
MATH 2270-4 Final Exam Sample Problems Spring 2019

ANSWERS

No books, notes or electronic devices, please.

The questions have credits which reflect the time required to write the solution.

If you must write a solution out of order or on the back side, then supply a road map.

Solutions are expected to include readable and convincing details. A correct answer without

details earns 25%.

Only a small sampling from these problem types will appear on the final exam, due to time

limitations. Expect about 10 minutes per problem. A final exam problem will have multiple

parts.

In addition to these problems, please review the problems from Exam 1, Exam 2 and Exam

3. Sources are located in the CALENDAR at the course web site, week 15.

Problem 1. (5 points) Let A be a 2 × 2 matrix such that A

(
1

1

)
=

(
1

0

)
. Compute

A

(
2

2

)
.

Answer:

A

(
2

2

)
= 2A

(
1

1

)
= 2

(
1

0

)
=

(
2

0

)

Problem 2. (5 points) State (1) the definition of norm, (2) the Cauchy-Schwartz

inequality and (3) the triangle inequality, for vectors in Rn.

Answer:

(1) Norm of ~v equals ‖~v‖ =
√
~vT~v; (2) |~a ·~b| ≤ ‖~a‖‖~b‖; (3) ‖~a+~b‖ ≤ ‖~a‖+ ‖~b‖.

Problem 3. (5 points) Suppose A = B(C + D)E and all the matrices are n × n

invertible. Find an equation for C.

Answer:

AE−1 = BC +BD implies C = B−1(AE−1 −BD).
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Problem 4. (5 points) Find all solutions to the system of equations

2w + 3x+ 4y + 5z = 1

4w + 3x+ 8y + 5z = 2

6w + 3x+ 8y + 5z = 1

Answer:

Infinite solution case: w = −1/2, x = −(5/3)t1, y = 1/2, z = t1.

Problem 5. (5 points) Let A =

(
2 1

0 3

)
. Show the details of two different methods

for finding the inverse of the matrix A.

Answer:

The two methods are (1) A−1 = adj(A)
|A| and (2) For C =< A|I >, then rref(C) =< I|A−1 >.

Details expected, but not supplied here.

Problem 6. (5 points) Find a factorization A = LU into lower and upper triangular

matrices for the matrix A =

 2 1 0

1 2 1

0 1 2

.

Answer:

Let E1 be the result of combo(1,2,-1/2) on I, and E2 the result of combo(2,3,-2/3) on I.

Then E2E1A = U =

 2 1 0

0 3
2

1

0 0 4
3

. Let L = E−11 E−12 =

 1 0 0
1
2

1 0

0 2
3

1

.

Problem 7. (5 points) Let Q be a 2 × 2 matrix with QQT = I. Prove that Q has

columns of unit length and its two columns are orthogonal.

Answer:

First, AB = I with both A,B square implies BA = I. So QTQ = I. Then Q =< ~q1|~q2 >

implies QTQ =

(
~q1 · ~q1 ~q1 · ~q2
~q2 · ~q1 ~q2 · ~q2

)
. Relation QTQ = I then implies orthogonality of the

columns and that the columns have length one.

2



Problem 8. (5 points) True or False? If the 3 × 3 matrices A and B are triangular,

then AB is triangular.

Answer:

False. Consider the decomposition A = LU in a problem above. True if both matrices are

upper triangular or both matrices are lower triangular.

Problem 9. (5 points) True or False? If a 3× 3 matrix A has an inverse, then for all

vectors ~b the equation A~x = ~b has a unique solution ~x.

Answer:

True, ~x = A−1~b.

Problem 10. (5 points) Let A be a 3× 4 matrix. Find the elimination matrix E which

under left multiplication against A performs both (1) and (2) with one matrix multiply.

(1) Replace Row 2 of A with Row 2 minus Row 1.

(2) Replace Row 3 of A by Row 3 minus 5 times Row 2.

Answer:

Perform combo(1,2,-1) on I then combo(2,3,-5) on the result. The elimination matrix is

E =

 1 0 0

−1 1 0

5 −5 1



Problem 11. (10 points) Determinant problem, chapter 3.

(a) [10%] True or False? The value of a determinant is the product of the diagonal elements.

(b) [10%] True or False? The determinant of the negative of the n×n identity matrix is −1.

(c) [30%] Assume given 3 × 3 matrices A, B. Suppose E2E1A
2 = AB and E1, E2 are

elementary matrices representing respectively a combination and a multiply by 3. Assume

det(B) = 27. Let C = −A. Find all possible values of det(C).

(d) [20%] Determine all values of x for which (2I + C)−1 fails to exist, where I is the 3× 3

identity and C =

 2 x −1

3x 0 1

1 0 −1

.
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(e) [30%] Let symbols a, b, c denote constants and define

A =


1 −1 0 0

1 0 0 0

a b 0 1

1 c 1 1
2


Apply the adjugate [adjoint] formula for the inverse

A−1 =
adj(A)

|A|

to find the value of the entry in row 4, column 2 of A−1.

Answer:

(a) FALSE. True only if the matrix is triangular.

(b) FALSE. It equals 1 when n is even.

(c) Start with the determinant product theorem |FG| = |F ||G|. Apply it to obtain |E2||E1||A|2 =

|A||B|. Let x = |A| in this equation and solve for x. You will need to know that |E1| = 1

and |E2| = 3. Then |C| = |(−I)A| = |− I||A| = (−1)3x. The answer is |C| = 0 or |C| = −9.

(d) Find C + I =


4 x −1

3x 2 1

1 0 1

, then evaluate its determinant, to eventually solve for

x = −5/3 and x = 2. Used here is F−1 exists if and only if |F | 6= 0.

(e) Find the cross-out determinant in row 2, column 4 (no mistake, the transpose swaps

rows and columns). Form the fraction, top=checkerboard sign times cross-out determinant,

bottom=|A|. The value is −b− a. A maple check:

C4:=Matrix([[1,-1,0,0],[1,0,0,0],[a,b,0,1],[1,c,1,1/2]]);

1/C4; # The inverse matrix

C5:=linalg[minor](C4,2,4);

(-1)**(2+4)*linalg[det](C5)/linalg[det](C4);

# ans = -b-a

Problem 12. (5 points) Define matrix A, vector~b and vector variable ~x by the equations

A =

 −2 3 0

0 −4 0

1 4 1

 , ~b =

 −3

5

1

 , ~x =

 x1

x2

x3

 .
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For the system A~x = ~b, find x3 by Cramer’s Rule, showing all details (details count 75%).

To save time, do not compute x1, x2!

Answer:

x3 = ∆3/∆, ∆ = det

 −2 3 0

0 −4 1

1 4 1

 = −8, ∆3 = det

 −2 3 −3

0 −4 5

1 4 1

 = 59, x3 =

−59
8

.

Problem 13. (5 points) Define matrix A =

 3 1 0

3 3 1

0 2 4

. Find a lower triangular

matrix L and an upper triangular matrix U such that A = LU .

Answer:

Let E1 be the result of combo(1,2,-1/2) on I, and E2 the result of combo(2,3,-2/3) on I.

Then E2E1A = U =

 2 1 0

0 3
2

1

0 0 4
3

. Let L = E−11 E−12 =

 1 0 0
1
2

1 0

0 2
3

1

.

Problem 14. (5 points) Determine which values of k correspond to a unique solution
for the system A~x = ~b given by

A =

 1 4 k

0 k − 2 k − 3

1 4 3

 , ~b =

 1

−1

k

 .

Answer:

There is a unique solution for det(A) 6= 0, which implies k 6= 2 and k 6= 3. Alternative

solution: Elimination methods with swap, combo, multiply give

 1 4 k 1

0 k − 2 0 k − 2

0 0 3− k k − 1

.

Then (1) Unique solution for three lead variables, equivalent to the determinant nonzero

for the frame above, or (k − 2)(3 − k) 6= 0; (2) No solution for k = 3 [signal equation]; (3)

Infinitely many solutions for k = 2.

Problem 15. (10 points) Let a, b and c denote constants and consider the system of
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equations  1 −b c

1 c a

2 −b+ c −a


 x

y

z

 =

 a

−a
−a


Use techniques learned in this course to briefly explain the following facts. Only write what

is needed to justify a statement.

(a). The system has a unique solution for (b+ c)(2a+ c) 6= 0.

(b). The system has no solution if 2a+c = 0 and a 6= 0 (don’t explain the other possibilities).

(c). The system has infinitely many solutions if a = c = 0 (don’t explain the other possi-

bilities).

Answer:

Combo, swap and mult are used to obtain in 3 combo steps the matrix

A3 =

 1 −b c a

0 b+ c −c+ a −2a

0 0 −c− 2a −a


(a) Uniqueness requires zeros free variables. Then the diagonal entries of the last frame must

be nonzero, written simply as −(c + b)(2a + c) 6= 0, which is equivalent to the determinant

of A not equal to zero.

(b) No solution: The last row of A3 is a signal equation if c+ 2a = 0 and a 6= 0.

(c) Infinitely many solutions: If a = c = 0, then A3 has last row zero. If a = c = 0 and b = 0,

then there is one lead variable and two free variables, because the last two rows of A3 are

zero. If a = c = 0 and b 6= 0, then there are two lead variables and one free variable. The

homogeneous problem has infinitely many solutions, because of at least one free variable and

no signal equation.

The sequence of steps are documented below for maple.

with(LinearAlgebra):

combo:=(A,s,t,m)->LinearAlgebra[RowOperation](A,[t,s],m);

6



mult:=(A,t,m)->LinearAlgebra[RowOperation](A,t,m);

swap:=(A,s,t)->LinearAlgebra[RowOperation](A,[s,t]);

A:=(a,b,c)->Matrix([[1,b,c,-a],[1,c,-a,a],[2,b+c,a,a]]);

A0:=A(a,b,c);

A1:=combo(A(a,b,c),1,2,-1);

A2:=combo(A1,1,3,-2);

A3:=combo(A2,2,3,-1);

A4:=convert(A3,list,nested=true);

A4 := [[1, -b, c, a], [0, b+c, -c+a, -2*a], [0, 0, -c-2*a, -a]];

Problem 16. (5 points) Explain how the span theorem applies to show that the set

S of all linear combinations of the functions coshx, sinhx is a subspace of the vector space

V of all continuous functions on −∞ < x <∞.

Answer:

The span theorem says span(~v1, ~v2) is a subspace of V , for any two vectors in V . Choose

the two vectors to be coshx, sinhx.

Problem 17. (5 points) Write a proof that the subset S of all solutions ~x in Rn to

a homogeneous matrix equation A~x = ~0 is a subspace of Rn. This is called the kernel

theorem.

Answer:

(1) Zero is in S because A~0 = ~0; (2) If A~v1 = ~0 and A~v2 = ~0, then ~v = ~v1 + ~v2 satisfies

A~v = A~v1 + A~v2 = ~0 + ~0 = ~0. So ~v is in S; (3) Let ~v1 be in S, that is, A~v1 = ~0. Let c be

a constant. Define ~v = c~v1. Then A~v = A(c~v1) = cA~v1 = (c)~0 = ~0. Then ~v is in S. This

completes the proof.

Problem 18. (5 points) Using the subspace criterion, write two hypotheses that imply

that a set S in a vector space V is not a subspace of V . The full statement of three such

hypotheses is called the Not a Subspace Theorem.

Answer:

(1) If the zero vector is not in S, then S is not a subspace. (2) If two vectors in S fail to

have their sum in S, then S is not a subspace. (3) If a vector is in S but its negative is not,

then S is not a subspace.
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Problem 19. (5 points) Report which columns ofA are pivot columns: A =

 0 1 1

0 1 2

0 0 0

.

Answer:

Zero cannot be a pivot column (no leading one in rref(A)). The other two columns are

not constant multiples of one another, therefore they are independent and will become pivot

columns in rref(A). Then: pivot columns =2,3.

Problem 20. (5 points) Find the complete solution ~x = ~xh+~xp for the nonhomogeneous

system  0 1 1

0 1 2

0 0 0


 x1

x2

x3

 =

 2

3

0

 .

The homogeneous solution ~xh is a linear combination of Strang’s special solutions. Symbol

~xp denotes a particular solution.

Answer:

The augmented matrix has reduced row echelon form (last frame) equal to the matrix

0 1 0 1

0 0 1 1

0 0 0 0

. Then x1 = t1, x2 = 1, x3 = 1 is the general solution in scalar form. The partial

derivative on t1 gives the homogeneous solution basis vector

 1

0

0

. Then ~xh = c1

 1

0

0


Set t1 = 0 in the scalar solution to find a particular solution ~xp =

 0

1

1

.

Problem 21. (5 points) Find the vector general solution ~x to the equation A~x = ~b for

A =

1 0 0 4

3 0 1 0

4 0 0 1

 , ~b =

0

4

0


Answer:
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The augmented matrix for this system of equations is1 0 0 4 0

3 0 1 0 4

4 0 0 1 0


The reduced row echelon form is found as follows:1 0 0 4 0

0 0 1 −12 4

4 0 0 1 0

 combo(1,2,-3)

1 0 0 4 0

0 0 1 −12 4

0 0 0 −16 0

 combo(1,3,-4)

1 0 0 4 0

0 0 1 −12 4

0 0 0 1 0

 mult(3,-1/16)

1 0 0 0 0

0 0 1 0 4

0 0 0 1 0

 last frame

The last frame, or RREF, implies the system

x1 = 0

x3 = 4

x4 = 0

The lead variables are x1, x3, x4 and the free variable is x2. The last frame algorithm intro-

duces invented symbol t1. The free variable is set to this symbol, then back-substitute into

the lead variable equations of the last frame to obtain the general solution

x1 = 0,

x2 = t1,

x3 = 4,

x4 = 0.

Strang’s special solution ~s1 is the partial of ~x on the invented symbol t1. A particular solution

~xp is obtained by setting all invented symbols to zero. Then

~x = ~xp + t1~s1 =


0

0

4

0

+ t1


0

1

0

0


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Problem 22. (5 points) Find the reduced row echelon form of the matrix A = 0 1 1

0 0 0

0 1 2

.

Answer:

It is the matrix

 0 1 0

0 0 1

0 0 0

.

Problem 23. (5 points) A 10 × 13 matrix A is given and the homogeneous system

A~x = ~0 is transformed to reduced row echelon form. There are 7 lead variables. How many

free variables?

Answer:

Because ~x has 13 variables, then the rank plus the nullity is 13. There are 6 free variables.

Problem 24. (5 points) The rank of a 10× 13 matrix A is 7. Find the nullity of A.

Answer:

There are 13 variables. The rank plus the nullity is 13. The nullity is 6.

Problem 25. (5 points) Given a basis ~v1 =

(
3

2

)
, ~v2 =

(
4

4

)
of R2, and ~v =

(
10

4

)
,

then ~v = c1~v1 + c2~v2 for a unique set of coefficients c1, c2, called the coordinates of ~v relative

to the basis ~v1, ~v2. Compute c1 and c2.

Answer:

The question reduces to solving for x in an equation Ax = b. The entries of x are the

answers c1, c2. Matrix A = 〈v1|v2〉. Vector b has components 10, 4 The answer is x = A−1b,

which implies c1 = 6, c2 = −2.

Problem 26. (5 points) Determine independence or dependence for the list of vectors1

2

3

 ,

4

0

4

 ,

3

2

1


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Answer:

Possible tests are the rank test, determinant test, pivot theorem, orthogonality test. Let A

denote the augmented matrix of the three column vectors. The determinant is 32, nonzero,

so the vectors are independent. The pivot theorem also applies. The rref(A) is the identity

matrix, so all columns are pivot columns, hence the three columns are independent. The rank

test applies because the rank is 3, equal to the number of columns, hence independence.

Problem 27. (5 points) Check the independence tests which apply to prove that 1,

x2, x3 are independent in the vector space V of all functions on −∞ < x <∞.

Wronskian test Wronskian of ~f1, ~f2, ~f3 nonzero at x = x0 implies inde-

pendence of ~f1, ~f2, ~f3.

Rank test Vectors ~v1, ~v2, ~v3 are independent if their augmented

matrix has rank 3.

Determinant test Vectors ~v1, ~v2, ~v3 are independent if their square aug-

mented matrix has nonzero determinant.

Euler Atom test Any finite set of distinct atoms is independent.

Sample test Functions ~f1, ~f2, ~f3 are independent if a sampling matrix

has nonzero determinant.

Pivot test Vectors ~v1, ~v2, ~v3 are independent if their augmented

matrix A has 3 pivot columns.

Orthogonality test A set of nonzero pairwise orthogonal vectors is indepen-

dent.

Answer:

The first, fourth and fifth apply to the given functions, while the others apply only to fixed

vectors.

Problem 28. (5 points) Define S to be the set of all vectors ~x in R3 such that

x1 + x3 = 0 and x3 + x2 = x1. Prove that S is a subspace of R3.

Answer:

Let A =

 1 0 1

−1 1 1

0 0 0

. Then the restriction equations can be written as A~x = ~0. Apply

the nullspace theorem (also called the kernel theorem), which says that the nullspace of a
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matrix is a subspace.

Another solution: The given restriction equations are linear homogeneous algebraic equa-

tions. Therefore, S is the nullspace of some matrix B, hence a subspace of R3. This solution

uses the fact that linear homogeneous algebraic equations can be written as a matrix equa-

tion B~x = ~0.

Another solution: Verify the three checkpoints for a subspace S in the Subspace Criterion.

This is quite long, and certainly the last choice for a method of proof.

Problem 29. (5 points) The 5 × 6 matrix A below has some independent columns.

Report the independent columns of A, according to the Pivot Theorem.

A =


0 0 0 0 0 0

−3 0 0 −2 1 −1

−1 0 0 0 1 0

6 0 0 6 0 3

2 0 0 2 0 1



Answer:

Find rref(A) =


1 0 0 0 −1 0

0 0 0 1 1 1/2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

. The pivot columns are 1 and 4.

Problem 30. (5 points) Let S be the subspace of R4 spanned by the vectors

~v1 =


1

1

1

0

 , ~v2 =


1

1

0

1

 .

Find a Gram-Schmidt orthonormal basis of S.

Answer:

Let ~y1 = ~v1 and ~u1 = 1
‖~y1‖~y1. Then ~u1 = 1√

3


1

1

1

0

. Let ~y2 = ~v2 minus the shadow projection
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of ~v2 onto the span of ~v1. Then

~y2 = ~v2 −
~v2 · ~v1
~v1 · ~v1

~v1 =
1

3


1

1

−2

1

 .

Finally, ~u2 = 1
‖~y2‖~y2. We report the Gram-Schmidt basis:

~u1 =
1√
3


1

1

1

0

 , ~u2 =
1√
6


1

1

−2

1

 .

Problem 31. (5 points) Find the orthogonal projection vector ~v (the shadow projection

vector) of ~v2 onto ~v1, given

~v1 =


1

1

1

0

 , ~v2 =


1

1

0

1

 .

Answer:

Use the formula ~v = d~v1 where d =
~v2 · ~v1
~v1 · ~v1

.

Problem 32. (5 points) Let A be an m× n matrix with independent columns. Prove

that ATA is invertible.

Answer:

The matrix B = ATA has dimension n× n. We prove that the nullspace of B = ATA is the

zero vector.

Let ~x belong toRn. Assume B~x = ~0, then multiply this equation by ~xT to obtain ~xTATA~x =

~xT~0 = 0. Therefore, ‖A~x‖2 = 0, or A~x = ~0. If A has independent columns, then the nullspace

of A is the zero vector, so ~x = ~0. We have proved that the nullspace of B = ATA is the zero

vector.

An n× n matrix B is invertible if and only if its nullspace is the zero vector. So B = ATA

is invertible.
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Problem 33. (5 points) Let A be an m × n matrix with ATA invertible. Prove that

the columns of A are independent.

Answer:

The columns of A are independent if and only if the nullspace of A is the zero vector. If you

don’t know this result, then find it in Strang’s book, or prove it yourself.

Assume ~x is in the nullspace of A, A~x = ~0, then multiply by AT to get ATA~x = ~0. Because

ATA is invertible, then ~x = ~0, which proves the nullspace of A is the zero vector. We

conclude that the columns of A are independent.

Problem 34. (5 points) Let A be an m × n matrix and ~v a vector orthogonal to the

nullspace of A. Prove that ~v must be in the row space of A.

Answer:

The fundamental theorem of linear algebra is summarized by rowspace ⊥ nullspace. This

relation implies nullspace ⊥ rowspace, because for subspaces S we have (S⊥)⊥ = S. The

conclusion follows.

Problem 35. (5 points) Define matrix A and vector ~b by the equations

A =

 −2 3 0

0 −2 4

1 0 −2

 , ~b =

 1

2

3

 .

Find the value of x2 by Cramer’s Rule in the system A~x = ~b.

Answer:

x2 = ∆2/∆, ∆2 = det

 −2 1 0

0 2 4

1 3 −2

 = 36, ∆ = det(A) = 4, x2 = 9.

Problem 36. (5 points) Assume A−1 =

(
2 −6

0 4

)
. Find the inverse of the transpose

of A.

Answer:

Compute (AT )−1 = (A−1)T =

((
2 −6

0 4

))T

=

(
2 0

−6 4

)
.
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Problem 37. (5 points) This problem uses the identity Aadj(A) = adj(A)A = |A|I, where
|A| is the determinant of matrix A. Symbol adj(A) is the adjugate or adjoint of A. The identity is

used to derive the adjugate inverse identity A−1 = adj(A)/|A|..

Let B be the matrix given below, where ? means the value of the entry does not affect

the answer to this problem. The second matrix is C = adj(B). Report the value of the

determinant of matrix C−1B2.

B =


1 −1 ? ?

1 ? 0 0

? 0 2 ?

? 0 0 ?

 , C =


4 4 2 0

−4 4 −2 0

0 0 4 0

0 0 0 4



Answer:

The determinant of C−1B2 is |B|2/|C|. Then CB == adj(B)B = |B|I implies |C||B| =

det(|B|I) = |B|4. Because |C| = |B|3, then the answer is 1/|B|. Return to CB = |B|I and

do one dot product to find the value |B| = 8. We report det(C−1B2) = 1/|B| = 1/8.

Problem 38. (5 points) Display the entry in row 3, column 4 of the adjugate matrix

[or adjoint matrix] of A =


0 2 −1 0

0 0 4 1

1 3 −2 0

0 1 1 0

. Report both the symbolic formula and the

numerical value.

Answer:

The answer is the cofactor of A in row 4, column 3 = (−1)7 times minor of A in 4,3 = −2.

Problem 39. (5 points) Consider a 3× 3 real matrix A with eigenpairs−1,

 5

6

−4


 ,

2i,

 i

2

0


 ,

−2i,

 −i2
0


 .

Display an invertible matrix P and a diagonal matrix D such that AP = PD.

Answer:
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The columns of P are the eigenvectors and the diagonal entries of D are the eigenvalues,

taken in the same order.

Problem 40. (5 points) Find the eigenvalues of the matrix A =


0 −12 3 0

0 1 −1 0

0 1 3 0

0 5 1 3

.

To save time, do not find eigenvectors!

Answer:

The characteristic polynomial is det(A − rI) = (−r)(3 − r)(r − 2)2. The eigenvalues are

0, 2, 2, 3. Determinant expansion of det(A− λI) is by the cofactor method along column 1.

This reduces it to a 3×3 determinant, which can be expanded by the cofactor method along

column 3.

Problem 41. (5 points) The matrix A =

 0 −12 3

0 1 −1

0 1 3

 has eigenvalues 0, 2, 2 but

it is not diagonalizable, because λ = 2 has only one eigenpair. Find an eigenvector for λ = 2.

To save time, don’t find the eigenvector for λ = 0.

Answer:

Because A− 2I =

 −2 −12 3

0 −1 −1

0 1 1

 has last frame B =

 1 0 −15/2

0 1 1

0 0 0

, then there is

only one eigenpair for λ = 2, with eigenvector ~v =

 15

−2

2

.

Problem 42. (5 points) Find the two complex eigenvectors corresponding to complex

eigenvalues −1± 2i for the 2× 2 matrix A =

(
−1 2

−2 −1

)
.

Answer:(
−1 + 2i,

(
−i

1

))
,

(
−1− 2i,

(
i

1

))
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Problem 43. (5 points) Let A =

(
−7 4

−12 7

)
. Circle possible eigenpairs of A.

(
1,

(
1

2

))
,

(
2,

(
2

1

))
,

(
−1,

(
2

3

))
.

Answer:

The first and the last, because the test A~x = λ~x passes in both cases.

Problem 44. (5 points) Let I denote the 3 × 3 identity matrix. Assume given two

3 × 3 matrices B, C, which satisfy CP = PB for some invertible matrix P . Let C have

eigenvalues −1, 1, 5. Find the eigenvalues of A = 2I + 3B.

Answer:

Both B and C have the same eigenvalues, because det(B − λI) = det(P (B − λI)P−1) =

det(PCP−1 − λPP−1) = det(C − λI). Further, both B and C are diagonalizable. The

answer is the same for all such matrices, so the computation can be done for a diagonal

matrix B = diag(−1, 1, 5). In this case, A = 2I + 3B = diag(2, 2, 2) + diag(−3, 3, 15) =

diag(−1, 5, 17) and the eigenvalues of A are −1, 5, 17.

Problem 45. (5 points) Let A be a 3× 3 matrix with eigenpairs

(4, ~v1), (3, ~v2), (1, ~v3).

Let P denote the augmented matrix of the eigenvectors ~v2, ~v3, ~v1, in exactly that order.

Display the answer for P−1AP . Justify the answer with a sentence.

Answer:

Because AP = PD, then D = P−1AP is the diagonal matrix of eigenvalues, taken in the

order determined by the eigenpairs (3, ~v2), (1, ~v3), (4, ~v1). Then D =

 3 0 0

0 1 0

0 0 4

.

Problem 46. (5 points) The matrix A below has eigenvalues 3, 3 and 3. Test A to see

it is diagonalizable, and if it is, then display three eigenpairs of A.

A =

 4 1 1

−1 2 1

0 0 3


17



Answer:

Compute rref(A − 3I) =

 1 1 0

0 0 1

0 0 0

. This has rank 2, nullity 1. There is just one

eigenvector

 1

−1

0

 for λ = 3. Not diagonalizable, no Fourier’s model, not possible to

display three eigenpairs.

Problem 47. (5 points) Assume A is a given 4×4 matrix with eigenvalues 0, 1, 3±2i.

Find the eigenvalues of 4A− 3I, where I is the identity matrix.

Answer:

Such a matrix is diagonalizable, because of four distinct eigenvalues. Then 4B − 3I has

the same eigenvalues for all matrices B similar to A. In particular, 4A − 3I has the same

eigenvalues as 4D−3I where D is the diagonal matrix with entries 0, 1, 3+2i, 3−2i. Compute

4D − 3I =


−3 0 0 0

0 1 0 0

0 0 9 + 8i 0

0 0 0 9− 8i

. The answer is 0, 1, 9 + 8i, 9− 8i.

Problem 48. (5 points) Find the eigenvalues of the matrixA =


0 −2 −5 0 0

3 0 −12 3 0

0 0 1 −1 0

0 0 1 3 0

0 0 5 1 3

.

To save time, do not find eigenvectors!

Answer:

The characteristic polynomial is det(A− rI) = (r2 + 6)(3− r)(r − 2)2. The eigenvalues are

2, 2, 3,±
√

6i. Determinant expansion is by the cofactor method along column 5. This reduces

it to a 4× 4 determinant, which can be expanded as a product of two quadratics. In detail,

we first get |A− rI| = (3− r)|B − rI|, where B =


0 −2 −5 0

3 0 −12 3

0 0 1 −1

0 0 1 3

. So we have one
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eigenvalue 3, and we find the eigenvalues of B. Matrix B is a block matrix B =

(
B1 B2

0 B3

)
,

where B1, B2, B3 are all 2× 2 matrices. Then B − rI =

(
B1 − rI B2

0 B3 − rI

)
. Using the

determinant product theorem for such special block matrices (zero in the left lower block)

gives |B − rI| = |B1 − rI|B3 − rI|. So the answer for the eigenvalues of A is 3 and the

eigenvalues of B1 and B3. We report 3,±
√

6i, 2, 2. It is also possible to directly find the

eigenvalues of B by cofactor expansion of |B − rI|.

Problem 49. (5 points) Consider a 3× 3 real matrix A with eigenpairs3,

 13

6

−41


 ,

2i,

 i

2

0


 ,

−2i,

 −i2
0


 .

(1) [10%] Display an invertible matrix P and a diagonal matrix D such that

AP = PD.

(2) [10%] Display a matrix product formula for A, but do not evaluate the matrix

products, in order to save time.

Answer:

(1) P =

 13 i −i
6 2 2

−41 0 0

, D =

 3 0 0

0 2i 0

0 0 −2i

. (2) AP = PD implies A = PDP−1.

Problem 50. (5 points) Assume two 3 × 3 matrices A, B have exactly the same

characteristic equations. Let A have eigenvalues 2, 3, 4. Find the eigenvalues of (1/3)B−2I,

where I is the identity matrix.

Answer:

Because the answer is the same for all matrices similar to A (that is, all B = PAP−1) then it

suffices to answer the question for diagonal matrices. We know A is diagonalizable, because

it has distinct eigenvalues. So we choose D equal to the diagonal matrix with entries 2, 3, 4.

Compute 1
3
D − 2I =


2
3
− 2 0 0

0 3
3
− 2 0

0 0 4
3
− 2

. Then the eigenvalues are −4
3
,−1,−2

3
.

Problem 51. (5 points) Let 3× 3 matrices A and B be related by AP = PB for some
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invertible matrix P . Prove that the roots of the characteristic equations of A and B are

identical.

Answer:

The proof depends on the identityA−rI = PBP−1−rI = P (B−rI)P−1 and the determinant

product theorem |CD| = |C||D|. We get |A − rI| = |P ||B − rI||P−1| = |PP−1||B − rI| =

|B − rI|. Then A and B have exactly the same characteristic equation, hence exactly the

same eigenvalues.

Problem 52. (5 points) Find the eigenvalues of the matrix B:

B =


2 4 −1 0

0 5 −2 1

0 0 4 1

0 0 1 4



Answer:

The characteristic polynomial is det(B− rI) = (2− r)(5− r)(5− r)(3− r). The eigenvalues

are 2, 3, 5, 5.

It is possible to directly find the eigenvalues of B by cofactor expansion of |B − rI|.

An alternate method is described below, which depends upon a determinant product theorem

for special block matrices, such as encountered in this example.

Matrix B is a block matrix B =

(
B1 B2

0 B3

)
, where B1, B2, B3 are all 2× 2 matrices. Then

B − rI =

(
B1 − rI B2

0 B3 − rI

)
. Using the determinant product theorem for such special

block matrices (zero in the left lower block) gives |B − rI| = |B1 − rI||B3 − rI|. So the

answer is that B has eigenvalues equal to the eigenvalues of B1 and B3. These are quickly

found by Sarrus’ Rule applied to the two 2× 2 determinants |B1 − rI| = (2− r)(5− r) and

|B3 − rI| = r2 − 8r + 15 = (5− r)(3− r).

Problem 53. (5 points) Let W be the column space of A =

 1 1

1 1

1 0

 and let
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~b =

 1

−1

1

. Let
~̂
b be the near point to ~b in the subspace W . Find

~̂
b.

Answer:

The columns of A are independent. The normal equation is ATA~y = AT~b, which in explicit

form is

(
3 2

2 2

)
~y =

(
1

0

)
. The answer is ~y =

(
1

−1

)
. Then

~̂
b = Aỹ =

 0

0

1

.

Problem 54. (5 points) There are real 2×2 matrices A such that A2 = −4I, where I is

the identity matrix. Give an example of one such matrix A and then verify that A2+4I = 0.

Answer:

Choose any matrix whose characteristic equation is λ2 + 4 = 0. Then A2 + 4I = 0 by the

Cayley-Hamilton theorem.

Problem 55. (5 points) Let Q =< ~q1|~q2 > be orthogonal 2 × 2 and D a diagonal

matrix with diagonal entries λ1, λ2. Prove that the 2 × 2 matrix A = QDQT satisfies

A = λ1~q1~q
T
1 + λ2~q2~q

T
2 .

Answer:

Let B = λ1~q1~q
T
1 +λ2~q2~q

T
2 . We prove A = B. First observe that both A and B are symmetric.

Because the columns of Q form a basis of R2, it suffices to prove that ~xTA = ~xTB for ~x

a column of A. For example, take ~x = ~q1. Then ~xTA = (AT~q1)
T = (A~q1)

T = λ1~q
T
1 .

Orthogonality of Q implies ~xTB = (B~q1)
T = (λ1~q1~q

T
1 ~q1 + λ2~q2~q

T
2 ~q1)

T = λ1(~q1 · 1)T = λ1~q
T
1 .

Repeat for subscript 2 to complete the proof.

Problem 56. (5 points) A matrix A is defined to be positive definite if and only if

~xTA~x > 0 for nonzero ~x. Which of these matrices are positive definite?(
1 2

2 1

)
,

(
1 −2

−2 6

)
,

(
−1 2

2 −6

)

Answer:

Only the second matrix. A useful test is positive eigenvalues. Another is principal determi-

nants all positive.
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Problem 57. (5 points) Let A be a real symmetric 2 × 2 matrix. Prove that the

eigenvalues of A are real numbers.

Answer:

Begin with A~x = λ~x. Take the conjugate of both sides to get a new equation. Because the

conjugate of a real matrix is itself, then the new equation looks like A~y = λ̄~y where ~y is

the conjugate of ~x. Formally, replace i by −i in the components of ~x to obtain ~y. Symbol

λ̄ is the complex conjugate of λ. Transpose this new equation to get ~yTA = λ̄~yT , possible

because A = AT . Taking dot products two ways gives ~y · A~x = λ~y · ~x = λ̄~y · ~x. Because

~y · ~x = ‖~x‖2 > 0, then we can cancel to get λ = λ̄, proving the eigenvalue λ is real.

Problem 58. (5 points) Let B be a real 3 × 4 matrix. Prove that the eigenvalues of

BTB are non-negative.

Answer:

Let A = BTB. An eigenpair (λ,~v) of A satisfies A~v = λ~v, ~v 6= ~0. Already known is that

the eigenvalue λ and the eigenvector ~v are real, because A = BTB is a symmetric matrix.

Compute ‖B~v‖2 = (B~v)T (B~v) = ~vTBTB~v = ~vTA~v = ~vTλ~v = λ‖~v‖2. Therefore, λ is

non-negative.

Problem 59. (5 points) The spectral theorem says that a symmetric matrix A can be

factored into A = QDQT where Q is orthogonal and D is diagonal. Find Q and D for the

symmetric matrix A =

(
3 −1

−1 3

)
.

Answer:

Start with the equation r2−6r+8 = 0 having roots r = 2, 4. Compute the eigenpairs (2, ~v1),

(4, ~v2) where ~v1 =

(
1

1

)
and ~v2 =

(
−1

1

)
. The two vectors are orthogonal but not of unit

length. Unitize them to get ~u1 = 1√
2
~v1, ~u2 = 1√

2
~v2. Then Q =< ~u1|~u2 >= 1√

2

(
1 −1

1 1

)
,

D = diag(2, 4).

Problem 60. (5 points) Show that if B is an invertible matrix and A is similar to B,

with A = PBP−1, then A is invertible.

Answer:
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The determinant product theorem applies to obtain |A| = |B| 6= 0, hence A is invertible.

Problem 61. (5 points) Write out the singular value decomposition for the matrix

A =

(
2 2

−1 1

)
.

Answer:

A =

(
2 2

−1 1

)
=

(
1 0

0 1

)( √
8 0

0
√

2

)(
1√
2

(
1 −1

1 1

))T

Problem 62. (5 points) Strang’s Four Fundamental Subspaces are the nullspace of

A, the nullspace of AT , the row space of A and the column space of A. Describe, using a

figure or drawing, the locations in the matrices U , V of the singular value decomposition

A = UΣV T which are consumed by the four fundamental subspaces of A.

Answer:

A = 〈colspace(A)|nullspace(AT )〉 · Σ · 〈rowspace(A)|nullspace(A)〉T . The dimensions

of the spaces left to right are r, m− r, r, n− r, where A is m× n and r is the rank of A.

Problem 63. (5 points) Give examples for a vertical shear and a horizontal shear in

the plane. Expected is a 2× 2 matrix A which represents the linear transformation.

Answer:(
1 k

0 1

)
is a horizontal shear,

(
1 0

k 1

)
is a vertical shear

Problem 64. (5 points) Give examples for clockwise and counterclockwise rotations

in the plane. Expected is a 2× 2 matrix A which represents the linear transformation.

Answer:(
cos θ sin θ

− sin θ cos θ

)
for θ > 0 rotates clockwise and for θ < 0 rotates counter clockwise.

Problem 65. (5 points) Let the linear transformation T from R3 to R3 be defined by

its action on three independent vectors:

T


3

2

0


 =

4

4

2

 , T


0

2

1


 =

4

0

2

 , T


1

2

1


 =

5

1

1

 .
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Find the unique 3 × 3 matrix A such that T is defined by the matrix multiply equation

T (~x) = A~x.

Answer:

A

 3 0 1

2 2 2

0 1 1

 =

 4 4 5

4 0 1

2 2 1

 can be solved for matrixA. The answer isA =

 1 1
2

3

1 1
2
−1

−1 5
2
−3

.

Problem 66. (5 points) Let A be an m× n matrix. Denote by S1 the row space of A

and S2 the column space of A. Prove that T : S1 → S2 defined by T (~x) = A~x is one-to-one

and onto.

Answer:

Suppose ~x is in the rowspace. The fundamental theorem of linear algebra says ~x is perpen-

dicular to the nullspace. of A. So, if ~x1, ~x2 are vectors in the rowspace of A and A~x1) = A(~x2

then A(~x1 − ~x2) = ~0. This implies ~x = ~x1 − ~x2 belongs to the nullspace of A. But ~x is a

linear combination of vectors in S1, so it is in S1, which is perpendicular to the nullspace.

The intersection of V and V ⊥ is the zero vector, so ~x = ~0, which says ~x1 = ~x2, proving T is

one-to-one.

The proof for onto is done by solving the equation A~x = ~y where ~y is any vector in the

column space of A. We have to find ~x in S1 that solves the equation. Select any ~z such

that ~y = A~z. Because the rowspace is perpendicular to the nullspace, then there are unique

vectors ~x, ~u such that ~z = ~x+ ~u, and ~u is in the nullspace while ~x is in the rowspace. Then

~y = A~z = A~x + A~u = A~x + ~0 = A~x. We have solved the equation for ~x in S1. The proof is

complete.

Essay Questions

Problem 67. (5 points) Define an Elementary Matrix. Display the fundamental

matrix multiply equation which summarizes a sequence of swap, combo, multiply operations,

transforming a matrix A into a matrix B.

Answer:

An elementary matrix is the matrix E resulting from one elementary row operation (swap,
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combination, multiply) performed on the identity matrix I. The fundamental equation looks

like Ek · · ·E2E1A = B, but this is not the complete answer, because the elementary matrices

have to be explained, relative to the elementary row operations which transformed A into

B.

Problem 68. (5 points) Let V be a vector space and S a subset of V . Define what

it means for S to be a subspace of V . The definition is sometimes called the Subspace

Criterion, a theorem with three requirements, with the conclusion that S is a subspace of

V .

Answer:

The definition can be found in the textbook, although the naming convention might not be

the same. In some books it is taken as the definition, in other books it is derived from a

different definition, then recorded as a theorem called the subspace criterion: (1) Zero is in

S; (2) Sums of vectors in S are in S; (3) Scalar multiples of vectors in S are in S. The

important underlying assumption is that addition and scalar multiplication are inherited

from V .

Problem 69. (5 points) The null space S of an m × n matrix M is a subspace of

Rn. This is called the Kernel Theorem, and it is proved from the Subspace Criterion.

Both theorems conclude that some subset is a subspace, but they have different hypotheses.

Distinguish the Kernel theorem from the Subspace Criterion, as viewed from hypotheses.

Answer:

The distinction is that the kernel theorem applies only to fixed vectors, that is, the vector

space Rn, whereas the subspace criterion applies to any vector space.

Problem 70. (5 points) Least squares can be used to find the best fit line for the

points (1, 2), (2, 2), (3, 0). Without finding the line equation, describe how to do it, in a few

sentences.

Answer:

Find a matrix equation A~x = ~b using the line equation y = v1x + v2 where ~x =

(
v1

v2

)
.

Then solve the normal equation ATA~v = AT~b. A full solution is expected, with a formula

for A. But don’t solve the normal equation.

Problem 71. (5 points) State the Fundamental Theorem of Linear Algebra. Include
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Part 1: The dimensions of the four subspaces, and Part 2: The orthogonality equations

for the four subspaces.

Answer:

Part 1. The dimensions are n − r, r, rm − r for nullspace(A), colspace(A), rowspace(A),

nullspace(AT ). Part 2. The orthogonality relation is rowspace ⊥ nullspace, for both A and

AT . A full statement is expected, not the brief one given here.

Problem 72. (5 points) Display the equation for the Singular Value Decomposition

(SVD), then cite the conditions for each matrix. Finish with a written description of how to

construct the matrices in the SVD.

Answer:

Let r be the rank of an m × n matrix A. Then A = UΣV T , where A~vi = σi~ui, U =<

~u1| · · · |~un >, V =< ~v1| · · · |~vm > are orthogonal and Σ = diag(σ1, . . . , σr, 0, . . . , 0 >. The

singular values are σi =
√
λi where {λi} is the list of real nonnegative eigenvalues of ATA.

Only the positive values σi, i = 1, . . . , r where r is the rank of A are entered into matrix Σ,

and they must be ordered in decreasing order. Because there is a full set of n orthonormal

eigenpairs (λ,~v) for the n×n symmetric matrix ATA, the matrix V is constructed from the

list of orthonormal eigenvectors {~vi‖ni=1. Matrix U is constructed from an orthonormal basis

{~ui}mi=1, obtained from Gram-Schmidt, starting with the list of orthogonal vectors ~ui =
σi
A~vi,

i = 1, . . . , r, after appending to the list m − r independent vectors to complete a basis of

Rm.

Problem 73. (5 points) State the Spectral Theorem for symmetric matrices. In-

clude the important results included in the spectral theorem, about real eigenvalues and

diagonalizability. Then discuss the spectral decomposition.

Answer:

A real symmetric n × n matrix A has only real eigenvalues. Matrix A has n eigenpairs,

in short it is diagonalizable. To each eigenvalue of multiplicity k, there are k independent

eigenvectors. These eigenvectors span a subspace of dimension k which by Gram-Schmidt is

spanned by k orthonormal vectors. Two such subspaces corresponding to different eigenval-

ues are orthogonal.

The spectral decomposition of A is A = QDQT where D is a diagonal matrix of eigenvalues

and Q is an orthogonal matrix of corresponding eigenvectors.
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Problem 74. (5 points) State the Perron-Frobenius Theorem for positive stochastic

matrices A. Include the results for eigenvalue one and the limit of Ak as k →∞. This is the

theorem used as a basis for the Google Search Algorithm.

Answer:

The eigenspace of λ = 1 is one-dimensional: there is a vector w 6= 0 such that Aw = w and

any other solution of Av = v is a scalar multiple of w. All other eigenvalues λ of A satisfy

|λ| < 1. The eigenvector w can be selected such that limk→∞A
k = 〈w| · · · |w〉.
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