A R =
A[x1, . . . , xn, x̃1, . . . , x̃n]

(f1(x), . . . , fm(x), f1(x̃), . . . , fm(x̃))
,

where xi stands for xi ⊗ 1, and x̃i stands for 1⊗ xi. In this notation,

∆R|A = 〈x1 − x̃1, . . . , xn − x̃n〉 ⊆ R⊗A R.

If A ⊆ R is essentially of finite type, then we can write R ⊗A R as a localization of the
presentation above.

Let di : R→ P i
R|A be the map given by di(r) = (1⊗ r + ∆i+1

R|A).

Proposition 1.18. Let A ⊆ R be rings. Then, there is an isomorphism

HomR(P i
R|A, R) ∼= Di

R|A

given by φ 7→ φ ◦ di.

Proof. By Hom-tensor adjunction, there is an isomorphism

HomR(R⊗A R,R) ∼= HomA(R,HomR(R,R)) ∼= HomA(R,R),

given by
φ(−) 7→ (r 7→ φ(r ⊗−)) 7→ φ(1⊗−).

Both sides are (R ⊗A R)-modules, with the action on the LHS given by (a ⊗ b) · φ =
φ((a⊗ b)−), and the action on the RHS by (a⊗ b) · ϕ = aϕ(b−). The isomorphism above is
(R⊗A R)-linear with respect to these structures.

Now, for α ∈ HomA(R,R), we compute

αr̄ − r̄α = (1⊗ r)α− (r ⊗ 1)α = (1⊗ r − r ⊗ 1)α.

That is, in the notation of Remark 1.16, ad(r)α = (1⊗ r− r⊗ 1)α via the (R⊗AR)-module
structure on HomA(R,R) given above. Following Remark 1.16, α ∈ Di

R|A if and only if for
any r1, . . . , ri+1 ∈ R,

(1⊗ r1 − r1 ⊗ 1) · · · (1⊗ ri+1 − ri+1 ⊗ 1)α = 0.

That is, Di
R|A =

(
0 :HomA(R,R) ∆i+1

R|A

)
. Thus, we have

Di
R|A
∼=
(

0 :HomR(R⊗AR,R) ∆i+1
R|A

)
∼= HomR

(
R⊗A R

∆i+1
R|A

, R

)
.

We note finally that the Hom-tensor adjunction map agrees with the map given with pre-
composition by di.
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Exercise 1.19. Let R =
k[x, y, z]

(xy − z2)
. Compute P 2

R|k and use the proposition above (and M2

if you want) to compute D2
R|k.

We now want to use Proposition 1.18 to compute DR|A when R = A[x]. As above, we
can write

R⊗A R = A[x1, . . . , xn, x̃1, . . . , x̃n], ∆R|A = 〈x1 − x̃1, . . . , xn − x̃n〉,

where xi stands for xi ⊗ 1 and x̃i stands for 1⊗ xi. Write zi = x̃i − xi, so that

R⊗A R = A[x1, . . . , xn, z1, . . . , zn], ∆R|A = 〈z1, . . . , zn〉.

In these coordinates, we have P i
R|A = R[z1, . . . , zn]/(z1, . . . , zn)i+1. As an R-module, this is

the free module
P i
R|A =

⊕
|α|≤i

Rzα1
1 · · · zαnn .

Thus, as R-modules, we can describe Di
R|A as

HomR(P i
R|A, R) =

⊕
|α|≤i

R (zα1
1 · · · zαnn )?.

To describe Di
R|A as maps, we need to compute the maps (zα1

1 · · · zαnn )? ◦di. Given f(x) ∈ R,

di(f(x)) = f(x̃) = f(x+ z).

At least in the setting of Calc III (over R, let’s say), we know how to expand the RHS using
Taylor’s formula:

f(x+ z) =
∑
λ∈Nn

1

λ1! · · ·λn!

∂|λ|f

∂xλ11 · · · ∂xλnn
zλ11 · · · zλnn .

Even in rings where the rational numbers 1
λ1!···λn!

don’t make sense, Taylor’s formula still
holds. Define ∂λ to be the A-linear operator on R such that

∂λ(x
β1
1 · · · xβnn ) =

(
β1

λ1

)
· · ·
(
βn
λn

)
xβ1−λ11 · · ·xβn−λnn . (?)

Taylor’s formula holds in full generality the following sense:

• f(x+ z) =
∑
λ∈Nn

∂λ(f(x))zλ11 · · · zλnn for all f(x) ∈ R.

• If
1

λ1! · · ·λn!
∈ A, then ∂λ(f(x)) =

1

λ1! · · ·λn!

∂|λ|f

∂xλ11 · · · ∂xλnn
.

Thus,
((zα1

1 · · · zαnn )? ◦ di)(f(x)) = ∂α(f(x)).

We summarize this computation in the following.
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Proposition 1.20. Let R = A[x1, . . . , xn]. Then Di
R|A =

⊕
|α|≤iR∂α. If Q ⊆ R, then

Di
R|A =

⊕
|α|≤iR

∂α1
∂xα1
· · · ∂αd

∂xαd
.

This computation generalizes to the affirmative situation of the Jacobian criterion. The
difficult part is to show that the associated graded ring of ∆ ⊆ R⊗R is a polynomial ring;
the rest goes almost exactly as above.

Theorem 1.21. Let k be a perfect field, and (R,m) be a regular local ring essentially of
finite type over k. If x1, . . . , xt are elements of R such that d(x1), . . . , d(xt) form a free basis
for ΩR|k, then there are k-linear differential operators {∂λ | λ ∈ Nt} that satisfy the equation
(?) for all β ∈ Nt, and Di

R|k is generated as an R-module by {∂λ | |λ| ≤ i}.

Exercise 1.22. Let k be a field, and (R,m,k) be a finite length local k-algebra. Show that
DR|k = HomA(R,R).

Exercise 1.23. Prove the two bullet points about the general case of Taylor’s formula.

Exercise 1.24. Let A ⊆ R be an inclusion of rings that is essentially of finite type, and
W ⊆ R be a multiplicative set.

1. Show that W−1P i
R|A
∼= P i

W−1R|A. Note that in the LHS, the localization is over R.

(Hint: a unit plus a nilpotent is a unit.)

2. Show that each P i
R|A is a finitely generated R-module.

3. Show that W−1Di
R|A
∼= Di

W−1R|A for all i, as R-modules.

4. Verify that the localization map Di
R|A → W−1Di

R|A
∼= Di

W−1R|A sends a differential

operator δ on R to a differential operator δ̃ on W−1R such that δ̃|R = δ.

Remark 1.25. One can define for A ⊆ R be a pair of rings and an R-module M , A-linear
differential operators from R to M inductively as

• D0
R|A(M) = HomR(R,M)

• Di
R|A(M) = {δ ∈ HomA(R,M) | δ ◦ r̄ − r̄ ◦ δ ∈ Di−1

R|A(M) for all r ∈ R }.

In analogy with Proposition 1.18, and by essentially the same argument, one has the iso-
morphism HomR(P i

R|A,M) ∼= Di
R|A(M).

1.5 More examples of differential operators

Even with the description given by Proposition 1.18, it is often difficult to compute differen-
tial operators. Here we will state two more classes of examples, and outline a proof for one
of them.
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Example 1.26. Let k be a field of characteristic zero, S = k[x1, . . . , xn] be a polynomial
ring of dimension n > 1, and R = S(d) be the d-th Veronese subring of S: the graded ring
spanned by elements whose degrees are multiples of d.

As we computed above, the ring DS|k is generated over k by x1, . . . , xn,
∂
∂x1
, . . . , ∂

∂xn
. This

is a graded noncommutative ring if we set deg(xi) = 1, deg( ∂
∂xi

) = −1, their degrees as maps
S → S.

Then, Di
R|k = (Di

S|k)
(d) for all i: the differential operators on R are spanned by the

differential operators on S whose degrees are multiples of d.
For a specific example,

D1
k[x2,xy,y2] | k = k[x2, xy, y2]

〈
1̄, x̄

∂

∂x
, ȳ

∂

∂x
, x̄

∂

∂y
, ȳ

∂

∂y

〉
and

D2
k[x2,xy,y2] | k = k[x2, xy, y2]

〈
1̄, x̄

∂

∂x
, ȳ

∂

∂x
, x̄

∂

∂y
, ȳ

∂

∂y
,
∂2

∂x2
,
∂2

∂xy
,
∂2

∂y2

〉
.

One can check that the module generators for D2
k[x2,xy,y2] | k specified above, along with

x2, xy, y2, actually generate Dk[x2,xy,y2] | k as a k-algebra.

Example 1.27 (Bernstein–Gelfand–Gelfand [BGG72]). Let k be a field of characteristic

zero, and R =
k[x, y, z]

(x3 + y3 + z3)
. Then, each Di

R|k is graded, and one has

• [DR|k]<0 = 0; i.e., there are no differential operators of negative degree.

• [DR|k]0 = k[x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z

]; i.e., every differential operator of degree zero is a poly-

nomial in the “Euler operator” x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z

which sends a homogeneous element
F of degree d to dF .

•
[Di

R|k]1

[Di−1
R|k ]1 + (x ∂

∂x
+ y ∂

∂y
+ z ∂

∂z
)[Di−1

R|k ]1
∼= k3 as vector spaces for each i.

Exercise 1.28. Use the description of DR|k in the previous example to show that this ring
of differential operators is not finitely generated as a k-algebra.

Exercise 1.29. Show that the hypothesis n > 1 is necessary in Example 1.26.

The next pair of exercises outlines a proof of the first example.

Exercise 1.30. Let A ⊆ R be rings, and S =
R[t]

(f(t))
, where f(t) ∈ R[t] is a polynomial

such that
∂f

∂t
∈ S is a unit. Show that S ⊗R P i

R|A
∼= P i

S|A for all i. (Hint: follow the outline

of our computation of differential operators on polynomial rings. Use a similar change of
coordinates with t, and use Taylor’s formula on f(t).)

Exercise 1.31. Let k be a field of characteristic zero, S = k[x1, . . . , xn] be a polynomial
ring, and R = S(d) be the d-th Veronese subring of S, with n > 1.
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1. Show that Sxj ⊗R P i
R
xd
j
|k
∼= P i

Sxj |k
for all i, j.

2. Use the previous part to show that for each i, j, Di
Sxj |k

∼= Di
R
xd
j
|k(Sxj).

3. Use the previous part to show thatDi
S|k
∼= Di

R|k(S). (Hint: these are reflexive modules.)

4. Let π : S → R be the R-linear map given by sending a homogenous element to itself
if d divides its degree, and to zero if d does not divide its degree. Show that the map

π∗ : Di
R|k(S)→ Di

R|k δ 7→ π ◦ δ

gives a split surjection of R-modules for each i.

5. Show that Di
R|k matches the given description.

Exercise 1.32. Let A ⊆ R ⊆ S be rings, where R and S are normal domains. Suppose that
the inclusion of R into S is étale in codimension one. Show that every differential operator
in Di

R|A extends to a differential operator in Di
S|A. (Hint: Use the local structure theory of

étale maps.)

We include here another consequence of Proposition 1.18 that allows us to give a different
formula to describe differential operators.

Exercise 1.33. Let k be a field, S = k[x1, . . . , xn], and R = S/(f) for a homogenous form f .

1. Show that, up to a graded shift, there is a graded isomorphism

Di
R|k
∼= Homgr

k (ωP i
R|k
, k),

where Homgr
k is the module of graded k-linear homomorphisms and ωP i

R|k
is a graded

canonical module for the ring P i
R|k.

2. Show that, up to a graded shift, there is a graded isomorphism

Extn−1
R⊗kR

(P i
R|k, R⊗k R) ∼= Homgr

k (ωP i
R|k
,k).

3. Show that, up to a graded shift, there is a graded isomorphism

DR|k ∼= Hn−1
∆R|k

(R⊗k R).

Exercise 1.34. Let S = Zp[x1, . . . , xn], and R = S/(f) for a homogeneous form f , where
Zp is the p-adic integers. Show that, up to a graded shift, there is a graded isomorphism

DR|Zp
∼= Hn−1

∆R|Zp
(R⊗Zp R).

Exercise 1.35. Let S = Zp[x1, . . . , xn], and R = S/(f) for a homogeneous form f , where
Zp is the p-adic integers. Let r̄ = R/pR. Show that there is an exact sequence:

DR|Zp
·p−→ DR|Zp → DR̄|Fp → Hn

∆R|Zp
(R⊗Zp R)

·p−→ Hn
∆R|Zp

(R⊗Zp R).
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2 Differential operators, F-singularities, and symbolic

powers

2.1 Differential operators in positive characteristic

In some sense, the information encoded by differential operators is closely related to the
information captured by properties of the Frobenius map in positive characteristic. This is
reflected to a great extent by the parallels between the theories of D-modules and F-modules
in the study of local cohomology. One can make a more direct comparison, though.

Proposition 2.1. Let R be essentially of finite type over a perfect field k. Then

DR|k =
⋃
e∈N

HomRpe (R,R).

Proof. First, we want to observe that both sides are subsets of Homk(R,R). For the LHS,
this was part of the definition. For the RHS, since k is perfect, k = kpe ⊆ Rpe for each e, so
Rpe-linear implies k-linear.

From the presentation of R⊗kR we gave last time, we know that R⊗kR is also essentially
of finite type, hence noetherian. In particular, there is a constant a such that

∆ape

R|k ⊆ ∆
[pe]
R|k ⊆ ∆pe

R|k for all e. (‡)

Hence,

DR|k =
⋃
i∈N

(
0 :Homk(R,R) ∆i+1

R|k

)
=
⋃
i∈N

(
0 :Homk(R,R) ∆

[pe]
R|k

)
.

We can write
∆

[pe]
R|k = 〈{rpe ⊗ 1− 1⊗ rpe | r ∈ R}〉.

Thus, for α ∈ Homk(R,R), we have ∆
[pe]
R|k · α = 0 if and only if rp

e ⊗ 1 · α = 1⊗ rpe · α for

all r ∈ R, which happens if and only if rp
e
α(−) = α(rp

e−) for all r ∈ R. That is, ∆
[pe]
R|k ·α = 0

if and only if α ∈ HomRpe (R,R).

Remark 2.2. It follows from Equation (‡) that if R is essentially of finite type over a perfect
field k, then there exists a constant a such that, for all e ∈ N, HomRpe (R,R) ⊆ Dape

R|k.

Exercise 2.3. Let R = F3[x]. Check directly that ∂
∂x

is R3-linear. Write out a free R3-basis
for HomR3(R,R), and express ∂

∂x
in terms of this basis. Then, express the R-generator of

HomR3(R,R3) as a function of ∂
∂x

.

2.2 D-simplicity and F-regularity

We have recalled already that, in a reasonably broad setting, derivations and Kähler differen-
tials can be used to characterize regularity. With the full collection of differential operators,
we can detect more subtle properties.
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Definition 2.4. Let A ⊆ R be rings. We say that R is D-simple, or D-simple over A, if R
is a simple DR|A-module.

Lemma 2.5. Let A ⊆ R be rings, with (R,m) local. The following are equivalent:

1. R is D-simple;

2. For each nonzero r ∈ R, there is some δ ∈ DR|A such that δ(r) = 1;

3. The ideal J := {r ∈ R | δ(r) ∈ m for all δ ∈ DR|A} is zero.

Proof. First we check (1)⇔(3). If j ∈ J , then δ(j) ∈ J for all δ ∈ DR|A, so J is a
DR|A-submodule of DR|A. Thus, if R is D-simple, J = 0 (since 1 /∈ J ). Conversely, if R
is not D-simple, let 0 6= I ⊆ m be a proper DR|A-submodule of R. Then, for any r ∈ I,
δ(r) ∈ I ⊆ m for all δ ∈ DR|A, so I ⊆ J . Thus, if R is not D-simple, J 6= 0.

Second, to see (2)⇔(3), we observe that r /∈ J if and only if some differential operator
sends r to a unit, which happens if an only if some differential operator sends r to 1 (since
we can postmultiply by the inverse of that unit).

Exercise 2.6. Prove the Lemma above without the hypothesis that R is local.

Exercise 2.7. Let k be a field of characteristic zero. Show that k[x, y] and k[x2, xy, y2] are

D-simple, while
k[x, y, z]

(x3 + y3 + z3)
is not. Compute the ideal J for the last example.

We recall from the other lectures the following.

Remark 2.8. Let (R,m) be a local ring essentially of finite type over a perfect field k of
characteristic p > 0. Then R is F-finite: R is a finite Rp-module. In this case:

• R is F-pure if, for each e, the inclusion Rpe ·1−→ R splits as Rpe-modules.

• R is strongly F-regular if for every c 6= 0, there is some e such that Rpe ·c−→ R splits as
Rpe-modules.

In general we have the implication

strongly F-regular =⇒ F-pure.

Theorem 2.9 (Smith). Let (R,m) be a local ring essentially of finite type over a perfect
field k. Suppose that R is F-pure. Then R is strongly F-regular if and only if R is D-simple.

Proof. For each e, let ιe : Rpe → R be the inclusion map, and let θe : R → Rpe be an
Rpe-linear splitting of the inclusion.

Suppose that R is strongly F-regular. Then for each c 6= 0, there is some Rpe-linear
φ : R → Rpe such that φ(c) = 1. Then (ιe ◦ φ) : R → R is Rpe-linear, hence an element of
HomRpe (R,R) ⊆ DR|k. We have (ιe ◦ φ)(c) = 1. Thus, R is D-simple by Lemma 2.5.

Conversely, suppose that R is F-pure and D-simple. Let c 6= 0 in R. By Lemma 2.5,
there is a differential operator ψ : R → R such that ψ(c) = 1. By Proposition 2.1, ψ is
Rpe-linear for some e. Then, (θe ◦ ψ) : R → Rpe is Rpe-linear, and (θe ◦ ψ)(c) = 1. That is,

(θe ◦ ψ) is an Rpe-linear splitting of the map Rpe ·c−→ R. Thus, R is strongly F-regular.
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The previous result can be thought of as expressing the difference between F-purity and
strong F-regularity. Moreover, this “difference” is characterized in a characteristic free way!

Exercise 2.10. Let k be a field of characteristic p ≡ 1 ( mod 3 ). Is
k[x, y, z]

(x3 + y3 + z3)
D-simple?

Exercise 2.11. Show that if (R,m) is a direct summand of (S, n), and S is D-simple, then
R is as well.

Exercise 2.12. Let k be a field of characteristic p ≡ 1 ( mod 3 ), and R =
k[x, y, z]

(x3 + y3 + z3)
.

Find a homogeneous differential operator of degree zero whose image (in R) is exactly Rp.
Show that the operator you found cannot occur as the base change (by Fp = Zp/pZp) of a

Zp-linear differential operator on R =
Zp[x, y, z]

(x3 + y3 + z3)
.

Exercise 2.13. Let p ≡ 1 ( mod 3 ). Show that there is a nonzero p-torsion element in

H3
(x−x̃,y−ỹ,z−z̃)

(
Zp[x, y, z, x̃, ỹ, z̃]

(x3 + y3 + z3, x̃3 + ỹ3 + z̃3)

)
.

Conclude that

H3
(x−x̃,y−ỹ,z−z̃)

(
Z[x, y, z, x̃, ỹ, z̃]

(x3 + y3 + z3, x̃3 + ỹ3 + z̃3)

)
has infinitely many associated primes.

2.3 Differential powers

In our characterization of D-simplicity, it was useful to consider the ideal

J := {r ∈ R | δ(r) ∈ m for all δ ∈ DR|A}.

The notion of differential powers is a refinement of this construction.

Definition 2.14 (Differential powers [DDSG+17]). Let A ⊆ R be rings, and I ⊆ R be an
ideal. The ith A-linear differential power of R is defined as

I〈i〉A := {r ∈ R | δ(r) ∈ I for all δ ∈ Di−1
R|A}.

For a simple example, note that I〈1〉A = I: D0
R|A = R, so the condition D0

R|A(r) ⊆ I is
equivalent to Rr ⊆ I, and hence to r ∈ I.

Exercise 2.15. Show that, for I ⊆ R, I〈n〉R = I for all n.

Differential powers enjoy some nice basic properties.

Proposition 2.16. Let A ⊆ R be rings, and I ⊆ R be an ideal.

1. I〈n〉A is an ideal.
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2. I(I〈n−1〉A) ⊆ I〈n〉A, and hence In ⊆ I〈n〉A.

3. If I is prime, I〈n〉A is I-primary.

Proof. We recall that for δ ∈ Dn
R|A, ad(r)δ = δr̄ − r̄δ ∈ Dn−1

R|A ; we often use this in the

rearranged form δr̄ = r̄δ + ad(r)δ.

1. Let a, b ∈ I〈n〉A , and δ ∈ Dn−1
R|A . We have

δ(a+ b) = δ(a)︸︷︷︸
∈I

+ δ(b)︸︷︷︸
∈I

∈ I,

so a+ b ∈ I〈n〉A .

Let a ∈ I〈n〉A , r ∈ R, and δ ∈ Dn−1
R|A . We have

δ(ra) = δr̄(a) = r̄ δ(a)︸︷︷︸
∈I

+ (ad(r)δ)︸ ︷︷ ︸
∈Dn−2

R|A

(a) ∈ I,

so ra ∈ I〈n〉A .

2. Let a ∈ I, b ∈ I〈n−1〉A , and δ ∈ Dn−1
R|A . We have

δ(ab) = δā(b) = ā︸︷︷︸
∈I

δ(b) + (ad(a)δ)︸ ︷︷ ︸
∈Dn−2

R|A

(b) ∈ I,

so ab ∈ I〈n〉A .

3. It follows from the previous part that
√
I〈n〉A = I. We induce on n to show that r /∈ I

and ar ∈ I〈n〉A imply that a ∈ I〈n〉A . The base case n = 1 is trivial. Let r /∈ I,
ar ∈ I〈n〉A , and δ ∈ Dn−1

R|A . By the inductive hypothesis, we can assume that I〈n−1〉A is

I-primary, and hence that a ∈ I〈n−1〉A (since ar ∈ I〈n〉A ⊆ I〈n−1〉A). We have

rδ(a) = r̄δ(a) = δr̄(a)− (ad(r)δ)(a) = δ(ra)︸ ︷︷ ︸
∈I

− (ad(r)δ)︸ ︷︷ ︸
∈Dn−2

R|A

(a) ∈ I,

so δ(a) ∈ I, and hence, a ∈ I〈n〉A .

Example 2.17. Let R = k[x1, . . . , xd], and m = (x1, . . . , xd). Let’s show that m〈n〉k = mn

for all n. We know already that mn ⊆ m〈n〉k , so it suffices to show the other containment.
Let f(x) ∈ Rrmn. Write f =

∑
λ cλx

λ as a sum of monomials, and let α be such that cαx
α

is a nonzero monomial of minimal degree; we know that |α| ≤ n− 1. Then,

∂α(f) =
∑
λ≥α

cλ∂α(xλ) ≡ cλ ( mod m).

Since ∂α ∈ Dn−1
R|k , we see that f(x) /∈ m〈n〉k .
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Exercise 2.18. Show that if (R,m) is a regular local ring essentially of finite type over a
perfect field k, then m〈n〉k = mn for all n.

Even still for maximal ideals, differential powers can be a bit more subtle.

Example 2.19. Let k be a field of characteristic zero, R =
k[x, y, z]

(x3 + y3 + z3)
, and m = (x, y, z).

Then m〈n〉k = m for all n.
Indeed, let δ ∈ Dn−1

R|k . By Example 1.27, we can write δ =
∑

i δi, where δi of homogeneous

of degree i, and each i ≥ 0. Then, f ∈ m, f is a sum of positive degree forms, and δ(f) is then
a sum of positive degree forms too, hence in m. Thus, m ⊆ m〈n〉k . The other containment
follows since m〈n〉k is m-primary.

Exercise 2.20. Let k be a field of characteristic zero, S = k[x1, . . . , xn] be a polynomial
ring, and R = S(d) be the d-th Veronese subring of S. Compute the differential powers of
the homogeneous maximal ideal of R.

There is one more property of differential powers we will use later.

Proposition 2.21. Let R be essentially of finite type over A, and p ⊂ R be a prime ideal.
Then, p〈n〉ARp ⊆ (pRp)

〈n〉A.

Proof. Let f ∈ p〈n〉A , and δ ∈ Dn−1
Rp|A. By Exercise 1.24, we can write δ = 1/w η, where

η|R ∈ Dn−1
R|A . Then, δ(f) = 1

w
η(f) ∈ 1

w
pRp = pRp, as required.

2.4 Differential operators and symbolic powers

With the basic facts on differential powers we collected above, we can relate differential
powers to symbolic powers.

Proposition 2.22. Let A ⊆ R be rings, and p ⊂ R be prime. Then p(n) ⊆ p〈n〉A.

Proof. By Proposition 2.16, p〈n〉A is a p-primary ideal containing pn. The symbolic power
p(n) is the smallest p-primary ideal containing pn.

Theorem 2.23 (Zariski-Nagata theorem). Let k be a perfect field, R be essentially of finite
type over k, and p ∈ Spec(R). If Rp is regular, then p(n) = p〈n〉k for all n.

Proof. We have the containment p(n) ⊆ p〈n〉k already from the previous proposition. For the
other containment, since p〈n〉k is p-primary by Proposition 2.16 (3), it suffices to check the
other containment after localization at p. We have

p〈n〉kRp ⊆
Prop 2.21

(pRp)
〈n〉k =

Ex 2.18
(pRp)

n = p(n)Rp,

as required.

Remark 2.24. The technical structure theorem Theorem 1.21 played a key role here, via
Exercise 2.18. We can’t just get by with the fact that differential operators behave well
under localization, since we need to understand how differential operators act on elements
that minimally generate the maximal ideal.
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Example 2.25. To give a simple example with differential powers, let k be a field of char-
acteristic zero, and R = K[X3×3], where X = X3×3 is a 3× 3 matrix of indeterminates. You
have seen in Elóısa’s exercises that det(X) ∈ I2(X)〈2〉k . To see this with the Zariski-Nagata

theorem, note that D1
R|k = R⊕

⊕
ij R

∂
∂xij

, so it suffices to see that ∂ det(X)
∂xij

∈ I2(X) for each

pair ij. This is clear, since, by the Laplace expansion, ∂ det(X)
∂xij

is equal to the complementary
2× 2 minor.

Remark 2.26. We know from Example 2.19 that some sort of regularity hypothesis is
necessary in the Zariski-Nagata theorem.

Exercise 2.27 (Eisenbud-Hochster [EH79]). Let R be essentially of finite type over a perfect
field k. Suppose that p is a prime with p =

⋂
m∈Max(R) ,m⊇p

m, and Rp is regular. Show that

p(n) =
⋂

m∈Max(R) ,m⊇p
mn.

2.5 F-singularities and symbolic powers

We know that, under mild hypotheses, for a prime p ⊂ R, there is a constant c such that
p(cn) ⊆ pn for all n. Since symbolic powers are contained in differential powers, we might
hope for the stronger result that there is a constant c such that p〈cn〉k ⊆ pn for all n. It turns
out that we can do this if we have good (F-)singularities.

Definition 2.28. Let (R,m) be a local ring of characteristic p > 0, and dimension d. The
splitting ideals of R are defined as

Ie(R) := {r ∈ R | ϕ(r1/pe) ∈ m for all ϕ ∈ HomR(R1/pe , R)}.

This definition looks a lot like the definition of differential powers.

Exercise 2.29. Show that if R is essentially of finite type over a perfect field k, and R is
F-pure, then

Ie(R) = {r ∈ R | δ(r) ∈ m for all δ ∈ HomRpe (R,R)}.

The following proposition, originally due to Aberbach and Leuschke [AL03] and greatly
simplified in [PT18], is a variation on the fact that positivity of F-signature is equivalent to
strong F-regularity. You will have seen it in the end of Linquan and Thomas’ lectures.

Proposition 2.30. Let (R,m) be a local ring of characteristic p > 0. If R is strongly
F-regular, then there is an integer b > 0 such that Ie+b(R) ⊆ m[pe] for all e > 0.

Theorem 2.31 (Linear Zariski-Nagata theorem [BJNnB]). Let R be a strongly F-regular
ring essentially of finite type over a perfect field k, and p ⊂ R be prime. Then, there is a
constant c such that for all n, p〈cn〉k ⊆ p(n).

Proof. Since the ideals p(n) and p〈n〉K are p-primary for all n by Proposition 2.16 (3), it suffices
to check that for some c, p〈cn〉kRp ⊆ p(n)Rp(= pnRp) for all n > 0. Since p〈cn〉kRp ⊆ (pRp)

〈cn〉k ,
it suffices to show that for some c, (pRp)

〈cn〉k ⊆ (pRp)
n for all n. Thus, it suffices to show

the statement after localizing at p, so we may assume that (R,m) is local, and p = m.
For an integer n, set `(n) = dlogp(n)e: this is the smallest integer e such that pe ≥ n.
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1. Note that n ≤ p`(n) ≤ pn.

2. By Proposition 2.1 and Remark 2.2, there is an a such that HomRpe (R,R) ⊆ Dape

R|k for

all e. So, if every operator in Dape

R|k sends f into m, every map in HomRpe (R,R) sends

f into m. Thus, by Exercise 2.29, we find that m〈ap
e〉k ⊆ Ie(R) for all e.

3. By Proposition 2.30, there is an integer b such that Ie+b(R) ⊆ m[pe] for all e > 0.

Together, we see

m〈ap
b+1n〉k ⊆

(1)
m〈ap

`(n)+b〉k ⊆
(2)
I`(n)+b(R) ⊆

(3)
m[p`(n)] ⊆

(1)
mn .

That is, setting c = apb+1, one has m〈cn〉 k ⊆ mn for all n ∈ N, as required.

Exercise 2.32. Show that if R is F-pure and essentially of finite type over a perfect field
k, and p is prime, if there exists a constant c such that for all n, p〈cn〉k ⊆ p(n), then Rp is
strongly F-regular.

3 History and references

The notion of differential operators on polynomial rings, has of course, been around for a
long time, playing a significant role in 19th and 20th century algebra, e.g., invariant theory
[Wey16]. The general notion of differential operators here is (to my knowledge) due to
Grothendieck, and dates to the 1960’s. The main original source is [Gro67, Chapter 16],
which contains most of the material in Subsection 1.4; one traces a long path backwards
through EGA for the proof of Theorem 1.21 there without the help of Vasconcelos’ theorem.
Differential operators also show up around the same time in work of Heynemann and Sweedler
[HS69] and Nakai [Nak70]. The study of the structure of rings of differential operators (as
noncommutative rings) had a flurry of activity in the 1980’s and 1990’s: a couple of good
places to get a first glimpse are in the survey of P. Smith [Smi86] and the intro of [LS89].

The theory of differential operators over polynomial rings and power series rings comes
with a rich and rigid module theory (D-modules) that builds on Bernstein’s inequality,
Kashiwara’s equivalence, and the Riemann-Hilbert correspondence. A friendly introduction
to the first two of these topics can be found in [Cou95], and a tougher and more thorough
treatment of all of these in [HT07].

The application of differential operators to local cohomology is due to Lyubeznik [Lyu93]
in 1993. The approach is largely based on the aforementioned theory of D-modules over
polynomial rings and power series rings that is outside the scope of these notes. Apropos
the theme of these notes is the work of Àlvarez-Montaner, Huneke, and Núñez-Betancourt
[MHNB17], which jacks up the idea of Exercise 1.15 to extend results on the structure of
local cohomology of polynomial rings to direct summands of polynomial rings.

Proposition 2.1 in various levels of generality has been known for a while; the most general
version (moreso than appearing here) is the work of Yekutieli [Yek92]. The connections
between differential operators and F-singularities begin with the work of K. Smith [Smi95]
(1995) and Smith and Van den Bergh [SVdB97] (1997). In particular, Theorem 2.9 and
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Exercises 2.11 and 2.12 are from [Smi95]. Joint work in progress with Brenner and Núñez-
Betancourt [BJNnB] pushes this theme, and has motivated a lot of the presentation here.

The connections between differential operators and symbolic powers go back a bit fur-
ther, in some sense. The Zariski-Nagata theorem [Zar49, Nag62] characterizing symbolic
powers on smooth varieties in terms of order of vanishing was established in the 1960’s, and
the interpretation in terms of differential operators over fields of characteristic zero has been
known probably since around then; see e.g., [Eis95, Chapter 3]. This connection has been
applied to compute symbolic powers by Simis [Sim96], also in the 1990’s. The point of view
pursued here, via differential powers, follows the survey [DDSG+17], with some simplifica-
tions from [DSGJ] and [BJNnB]. Theorem 2.31 is from [BJNnB]. Also worth noting is a
generalization of Theorem 2.23 to mixed characteristic in [DSGJ].

Exercise 1.31 is a special case of a result of Kantor [Kan77] that shows that, for a
polynomial ring S and a “small” group action G, DSG

∼= (DS)G. The exercises 1.33,1.34,1.35,
and 2.13 are from [Jef].

4 Curation of exercises

Warmup exercises:

• Exercise 1.2

• Exercise 1.8

• Exercise 1.10

• Exercise 1.12

• Exercise 1.19

• Exercise 1.22

• Exercise 1.23

• Exercise 1.28

• Exercise 2.3

• Exercise 2.7

• Exercise 2.10

• Exercise 2.15

• Exercise 2.18

• Exercise 2.20

• Exercise 2.29

Somewhat tougher exercises:
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• Exercise 1.13

• Exercise 1.15

• Exercise 1.24

• Exercise 1.29

• Exercise 1.30

• Exercise 1.31

• Exercise 1.33

• Exercise 1.34

• Exercise 1.35

• Exercise 2.6

• Exercise 2.12

• Exercise 2.13

• Exercise 2.27

• Exercise 2.32

Exercises used later:

• Exercise 1.8

• Exercise 1.10

• Exercise 1.15

• Exercise 1.23

• Exercise 1.24

• Exercise 2.18

• Exercise 2.29
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