

problem set 1

Notes: You may use any resources to solve these problems. Make sure you understand your solution thoroughly if you submit for credit. Good luck!

Problem 1

Part a. Prove the Central Limit Theorem (for finite variance), which states that *any* random variable X with a mean μ and finite variance σ^2 will have an IID sample mean distribution that converges to a normal distribution for large sample size *n*:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

Part b. What special properties of the normal distribution cause it to be the limiting distribution?

Problem 2

A particle is released at $(0, e) \in \mathbb{R}^2$ within the *xy* plane. The particle undergoes decoupled temporal motion (with respect to time *t*) given by the equations

$$dx = \mathcal{N}(0, 1) \vee dt \qquad (brownian motion)$$
$$dy = -y dt$$

until it reaches the line y = 0.1. At this moment, the particle begins to obey the equations of motion

$$dx = \sin(\alpha x) dt$$
$$dy = -y dt$$

for some $\alpha \in \mathbb{R}$.

Let $1 >> \epsilon > 0$, and determine the probability, with respect to α , of the particle reaching a stable state $S \in \mathbb{R}^2$ where $||S - (\pi, 0)|| < \epsilon$ for sufficiently large *t*. You may express your answer in terms of the standard normal cumulative distribution function Φ .

Problem 3

Suppose $\mu : \mathscr{B}(\mathbb{R}) \to \mathbb{Q} \cap [0,1]$ is a rational-valued probability measure on the Borel σ -algebra \mathscr{B} over \mathbb{R} . Prove that μ takes finitely many values.