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1 An introduction to Symbolic Powers

1.1 Primary decomposition and associated primes

Definition 1.1. An ideal () in a ring R is called primary if the following holds for all
a,b € R: if ab e @, then a € Q or b" € ) for some n > 1.

Remark 1.2. From the definition, it follows that the radical of a primary ideal is always
a prime ideal. If the radical of a primary ideal () is the prime ideal P, we say that @ is
P-primary. If the radical of an ideal I is maximal, then [ is primary. Note, however, that
not all ideals with a prime radical are primary, as we will see in Example 1.21.

Given an ideal I, we can always decompose it as an intersection of primary ideals:

Definition 1.3 (Irredundant Primary Decomposition). A primary decomposition of the ideal
I consists of primary ideals Q1,...,Q, such that I = Q1 N---NQ,. An irredundant primary
decomposition of I is one such that no (); can be omitted, and such that /@Q; # /@, for

all i # j.
Exercise 1.4. Show that a finite intersection of P-primary ideals is a P-primary ideal.

Remark 1.5. Any primary decomposition can be simplified to an irredundant one. This
can be achieved by deleting unnecessary components and intersecting primary ideals with
the same radical, since the intersection of primary ideals with the same radical P is in fact
a P-primary ideal.

Primary decompositions always exist:

Theorem 1.6 (Lasker—Noether). Every ideal in a noetherian ring has a primary decompo-

sition.

Proof. For the original results, see [Las05, Noe21]. For a modern proof, see [Mat80, Section

8]. O
Primary decompositions are closely related to associated primes:

Definition 1.7 (Associated Prime). Let M be an R-module. A prime ideal P is an associated
prime of M if the following equivalent conditions hold:

(a) There exists a non-zero element a € M such that P = anng(a).

(b) There is an inclusion of R/P into M.

If I is an ideal of R, we refer to an associated prime of the R-module R/I as simply an
associated prime of /. We will denote the set of associated primes of I by Ass(R/I).

We will mostly deal with associated primes of ideals. Over a noetherian ring, the set of
associated primes of an ideal I # 0 is always non-empty and finite. Moreover, Ass(R/I) C
Supp(R/I), where Supp(M) denotes the support of the module M, meaning the set of primes
p such that M, # 0. In fact, the minimal primes of the support of R/I coincide with the
minimal associated primes of I. In particular, all minimal primes of I are associated. For
proofs of these facts and more on associated primes, see [Mat80, Section 7).
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Exercise 1.8. Let R be a noetherian ring and I an ideal in R. Show that a prime ideal P
is associated to [ if and only if depth (Rp/Ip) = 0.

Given an ideal I, we will be interested not only in its associated primes, but also in
the associated primes of its powers. Fortunately, the set of prime ideals that are associated
to some power of [ is finite, a result first proved by Ratliff [Rat76] and then extended by
Brodmann [Bro79].

Definition 1.9. Let R be a noetherian domain and I a non-zero ideal in R. We define

A(I) = | Ass (R/T™).

n=1

Theorem 1.10 (Brodmann, 1979). Let R be a noetherian domain and I # 0 an ideal in R.
For n sufficiently large, Ass (R/I") is independent of n. In particular, A(I) is a finite set.

The relationship between primary decomposition and associated primes is as follows:

Theorem 1.11 (Primary Decomposition). Let I = Q1N+ --NQ, be an irredundant primary
decomposition of I, where (); is a P;-primary ideal for each i. Then

Ass(R/I)={P,...,P,}.
Moreover, if P; is minimal in Ass(R/I), then @); is unique, and given by
Qi = ]Pi N Rv

where —N R denotes the pre-image in R via the natural map R — Rp. If P; is an embedded
prime of I, meaning that P; is not minimal in Ass(R/I), then the corresponding primary
component is not necessarily unique.

Proof. See [Mat80, Section 8. O

1.2 Symbolic powers: definition and basic properties

Definition 1.12 (Symbolic Powers). Let R be a noetherian ring, and I an ideal in R with
no embedded primes. The n-th symbolic power of I is the ideal defined by

™ = (] (U'RpNR).
PeAss(R/I)

Remark 1.13. In the case of a prime ideal P, its n-th symbolic power is given by
P™ = P"RpNR=1{a€ R:sac P"for some s ¢ P}.

The n-th symbolic power of P is the unique P-primary component in an irredundant primary
decomposition of P", and the smallest P-primary ideal containing P".

The equality P™ = P is equivalent to P™ being a primary ideal. In particular, if m is
a maximal ideal, m” = m( for all n; indeed, an embedded prime of m” would be a prime
ideal strictly containing the only minimal prime, m itself, and such a prime cannot exist.
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Remark 1.14. In the definition above, the assumption that I has no embedded primes
implies in particular that Ass(/) = Min(/). However, when I has embedded primes, we do
have two distinct possible definitions for symbolic powers, given by intersecting I"Rp N R
with P ranging over Ass(/) or Min(7). We will focus on ideals with no embedded primes, so
this distinction is not relevant.

Both definitions have advantages. When we take P ranging over Ass(I), we get IV = I,
while taking P ranging over Min(I) means that I coincides with the intersection of the
primary components of I corresponding to its minimal primes.

One motivation to study symbolic powers is that over a regular ring they correspond
to a natural geometric notion of power, by the following classical result, which can also be
restated in terms of differential operators. We will see the differential powers version of this
theorem in Jack’s lectures.

Theorem 1.15 (Zariski-Nagata [Zar49, Nag62]). Let R = k[xy,..., 24 be a polynomial
ring over a field k£ and p be a prime ideal. Then for all n > 1,

p™ = ﬂ m".
mop
memSpec(R)

Exercise 1.16. Let I be an ideal with no embedded primes in a noetherian ring R.

As (e) suggests, powers of ideals with no embedded primes might have embedded primes,
and in particular the converse containments to (b) and (d) do not hold in general.

Symbolic powers do coincide with ordinary powers if the ideal is generated by a regular
sequence. However, this is far from being an if and only if.

Exercise 1.17. Show that if I is generated by a regular sequence, then I" = I™ for all
n>1.

Remark 1.18. In the case of a prime ideal P, its n-th symbolic power is given by
P™ = P"RpNR={a€R:sac P"for some s ¢ P}.

The n-th symbolic power of P is the unique P-primary component in an irredundant primary
decomposition of P".



Exercise 1.19. Show that if P is prime, P(™ is the smallest P-primary ideal containing P™.
Exercise 1.20. Show that if m is a maximal ideal, m” = m for all n.
In particular, the symbolic powers of a prime ideal are not, in general, trivial:

Example 1.21. Consider a field £ and an integer n > 1 and let A = k[z,y, 2|, p = (z, 2),
I = (zy — 2z") and R = A/I. Using a to denote the image of an element or ideal a in R
via the natural projection map, note that p is a prime ideal in R, and that 5 ¢ p. Since
Ty =7" € (p)", we have T € (p)". However, T ¢ (p)".

Note that, in particular, (p)" is not a primary ideal, even though its radical is the prime
ideal p.

The equality of ordinary and symbolic powers of a prime ideal might fail even over a
regular ring:

Exercise 1.22. Consider the ideal I = I5(X) of 2 x 2 minors of a generic 2 x 3 matrix

Ti1 T12 T13
X = To1 T22 T23
Tr31 T32 I33
in the polynomial ring R = k[X] = k [z, ;| 1 <, < 3] generated by the variables in X over
a field k. Show that g = det X € P® while g ¢ P2.

Exercise 1.23. Let k be a field, R = k[z,y, 2], and consider the map ¢ : R — k[t] given
by ¢(z) =3, ¢(y) = t* and ¢(z) = t°. Let P be the prime ideal

P =kery = (ny— 2 xz —yQ,yz—x3) :

Show that P™ £ P" for all n > 2.

1.3 Equality of symbolic and ordinary powers

In general, the question of when the symbolic and ordinary powers of a given ideal coincide
is open. There are conditions on I that are equivalent to I = I" or all n > 1 given by
Hochster [Hoc73] when [ is prime, and generalized by Li and Swanson [L.S06] to the case
when [ is a radical ideal. However, even thought their conditions hold over any noetherian
ring, their conditions are not easy to check in practice.

Question 1.24. Let R be a regular ring. For which ideals I with no embedded primes in R
do we have I = I for all n > 1? Is there an invariant d depending on the ring R or the
ideal I such that I = I™ for all n < d (or for n = d) implies that I = I™ for all n > 17

There are some settings under which this is understood. The following is [Hun86, Corol-
lary 2.5]:

Theorem 1.25 (Huneke, 1986). Let R be a regular local ring of dimension 3, and P a prime
ideal in R of height 2. The following are equivalent:
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a) P™ = P for all n > 1;

(a)

(b) P™ = P for some n > 2;

(c) P is generated by a regular sequence.

In particular, for a height 2 prime P in a regular local ring of dimension 3, we have
P™ £ P for all n > 2 as long as P has at least 3 generators. This suggests a relationship
between minimal number of generators and equality of ordinary and symbolic powers of
ideals.

Theorem 1.26 (Cooper, Fatabbi, Guardo, Lorenzini, Migliore, Nagel, Seceleanu, Szpond
and Van Tuyl, 2016, [CFG"16]). Let R = k[xy,...,z,] be a polynomial ring over a field
k. Let I be a height 2 ideal in R such that R/I is Cohen-Macaulay and such that Ip is
generated by a regular sequence for all primes P # (g, ..., x,) containing I. Then I*) = [*
for all k& < n regardless of the minimal number of generators of I. Moreover, the following
statements are equivalent:

(a) I = I* for all k > 1;
(b) 1™ = I
(c) I is generated by at most n elements.

Remark 1.27. Notice that if P is a height 2 prime ideal in a polynomial ring in 3 variables,
meaning that n = 2 in the statement of Theorem 1.26, then the conclusions of Theorems
1.25 and 1.26 coincide, although Theorem 1.25 also adds the equivalence with condition

(d) I = I* for some k > 2;

This suggests that Theorem 1.26 might hold if we add condition (d) to the equivalences
stated.

The problem of equality of symbolic and ordinary powers of ideals is also understood
for licci prime ideals [HU89, Corollary 2.9]. For primes of height dim R — 1, equality of all
symbolic and ordinary powers is equivalent to the ideal being a complete intersection.

Theorem 1.28 (Cowsik-Nori, [CN76]). Let R be a Cohen-Macaulay local ring and let P be
a prime ideal such that Rp is a regular ring. If R/P™ is Cohen-Macaulay for all n > 1, then
R is generated by a regular sequence.

Exercise 1.29. Let R be a Cohen-Macaulay local ring and P be a prime ideal such that
dim(R/P) = 1. Show that P™ = P" for all n > 1 if and only if P is generated by a regular
sequence.

Exercise 1.30. Give an example of a prime P in a regular local ring R such that P is not
generated by a regular sequence but P = P™ for all n > 1.

Characterizing which squarefree monomial ideals have I = I™ for all n > 1 is still an
open question. However, it is conjectured that this condition is equivalent to I being packed.
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Definition 1.31 (Konig ideal). Let I be a squarefree monomial ideal of height ¢ in a poly-
nomial ring over a field. We say that I konig if I contains a regular sequence of monomials
of length c.

Despite the fact that all squarefree monomial ideals do contain a regular sequence of
length equal to their height, not all squarefree monomial ideals are konig.

Exercise 1.32. Give examples of squarefree monomial ideals that are not konig.

Definition 1.33 (Packed ideal). A squarefree monomial ideal of height ¢ is said to be packed
if every ideal obtained from I by setting any number of variables equal to 0 or 1 is konig.

Exercise 1.34. Give an example of an ideal that is packed and of one that is not packed.

The following is a restatement by Gitler, Villarreal and others in the setting of symbolic
powers of a conjecture of Conforti and Cornuéjols about max-cut min-flow properties.

Conjecture 1.35 (Packing Problem). Let I be a squarefree monomial ideal in a polynomial
ring over a field k. The symbolic and ordinary powers of I coincide if and only if I is packed.

The difficult direction is to show that if I is packed, then 1™ = I™ for all n > 1.

Exercise 1.36. Let I be a squarefree monomial ideal. Show that if I = I" for all n > 1
then I must be packed.

The Packing Problem has been solved for the case when I is the edge ideal of a graph
[GVVO05].

Theorem 1.37 (Gitler—Valencia—Villareal, [GVV05]). Let I be the edge ideal of a graph G.
The following are equivalent:

(a) G is a bipartite graph;
(b) I™ = 1" for all n > 1;
(c) I is packed.

1.4 Other open questions

Later, we will discuss the containment problem in detail. Here are some other questions one
may ask about symbolic powers that are still open.

Minimal degree

When [ is a homogeneous ideal in a polynomial ring, the symbolic powers of [ are also
homogeneous ideals. It is then natural to ask what is the minimal degree of an element
in 1™ for each n. If I corresponds to a finite set of points in PV, this amounts to asking
what is the smallest degree of a hypersurface passing through each of the given points with
multiplicity n.

Given a homogeneous ideal in R = k[xy, ..., zy], write a(]) to denote the minimal degree
of an element in I. Nagata [Nag65] conjectured that a(I"™) > m+/n for n general points in
P%, a question that remains open except for some special cases.
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Conjecture 1.38 (Chudnovsky). Let X be a finite set of points in PV, and I = I(X) be
the corresponding ideal in k[zo, ..., xy]. Then
a(1m) - al) + N -1
m N '

Turns out that the limit of the right hand side exists and equals the infimimum on the
same set. More precisely,

(m) (m)
a(n) = tim ) _yppet™)

m—»00 m m m

We can restate Chudnovsky’s conjecture in terms of this constant &, known as the Wald-
schmidt constant of I. More precisely, Chudnovsky’s conjecture asks if

N+N -1
sy s AN -1
o) N

This conjecture has been shown for finite sets of very general points in PY as long as k is
an algebraically closed field [FMX16, Theorem 2.8]. One might wonder if we can extend this
to any homogeneous ideal, perhaps by substituting N by the big height of I, a fact which has
been shown to hold for squarefree monomial ideals [BCG' 16, Theorem 5.3]. Chudnovsky’s
Conjecture is essentially open otherwise.

The Eisenbud—Mazur Conjecture
While I1® C T always holds, it is natural to ask whether [ @) may contain a minimal

generator of I.

Conjecture 1.39 (Eisenbud-Mazur [EM97]). Let (R, m) be a localization of a polynomial
ring over a field k of characteristic 0. If I is a radical ideal in R, then 1®® C mI.

This fails if the ring is not regular, and also over regular rings of characteristic p. It is
still open in most cases over fields of characteristic 0.

Exercise 1.40. Show the Eisenbud-Mazur conjecture for squarefree monomial ideals.

More generally, Eisenbud and Mazur showed that if I in a monomial ideal and P is a
monomial prime containing I, then Y C PI@=1 for all d > 1 [EMO97, Proposition 7].
They also show Conjecture 1.39 for licci ideals [EM97, Theorem 8] and quasi-homogeneous
unmixed ideals in equicharacteristic 0 [EM97, Theorem 9]. For more on the status of this
conjecture, see [DDSG 17, Section 2.3].

Symbolic Rees algebras
When studying symbolic powers of ideals, it is useful to study the following graded object:

Definition 1.41. Let R be a ring and [ an ideal in R. The symbolic Rees algebra of I is
the graded algebra

Ro(1) := € 1™" C RYt).

n=0
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It is natural to ask when the symbolic Rees algebra is finitely generated.

Exercise 1.42. Show that the symbolic Rees algebra of an ideal I in a ring R is a finitely
generated R-algebra if and only if it is a noetherian ring.

Exercise 1.43. If the symbolic Rees algebra of an ideal [ in a ring R is finitely generated,
show that there exists k such that [¢+?) = (] (k))n for all n > 1. The converse also holds as
long as R is excellent.

Which ideals do have a noetherian symbolic Rees algebra? For example, the symbolic
Rees algebra of a monomial ideal is noetherian [Lyu88, Proposition 1]. What is maybe more
surprising is that symbolic Rees algebras are often not finitely generated. The first example
of a non-noetherian symbolic Rees algebra was found by Roberts in [Rob85].

Question 1.44 (Cowsik). Let P be a prime ideal in a regular ring R. Is the symbolic Rees
algebra of P always a noetherian ring, or equivalently, a finitely generated R-algebra?

Cowsik’s motivation was a result of his [Cow84] showing that a positive answer would
imply that all such primes are set-theoretic complete intersections, that is, complete intersec-
tions up to radical. Eliahou, Huckaba, Huneke, Vasconcelos and others proved various criteria
that imply noetherianity. However, in 1985, Paul Roberts [Rob85] answered Cowsik’s ques-
tion negatively. Space monomial curves, however, were known to be set-theoretic complete
intersections [Bre79, Her80, Val81], and much work was devoted to studying their symbolic
Rees algebras. Surprisingly, the answer to Cowsik’s question is negative even for this class
of primes, with the first non-noetherian example found by Morimoto and Goto [GM92]. In
[Cut91], Cutkosky gives criteria for the symbolic Rees algebra of a space monomial curve
to be noetherian, and in particular shows that the symbolic Rees algebra of k[t*, t°, ] is
noetherian when (a + b + ¢)? > abc.

1.5 How do we actually compute symbolic powers?

In practice, the definition is not so useful to actually compute the symbolic powers of a
given ideal, even over a polynomial ring. With a computer, we may find all the primary
components of I and I™ and intersect the appropriate components of 1™ to obtain 1™, but
determining the primary decomposition of an ideal is a notoriously difficult computational
problem. In fact, finding a primary decomposition for a monomial ideal is an NP complete
problem [HsS02].

Exercise 1.45. Use Macaulay? to find primary decompositions of I2, I? and I'°, where I
is each of the following ideals, and then use these decompositions to determine I®®, I®) and

I109 Consider the fields k = Q,Z/2 and Z/101.

I the defining ideal of the curve (3,t4, %) in k[x, v, 2].
I = (zy,yz,x2), in klx,y, 2] and k[z,y, z, u, v].

I = (a(y — %), y(2* — 2%), (2 — ) i Koy, 2]

T

he ideal generated by all the degree 2 monomials in k[zy, ..., zs].
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Are there better methods you can use to determine the same symbolic powers using Macaulay?2?
If so, try asking Macaulay2 to compute the symbolic powers of the previous ideals using dif-
ferent methods. Did your answers change with the field?

There are however classes of ideals for which we can compute symbolic powers in ways
that avoid determining a primary decomposition of ™. We will now discuss some of them.

Example 1.46. Consider a field k£ and let R = k[z,y,z]. Let I be the following radical
ideal:

I = (zy,xz,y2) = (x,y) N (x,2) N (y, 2).

When we localize at each of the associated prime ideals of I, which are (x,y), (z,z) and
(y, 2), the third variable gets inverted, so that the remaining two ideals become the whole
ring. Moreover, the pre-image of (z,y)" Rz, in R is (z,y)". Thus the symbolic powers of I
are given by

I™ = (z,9)" N (z,2)" N (y, 2)"

In particular, zyz € I®. However, all homogeneous elements in I have degree at least 4,
since I is a homogeneous ideal generated in degree 2. Therefore, zyz ¢ 1%, and 12 # I?. In
fact, the maximal ideal (z,y, 2) is an associated prime of 2, since (z,y, z) = (I : zyz).

Exercise 1.47. If I is a squarefree monomial ideal in k [z1, ..., x,], then [ is a radical ideal
whose minimal primes are generated by variables. Writing an irredundant decomposition

I = ﬂ Q;, where each @); is an ideal generated by variables, show that (") = ﬂ Q.

)

For more on symbolic powers of monomial ideals, see [SMCH16].

Example 1.48 (Points). There are several examples of finite sets of points whose corre-
sponding symbolic powers exhibit interesting behaviors. Given a field k£, an affine point P

in A7 with coordinates (ay,...,a,) corresponds to the ideal I(P) = (z1 — ay,..., T, — ap)
in klzy,...,z,|, and the point in projective space P} with coordinates (ag : - - : a,) corre-
sponds to the homogeneous ideal (a;z¢ — agzy, . . ., a;x, — ayx;) in k[xg, . .., z,] for any i such

that a; # 0. More generally, given a set of points X = {P,..., P,} in either A} or P}, the
vanishing ideal of X is given by I(X) = N{_,I(P;). The symbolic powers of I(X) are given
by I(X)™ =nP_,I(P;)", the sets of polynomials that vanish up to order n in X.

One of the few classes of ideals whose symbolic powers we can describe explicitly are
generic determinantal ideals. In fact, there is an explicit description for the primary decom-
position of all the powers of such ideals.

Example 1.49 (De Concini-Eisenbud—Procesi [DEP80]). Let k be a field of charateristic 0
or p > min{t,n—t,m—t}. Consider a generic n x m matrix X, with n < m, the polynomial
ring R = k[X]| generated by all the variables in X, and the ideal I = I,(X) generated by the
t x t minors of X, where 2 <t < n.

The products of the form A = d;---0J,, where each ¢§; is an s;-minors of X, generate
R = Ek[X] over k. More importantly, an interesting subset of such products, known as
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standard monomials, form a k-basis for R. These are enough to both describe the symbolic
powers of I = I,(X) and to give explicit primary decompositions for all powers of . Given
a product A = §; - - - 0, as above, A € I) if and only if all s; < n and

k
ZmaX{O, si—t+ 1} >
i=1

Moreover, I(") is generated by all the A € I of this form. In particular, note that multi-
plying such a A by minors of size < t — 1 does not affect whether or not A € I™. Moreover,
I? has the following primary decomposition:

1= (Y OO = ()™ 0 (s (0 0 ((0)

To obtain an irredundant primary decomposition, we take the previous decomposition and
drop the terms in [;(X) for j < n —s(n —t).

There are similar formulas for when for the ideal of ¢ x¢ minors of a symmetric nxn matrix
[JMnV15, Proposition 4.3 and Theorem 4.4] or the ideal of 2¢-Pfaffians of a generic n x n
matrix [DN96, Theorem 2.1 and Theorem 2.4]. For an in-depth treatment of determinantal
ideals, see [BVS&S].

Exercise 1.50. Let I = I,(X), where X is a generic 3 x 3 matrix. Find generators for 1.

Exercise 1.51. Show that if I is the ideal in k[X] generated by the maximal minors of a
generic matrix X, where k verifies the conditions of Example 1.49, then I™ = I™ for all
n>1.

Note, however, that this does not give any information about the symbolic powers of
ideals generated by the minors of a matrix outside of the generic case.

Exercise 1.52. Give an example of an ideal I that is generated by the maximal minors of
a matrix in a polynomial ring but such that 1™ # I ™) for all n > 1.

In general, symbolic powers are always given by saturations.

Definition 1.53. Let I, J be ideals in a ring R. The saturation of I with respect to J is
the ideal given by

(I:J"o)::U(]:J"):{TGR:rJ”QIforsomen}l}.

n>1

Remark 1.54. Note that the colon ideals (I : J") form an increasing chain that must then
stabilize, so that (I : J*) = (I : J") for some n. Computationally, this can be computed
very easily by taking the successive colons (7 : J™) until they stabilize.
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Exercise 1.55. Let I be an ideal in a noetherian ring R with no embedded primes. Show
that there exists an ideal J such that for all n > 1,

1™ = (1™ J*>).
This ideal J can be taken to be:

(a) The principal ideal J = (s) generated by an element s € R that is not contained in any
minimal prime of I, but that is contained in all the embedded primes of I" for all n > 1.

(b) the intersection of all the non-minimal primes in A(I);

(c) the intersection of any finite set of primes P D I that are not minimal over [, as long as
this set includes all of the non-minimal primes in A(I).

Unfortunately, finding J as in Lemma 1.55 requires some concrete knowledge of A(7);
knowing an upper bound for the value n at which Ass(R/I™) stabilizes would suffice. Un-
fortunately, there are essentially no effective bounds to find such a value. Moreover, the
number of associated primes of a power of a prime ideal can be arbitrarily large [KS18].

Exercise 1.56. Let (R, m) be a local ring and P a prime ideal of height dim R — 1. Show
that P™ = (P™ : m™) for all n > 1. Can you generalize this statement for a larger class of
ideals?
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2 The Containment Problem

The Containment Problem for I consists of determining for which values of a and b does the
containment (@ C I® hold.

2.1 A famous containment

The containment ¢ C I® holds if and only if @ > b. Containments of type I® C I are a
lot more interesting.

Question 2.1 (Containment Problem). Let R be a noetherian ring and I be an ideal in R.
When is 1@ C [°?

Exercise 2.2. Solve the containment problem for generic determinantal ideals.

Exercise 2.3. The monomial I = (zy,xz,yz) C k[x,y, z] does not coincide with its square.
However, show that the containment I® C I? does hold.

Over a Gorenstein ring, the containment problem can be rephrased as a homological
question, a fact first applied by Alexandra Seceleanu in [Secl5] and later used in [Gril8,
Chapter 3] to study the containment problem for ideals generated by 2 x 2 minors of 2 x 3
matrices in dimension 3.

Exercise 2.4. Let (R, m) be a Gorenstein local ring and P a prime ideal of height dim R —1.
Given a > b, show that P(® C P’ if and only if the map Ext%(R/P%, R) — Ext%(R/P* R)
induced by the canonical projection vanishes.

Does Question 2.1 always make sense? That is, given b, must there exist an a such that
I@ C I*?7 If so, then the two graded families of ideals {/"} and {I™} are cofinal, and
thus induce equivalent topologies. In 1985, Schenzel [Sch85] gave a characterization of when
{I"} and {[ (")} are cofinal. In particular, if R is a regular ring and [ is a radical ideal in
R, then {I"} and {I (”)} are cofinal. Schenzel’s characterization did not, however, provide
information on the relationship between a and b.

It was not until the late 90s that Irena Swanson showed that the [-adic and I-symbolic
topologies are equivalent if and only if they are linearly equivalent.!

Theorem 2.5 (Swanson, 2000, [Swa00]). Let R be a noetherian ring, and I and J two ideals
in R. The following are equivalent:

(i) {I™: J>°} is cofinal with {I"}.
(ii) There exists an integer ¢ such that (1" : J*) C I" for all n > 1.

In particular, given a radical ideal in a regular ring, there exists an integer ¢ such that
Ir) C I for all n > 1. More surprisingly, over a regular ring this constant can be taken
uniformly, meaning depending only on R.

"Word of caution: the words linearly equivalent have been used in the past to refer to other condition.
For example, Schenzel used this term to refer to I"t%) C I" for all n > 1 and some constant k.
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Definition 2.6 (Big height). Let I be an ideal with no embedded primes. The big height”
of I is the maximal height of an associated prime of I. If the big height of I coincides with
the height of I, meaning that all associated primes of I have the same height, we say that [
has pure height.

Theorem 2.7 (Ein-Lazarsfeld-Smith, Hochster-Huneke, Ma—Schwede [ELS01, HH02, MS17])).
Let R be a regular ring and I a radical ideal in R. If h is the big height of I, then 1™ C I
for all n > 1.

Remark 2.8. Equivalently, /™ C I 7] for all n > 1.
We cannot replace big height by height in Theorem 2.7.

Exercise 2.9. Given integers ¢ < h, construct an ideal I with height ¢ and big height h in
a polynomial ring such that 1(?) ¢ I" for some n.

Ein, Lazarsfeld, and Smith first proved Theorem 2.7 in the equicharacteristic 0 geometric
case, using multiplier ideals. Hochster and Huneke then used reduction to characteristic p
and tight closure techniques to prove the result in the equicharacteristic case. Recently, Ma
and Schwede built on ideas used in the recent proof of the Direct Summand Conjecture to
define a mixed characteristic analogue of multiplier/test ideals, allowing them to deduce the
mixed characteristic version of Theorem 2.7.

Given an ideal I and ¢ > 0, the multiplier ideal J (R, I") measures the singularities of
V(I) C Spec(R), scaled by t. We refer to [ELS01, MS17] for the definition. The proof of
Theorem 2.7 in the characteristic 0 case relies on a few key properties of multiplier ideals:

o | CJ(R,I);

1
n

e Foralln>1,7 (R, (P("h)) ) C P as long as P is a prime of height h;

e For all integers n > 1, J (R, I'™) C J (R, I")"

Then, given a prime ideal P of height h,
pim 7 (R, (P(nh))) cJ (R, (P(nh))}z>n cpr

In characteristic p, a similar proof works, replacing multiplier ideals by test ideals.

Remark 2.10. As a corollary of Theorem 2.7, we obtain a uniform constant ¢ as in Theorem
2.5. Indeed, the big height of any ideal is at most the dimension d of the ring, so that
I C I for all n. If we restrict to prime ideals in R, this constant can be improved to
d — 1, since the ordinary and symbolic powers of any maximal ideal coincide.

The question of whether there exists a uniform constant ¢ such that 1¢®) C " foralln > 1
over all ideals I for which the I-symbolic and [-adic topologies are equivalent is still open in
the non-regular setting. Even when such a uniform constant is known to exist, it is usually
very hard to find explicit best possible bounds for this constant. For the case of monomial
prime ideals over normal toric rings, see the work of Robert M. Walker [Wall6a, Wal17].

2 According to google, 627
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Example 2.11 (Carvajal-Rojas — Smolkin, 2018). Let k be a field of characteristic p and
consider R = k[a, b, c,d]/(ad — bc). Then for all primes P in R, P?" C P for all n > 1.

Theorem 2.12 (Huneke-Katz-Validashti, 2009, [HKV09]). Let R be an equicharacteristic
reduced local ring such that R is an isolated singularity. Assume either that R is equidimen-
sional and essentially of finite type over a field of characteristic zero, or that R has positive
characteristic and is F-finite. Then there exists h > 1 with the following property: for all
ideals I with positive grade for which the I-symbolic and I-adic topologies are equivalent,
Ithn) C 1™ holds for all n > 1.

2.2 Characteristic p is your friend

There are characteristic free questions that are easier to attack using positive characteristic
techniques. Hochster and Huneke’s proof that I C I" is an example of this. More
surprisingly, a characteristic p solution to a question can sometimes be enough to solve the
equicharacteristic 0 case, via a method known as reduction to positive characteristic. We will
now focus on the containment problem for radical ideals over a regular ring of characteristic
p, and go over Hochster and Huneke’s proof of Theorem 2.7.

We will go over the characteristic p definitions quickly, since they are also covered in the
prime characteristic lectures by Thomas and Linquan.

When dealing with rings of prime characteristic p, we gain a powerful tool:

Definition 2.13. Let R be a ring of prime characteristic p. The Frobenius map is the R-
homomorphism defined by F'(x) = zP. We denote the e-th iteration of the Frobenius map,
Fe(z) = 27", by F°. Applying the e-iteration of Frobenius to an ideal I in R returns an
ideal, the e-th Frobenius power of I, which we denote by IP):

J AL (ape fa € [) .
Remark 2.14. If I = (a4,...,a,), then 1P = <a’fe, . ,a{’f).

We will be focusing on regular rings of prime characteristic. One of the main facts we
will need is that over a regular ring, the Frobenius map is flat. However, this is also one
of the points where the assumption that we are working over a regular ring is crucial: the
flatness of Frobenius characterizes regular rings.

Theorem 2.15 (Kunz, 1969 [Kun69]). If R is a reduced local ring of prime characteristic
p, R is flat over R? if and only if R is a regular ring.

This theorem has many important consequences.

Exercise 2.16. Let R be a regular ring of characteristic p. For all ideals [ and J in R and
all ¢ = p®,
(J : ])[Q] - (J[q] . ][q]) ]

Exercise 2.17. Prove that if R is a regular ring of characteristic p, the Frobenius map
preserves associated primes, that is, Ass (R/I) = Ass (R/ 1 [Q]) for all ¢ = p°.
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Remark 2.18. One of the key ingredients we will need to show 1" C I™ is understanding
the minimal number of generators of I after localizing at each associated prime. If I = @)
is a prime ideal of height h, then the only associated prime of @ is @) itself, and ()¢ is the
maximal ideal of a regular local ring of dimension h, so that it is minimally generated by h
elements. For a radical ideal I of big height h, Ip is generated by at most h elements when
localized at any of its associated primes P. Indeed, since [ is radical, I = P N J, where J
contains elements not in P, and thus Ip = Pp, which is generated by as many elements as
the height of P. By definition, this is at most A.

The results in [HH02] cover a more general case, not assuming that I is radical. The
main ideas are still the same, but the maximal value for the minimal number of generators of
Ip, when P runs through the associated primes of [, is no longer necessarily h. To overcome
this issue, we can substitute Ip by a minimal reduction of Ip, which is generated by as many
elements as the analytic spread of Ip. We will not discuss this in detail here, but this number
is at most the height of P. The general form of Theorem 2.7 is then as follows: ["®) C [
for all n > 1, where h can be taken to be (by increasing order of refinement)

e the maximum value of the minimal number of generators of Ip, where P runs through
the associated primes of I,

e the maximal height of an associated prime of I, or
e the maximal analytic spread of Ip, where P runs through the associated primes I.

When [ is radical, all these invariants coincide. For more on reductions and a definition of
analytic spread, see [SH06, Chapter 8].

In order to show that a containment of ideals holds, it is enough to show that the
containment holds locally.

Exercise 2.19. (Containments are local) Given ideals I and J in a noetherian ring R, the
following are equivalent:

(a) ICJ;
(b) Ip C Jp for all primes P € Supp(R/J);
(c) Ip C Jp for all primes P € Ass(R/J).

With the appropriate tools, the characteristic p statement of Theorem 2.7 for n = p°©
turns out to be a fancy version of the Pigeonhole Principle.

Lemma 2.20 (Hochster-Huneke [HH02]). Suppose that I is a radical ideal of big height h
in a regular ring R containing a field of characteristic p > 0. For all ¢ = p°,

7o) c rldl,

Proof. By Exercise 2.19, it is enough to show the containment holds once we localize at the
associated primes of 19, By Exercise 2.17, the associated primes of I'9 coincide with those
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of I. So let P be an associated prime of I, and note that Ip is generated by at most h
elements. Over Rg, the containment becomes

eIy,
So consider generators 1, ...,z for Io. We need to show that
h
(1, ) C (2, .. 2.
Consider z{* - - z3" with a; + -+ + ap > hg. Since (zq, ... ,xh)hq is generated by all such
elements, it is enough to show that z{*--- 23" € («f,...,z]). Since a1 + -+ + a, = hg, the
Pidgenhole Principle guarantees that a; > ¢ for some ¢, and thus zj* € (zf, ..., z}). O

In fact, the same proof using the full power of the Pidgenhole Principle gives Harbourne’s
Conjecture 2.31, which we will talk about later, for powers of p, a fact first noted by Craig
Huneke:

Exercise 2.21. Suppose that [ is a radical ideal of big height A in a regular ring R containing
a field of characteristic p > 0. Show that for all ¢ = p°,

J(ha—h+1) C 1l C I,

As an easy corollary, we obtain an affirmative answer to Huneke’s Question 2.30 in
characteristic 2, that is, I®® C I? always holds in characteristic 2.

To prove 1" C I holds for all n > 1, we need to use tight closure techniques. The
theory of tight closure, developed by Hochster and Huneke, has many important applications
across commutative algebra.

Definition 2.22 (Tight Closure). Let R be a domain of prime characteristic p. Given an
ideal I in R, the tight closure of I is the ideal

I = (z € A| there exists a non-zero ¢ € R such that cz? € 19 for each g = pe) .

Remark 2.23. Notice that I C I*.

It is sometimes easier to prove something is contained in the tight closure of an ideal
than in the ideal itself. This idea is especially useful if we are working over a regular ring,
since all ideals are tightly closed.

Theorem 2.24 (Theorem (4.4) in [HH90]). Let R be a regular ring containing a field. Then
I = I* for every ideal I in R.

Theorem 2.25 (Hochster-Huneke, [HH02]). Let R be a regular ring of characteristic p, and
I be a radical ideal of big height h. Then for all n > 1, I C I

Proof. Fix n. We will show that if v € 1" then u € (I")*, and since R is regular, that
implies that u € I™. We need to find an element ¢ that is not in any minimal prime of
such that cr? € (I"™)? for all ¢ = p°.
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Given ¢ = p°, we can write ¢ = an + r for some integers a,r > 0 with r < n. Then
u € (I(h"))a C J(han) and

[mys © hrye © g pthan) ¢ plhanthr) _ p(he).
Since 1) C 19 we have "y C T4, Now take powers of n on both sides:
]hn2uan C (][q])" _ (]n)[q] ‘
By choice of a, ¢ > an, so that
I8 C e C ([”)[q] )

Since R is a domain, there exists a nonzero element ¢ € h”2, which does not depend on the
choice of q. Such ¢ verifies cu? € (I")!, and thus u € I™. O

This can be generalized. The following is [ELS01, Theorem 2.2] in the case of smooth
complex varieties, and more generally [HH02, Theorem 2.6]:

Theorem 2.26 (Ein-Lazersfeld-Smith, Hochster—Huneke). Let I be a radical ideal of a
regular ring containing a field, and let h be the big height of /. Then for all n > 1 and all
k> 0, ](hn+lm) C (I(kJrl))".

Exercise 2.27. Show Theorem 2.26, essentially by repeating the argument we just gave.

When k = 0, this gives I(" C I™. Moreover, in characteristic p, we can obtain a
generalized version of Harbourne’s Conjecture for powers of p:

Exercise 2.28. Let I be a radical ideal in a regular ring R of characteristic p > 0 and h the
big height of I. For all ¢ = p°,

J(ha+ka—h+1) (I(k—i-l))[‘ﬂ‘

2.3 Harbourne’s Conjecture
The containments provided by Theorem 2.7 are not necessarily best possible.

Example 2.29. The ideal I = (z,y) N (z,2) N (y, z) from Example 1.46 has big height 2, so
that Theorem 2.7 implies that I C I™ for all n > 1. However, I® C I?, even though the
theorem only guarantees I C J2.

Question 2.30 (Huneke, 2000). Let P be a prime ideal of height 2 in a regular local ring
containing a field. Does the containment P® C P? always hold?

This question remains open even in dimension 3. Harbourne proposed the following
generalization of Question 2.30, which can be found in [HH13, BRH"09]:

Conjecture 2.31 (Harbourne, 2006). Let I be a radical homogeneous ideal in k[PY], and
let h be the big height of I. Then for all n > 1,

[(hn—h-i-l) C I
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Remark 2.32. Equivalently, Harbourne’s Conjecture asks if 7 C IT#1 for all n > 1.

Remark 2.33. When h = 2, the conjecture asks that /(>®=1 C I™, and in particular that
I®C 12

There are various cases where this conjecture is known to hold: if I is a monomial ideal
(which first appeared in [BRHT09, Example 8.4.5]), if I corresponds to a general set of
points in P? ([BH10]) or P? ([Dum15]), and if I corresponds to a star configuration of points
([HH13]). We will see that the conjecture also holds if I defines an F-pure ring, which in
particular recovers the result for monomial ideals.

Exercise 2.34. Let I be a squarefree monomial ideal. Show that I verifies Harbourne’s
Conjecture.

Unfortunately, Conjecture 2.31 turns out to be too general; it does not hold for all
homogeneous radical ideals.

Example 2.35 (Fermat configurations of points). Let n > 3 be an integer and consider a
field & of characteristic not 2 such that k contains n distinct roots of unity. Let R = k[z, v, 2],
and consider the ideal

I=(x(y" —2"),y(z" —a"),z(z" —y")).

When n = 3, this corresponds to a configuration of 12 points in P2, as described in Figure 1.

Over P?(C), these 12 points are given by the 3 coordinate points plus the 9 points defined

by the intersections of y® — 23, 23 — 23 and 23 — 3.

Figure 1: Fermat configuration of points when n = 3.

The ideal I is radical and has pure height 2. However, I ¢ 2| since the element
f= " —2")("—2") (2" — y") € I® but not in I?. This can be shown via geometric
arguments, noting that f defines 9 lines, some three of which go through each of the 12
points.

This was first proved in [DSTG13] over k = C, and then generalized in [HS15, Proposition
3.1] to any k and any n.
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Other configurations of points in P? have been shown to produce ideals that fail the
containment I®® C 2] such as the Klein and Wiman configurations of points [Sec15]. Given
a configuration of points in P¥ that produces an ideal I with I(»—h+1) ¢ I", one can produce
other counterexamples to the same type of containment by applying flat morphisms P¥ — P*:
see the work of Solomon Akesseh [Akel7].

Example 2.36. Harbourne and Seceleanu [HS15] showed that ["»=h+1) C [™ can fail for
arbitrarily high values of n in characteristic p > 0. However, their counterexamples are
constructed depending on n, meaning that given n, there exists an ideal I,, of pure height 2
(corresponding, once more, to a configuration of points in P?) which fails {m=h ) cI.

There are also no known prime counterexamples to Harbourne’s Conjecture. In particu-
lar, P®) C P? could still hold for prime ideals over a power series ring.

2.4 Harbourne’s Conjecture in characteristic p

We will show that Harbourne’s Conjecture always holds for I when R/ is a nice enough
ring: we will ask that R/I be F-pure.

Definition 2.37 (F-finite ring). Let A be a noetherian ring of characteristic p > 0. We
say that A is F-finite if A is a finitely generated module over itself via the action of the
Frobenius map.

Definition 2.38. If A is F-finite and reduced, the ring of p°-roots of A is denoted by F°A,
and the inclusion A <— F?A can be identified with F°. The fact that A is F-finite implies
that F?A is a finitely generated module over A for all ¢ = p°.

Example 2.39. If k is a perfect field, then klxy, ..., z,| is F-finite. In fact, every ring R
essentially of finite type over k is F-finite.

We will study F-pure rings, which were introduced by Hochster and Roberts in [HR76].

Definition 2.40 (F-pure ring). Let A be a noetherian ring of characteristic p > 0. We say
that A is F-pure if for any A-module M, F®1: A® M — A ® M is injective.

Definition 2.41 (F-split ring). Let A be a noetherian ring of characteristic p > 0. We say
that A is F-split if the inclusion R < F¢R splits for every (equivalently, some) g = p°.

Lemma 2.42. If A is F-finite, then A is F-pure if and only A is F-split.
Proof. See [HR76, Corollary 5.3]. O

If I is a squarefree monomial ideal in a polynomial ring over a field, then R/I is an F-pure
ring. The following theorem characterizes ideals that define F-pure rings over a regular ring:

Theorem 2.43 (Fedder’s Criterion for F-purity, Theorem 1.12 in [Fed83]). Let (R, m) be a
regular local ring of characteristic p > 0. Given an ideal I in R, R/I is F-pure if and only if

for all ¢ = p* > 0,
(][q] . ]) ¢ mld
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We are now ready to show that if R is a regular ring and R/I is F-pure, then I verifies
Harbourne’s Conjecture. First, we record the result we are trying to prove.

Theorem 2.44 (Theorem 3.3 in [GH17]). Let R be a regular ring of characteristic p > 0.
Let I be an ideal in R such that R/I is F-pure, and let h be the big height of /. Then for
all n > 1, [(hn=htl) C 7,

Naively, the idea of the proof is to study the colon ideal (I Tl (h"_h“)). The colon ideal
(J : I) measures the failure of I C J, and (J : I) = R precisely when I C J. In order to
show that (]" : I(h"*hﬂ)) = R, we need to show that this ideal contains some large ideal;
Fedder’s Criterion 2.43 provides the perfect candidate. The proof in [GH17] does just that

— we show that
(I[q] 1) C ([](”) : [(n+h))[‘1]

for all ideals I and all ¢ = p® > 0, and when R/I is F-pure that implies Harbourne’s
Conjecture. The proof we will follow here uses the same techniques, but instead we will
show a slightly more powerful lemma.

Y

Lemma 2.45. Let R be a regular ring of characteristic p > 0. Let I be a radical ideal in R
and A the big height of I. For all n > 1,

(19 : 1) C (11 ; [l
for all ¢ = p© > 0.

Proof. Recall that
([I(”) : [(n+h))[q} _ <(II(”))[q] : (I("Jrh))[q}) ’

by Exercise 2.16. Take s € (119 : I). Then s/t C s C 9, 50

s ( [(n+h))[q] C (sI™) ( [(n+h>)q—1 c 11 ( [(n+h))q—1_

We will show that

(I(n-i-h))q*l c ([(n))[lﬂ ,
which implies that
s (I(n+h))[¢ﬂ c (I](n))[CI] ’

completing the proof.
Notice that, by Exercise 1.16,

( ]<n+h>)q—1 C [(+h)(a=1)
By Exercise 2.26 with £ = n — 1, we obtain the following containment:

J(ha+(n=1a=h+1) (I(”))[q].

We claim that for all ¢ > 0, (1 (”+h))q_1 C [(hat(n=1a=r+1) " which would conclude the
proof that (I (”+h))q_1 C (I (”))[q]. To show that the claim, it is enough to prove that

m+h)(g—1)=2hg+(n—1)g—h+1
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for large values of ¢. This can be seen by comparing the coefficients in ¢, and noticing that
n+h >n+ h—1, or by explicitly solving the inequality. In particular, it holds as long as
qg=n+1. O

Corollary 2.46. Let R be a regular ring of characteristic p > 0. Let I be an ideal in R
with R/I F-pure, and let h be the big height of /. Then for all n > 1,

10+ C ),

Proof. First, note that we can reduce to the local case, by Exercise 2.19. Indeed, the big
height of an ideal does not increase under localization, and all localizations of an F-pure
ring are F-pure [HR74, 6.2]. So suppose that (R, m) is a regular local ring, and that R/I is
F-pure.

Fix n > 1, and consider ¢ as in Lemma 2.45. Then for all ¢ > 0,

(19 ;1) € (11 ; [y

If 7+ ¢ 110 then (11M : 1 ("Jrh))[(ﬂ C ml9, contradicting Fedder’s Criterion. O
We can now show that Harbourne’s conjecture holds for ideals defining F-pure rings.

Exercise 2.47. Prove Theorem 2.44 using Corollary 2.46. That is, show that if R is a
regular ring of characteristic p and R/I is F-pure, then I verifies Harbourne’s Conjecture.

It is natural to ask if we can improve the answer to the containment problem given by
Theorem 2.44. One way to do that would be to show that I»=" C ™ for allm > 1 —
which does not hold for all ideals defining F-pure rings.

Exercise 2.48. Let R = k[z1,..., x4 and consider the squarefree monomial ideal
I = m (in, ZIZ']') .
i<j

Show that while 7(2»~1) ¢ I™ holds for all n > 1, IGn=2) ¢ I"™ for n < d. What happens
when n = d? How does this example generalize to higher height?

But in fact, Corollary 2.46 implies more than just Harbourne’s Conjecture.

Exercise 2.49. Let R be a regular ring of characteristic p > 0, and consider an ideal [ in
R such that R/I is F-pure. Show that given any integer ¢ > 1, if I(""=¢) C I™ for some n,
then I1h"=<) C 1™ for all n > 0.

When R/I is strongly F-regular, we can improve this.

Definition 2.50 (Strongly F-regular ring). A Noetherian reduced F-finite ring R is called
strongly F-reqular if for every ¢ € R that is not in any minimal prime of R, there exists
e > 0 such that the map R — R'? sending 1 to ¢'/?° splits as a map of R-modules.

Determinantal rings and Veronese rings are examples of strongly F-regular rings.
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Theorem 2.51 (Theorem 4.1 in [GH17]). Let R be a regular F-finite ring of characteristic
p > 0, and consider an ideal I in R of big height h such that R/I is strongly F-regular.

Then for all n > 1,
I((h*l)ﬂ‘i’l) C VRS

This theorem essentially says that if R/I is strongly F-regular, then I verifies a version
of Harbourne’s Conjecture where we can replace the big height h of I by h — 1.

The result follows from a Fedder-like criterion for strong F-regularity together with the
following lemma [GH17, Lemma 3.2]:

Lemma 2.52. Let R be a regular ring of characteristic p > 0, I an ideal in R, and h > 2
the maximal height of a minimal prime of I. Then for all d > h — 1 and for all ¢ = p°©,

(17 1@ (19 T) € (11€+M) . [(d))[‘ﬂ.
The Fedder-like criterion we need was first shown by Donna Glassbrenner:

Theorem 2.53 (Glassbrenner’s Criterion for strong F-regularity). [Gla96] Let (R, m) be an
F-finite regular local ring of prime characteristic p. Given a proper radical ideal I of R, R/I
is strongly F-regular if and only if for each element ¢ € R not in any minimal prime of I,
c (19 : 1) ¢ mld for all ¢ = p° > 0.

Exercise 2.54. Let I be an ideal in a noetherian ring. Show that (Id : ](d)) always contains
an element that is not in any minimal prime of 1.

Exercise 2.55. Prove Theorem 2.51 using Lemma 2.52.

Exercise 2.56. What does Theorem 2.51 say for primes of height 2?7 Find examples of such
primes that are not complete intersections.

3 Assorted exercises

Exercise 3.1. Let R be a regular ring, essentially of finite type over a perfect field, and
P C @ prime ideals. Show that P™ C Q™ for all n > 1.

Exercise 3.2. Consider the ring R = k[u,v,w, z,y, z]/(ux + vy + wz). This is a Cohen-
Macaulay, normal ring, with an isolated singularity, and even a UFD. However, we can prime
ideals P C @ that fail P C Q™. Show that this is the case when @ is the maximal ideal
generated by all the variables, and P the prime ideal generated by all the variables but one.

Exercise 3.3. What questions could you ask Macaulay2 in an attempt to determine if
I = I™ for a given value of n without computing I(™?
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4 Historical remarks

Symbolic powers first arose from the theory of primary decomposition. In 1905, world chess
champion Emanuel Lasker [Las05] showed that every ideal in a polynomial or power series
ring over a field has a primary decomposition, and in 1921, Emmy Noether [Noe21] extended
Lasker’s result to any noetherian ring.

In 1949, Zariski gave the first proof of what is now known as the Zariski-Nagata theorem
[Zar49, Nag62]. This result has been extended by Eisenbud and Hochster [EH79], and it
can be phrased in terms of differential operators [DDSG*17, BJNnB, DSGJ17]. Morally,
Zariski-Nagata says that the symbolic powers have nice geometric properties, while the
ordinary algebraic powers have no precise geometric meaning. On the other hand, P™ can
be extremely difficult to compute algebraically, while determining P™ from P is fairly simple.

In the 1970s and 1980s, there was a lot of interest in comparing the topologies determined
by the ordinary and symbolic powers. The fact that two topologies are equivalent for a given
ideal I amounts to saying that for all positive integers b, there exists a value a such that
I C I°  Schenzel asked if this should imply that there exists a constant & such that
I%*n) C I™; in 2000, Irena Swanson [Swa00] answered this question positively.

Soon after Swanson’s theorem, Ein, Lazarsfeld, and Smith [ELSO01] determined what this
constant k is over an affine variety of characteristic 0, and Hochster and Huneke [HHO02]
generalized the result for the case of a regular ring containing a field and any ideal I. Very
recently, Ma and Schwede [MS17] have settled the mixed characteristic case. Given a radical
ideal I, the constant k£ given by Swanson’s thereom can be taken to be the big height of
I, an invariant depending only on the associated primes of I. In particular, these results
imply that 1@ C J" for all n > 1, where the constant d can be taken to be independent
of the choice of ideal. Whether such a uniform result holds for prime ideals in a more
general setting is still an open question. However, this has been settled in some cases
[HKV09, HKV15, Wall7, Wall6a, Wall6b].

In the 1980s and 1990s, much effort was devoted to studying symbolic Rees algebras,
&I™t", especially for prime ideals. The main motivation was a question raised by Cowsik
in the 1980s: should the symbolic Rees algebra always be noetherian, in particular for prime
ideals P in a regular local ring R such that dim(R/P) = 17 Cowsik’s motivation was a
result of his [Cow84] showing that a positive answer would imply that all such primes are
set-theoretic complete intersections, that is, complete intersections up to radical. Eliahou,
Huckaba, Huneke, Vasconcelos and others proved various criteria that imply noetherianity.
However, in 1985, Paul Roberts [Rob85] answered Cowsik’s question negatively. On the
other hand, space monomial curves were known to be set-theoretic complete intersections
[Bre79, Her80, Val81], and much work was devoted to studying their symbolic Rees algebras.
Surprisingly, the answer to Cowsik’s question is negative even for this class of primes, with
the first non-noetherian example found by Morimoto and Goto [GM92]. Cutkostky [Cut91]
also gave criteria to determine whether the symbolic Rees algebra of a given space monomial
curve is noetherian.

Besides being an interesting subject in its own right, symbolic powers appear as auxiliary
tools in several important results in commutative algebra, such as Krull’s Principal Ideal
Theorem, Chevalley’s Lemma, or in giving a proof in prime characteristic for the fact that
regular local rings are UFDs. Hartshorne’s proof of the Hartshorne—Lichtenbaum Vanishing
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Theorem also makes use of symbolic powers. Explicitly, Hartshorne’s proof of this local
cohomology result uses the fact that certain symbolic and -adic topologies are equivalent,
and thus local cohomology can be computed using symbolic powers.
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