1. (Chapter 1: 50 points) Consider the system \(A\vec{u} = \vec{b} \) with \(\vec{u} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \) defined by

\[
\begin{align*}
 x_1 + 3x_2 + 4x_3 + x_4 + x_5 &= 2 \\
 2x_1 + x_2 + 8x_3 + x_4 + 2x_5 &= 4 \\
 2x_1 + 2x_2 + 8x_3 + x_4 + x_5 &= 2
\end{align*}
\]

Solve the following parts (a) to (e):

(a) [10%] Find the reduced row echelon form of the augmented matrix.

(b) [10%] Write the scalar equations corresponding to the answer in (a). Then identify the free variables and the lead variables.

(c) [10%] Display a formula for the vector general solution \(\vec{u} \).

(d) [10%] Extract from the answer in (c) vector formulas for a particular solution \(\vec{u}_p \) and the homogeneous solution \(\vec{u}_h \).

(e) [10%] Extract from the answer in (d) a vector solution basis for \(A\vec{u} = \vec{0} \). These vectors are called \textit{Strang’s Special Solutions}.

2. (Chapter 2: 40 points)

Define \(A = \begin{pmatrix} 1 & 4 \\ 1 & 5 \end{pmatrix} \) and \(B = A + A^T \), where \(A^T \) is the transpose of \(A \).
(a) [20%] Apply two different methods to find the inverse of the matrix A.

(b) [20%] Compute $(B^{-1})^T$.

3. (Chapter 3: 30 points) Let P, Q, R be real numbers. Define matrix A and vector \vec{b} by the equations

$$A = \begin{pmatrix} -2 & 2 & 0 \\ 0 & -1 & 4 \\ 1 & 0 & -2 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} P \\ Q \\ R \end{pmatrix}.$$

Find the value of x_2 by Cramer’s Rule in the system $A\vec{x} = \vec{b}$.

4. (Chapters 1 to 4: 20 points) It is known that functions x, $\cos(x)$, e^x are independent in the vector space V of all functions on $(-\infty, \infty)$. Define functions in V by the equations

$f_1(x) = x + e^x$, $f_2(x) = 2x - e^x$, $f_3(x) = 3\cos(x) + x + e^x$.

Definition: An Euler solution atom is a base atom multiplied by a factor x^ne^{ax} where $n = 0, 1, 2, \ldots$ and a is a real constant. A base atom is one of $1, \cos(bx), \sin(bx)$ where $b > 0$ is real.

Check the independence tests below which apply to prove that the functions f_1, f_2, f_3 are independent in the vector space V. Don’t check one which won’t work!

- **Wronskian test**
 Wronskian of f_1, f_2, f_3 nonzero at $x = x_0$ implies independence of f_1, f_2, f_3.

- **Euler Solution Atom test**
 Any finite set of distinct Euler atoms is independent.

- **Sample test**
 Functions f_1, f_2, f_3 are independent if a sampling matrix has nonzero determinant.

5. (Chapters 1 to 4: 30 points) It is known that functions x, $\cos(x)$, e^x are independent in the vector space V of all functions on $(-\infty, \infty)$. Define functions in V by the equations

$f_1(x) = x + e^x$, $f_2(x) = 2x - e^x$, $f_3(x) = 3\cos(x) + x + e^x$.

(a) [10%] Independence of the functions f_1, f_2, f_3 in the vector space V can be established
using the coordinate map

\[c_1 x + c_2 e^x + c_3 \cos(x) \] maps into \[
\begin{pmatrix}
 c_1 \\
 c_2 \\
 c_3
\end{pmatrix}.
\]

Reformulate the independence of functions \(f_1, f_2, f_3 \) into independence of column vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) in the vector space \(\mathbb{R}^3 \).

(b) [10%] Show details for one of the tests below applied to \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \), defined in part (a).

(c) [10%] Check all tests below that may be applied to \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \), as defined in part (a). Don’t check a test which won’t work!

- **Rank test**
 Vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) are independent if their augmented matrix has rank 3.

- **Determinant test**
 Vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) are independent if their square augmented matrix has nonzero determinant.

- **Pivot test**
 Vectors \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) are independent if their augmented matrix \(A \) has 3 pivot columns.

- **Orthogonality test**
 A set of nonzero pairwise orthogonal vectors is independent.

- **Combination test**
 A list of vectors is independent if each vector is not a linear combination of the preceding vectors.

6. (Chapters 2, 4: 20 points) Define \(S \) to be the set of all vectors \(\vec{x} \) in \(\mathbb{R}^3 \) such that \(x_1 + 2x_3 - x_2 = 0 \), \(x_3 = 0 \) and \(x_3 + x_2 = x_1 \). Supply the proof details which verify that \(S \) is a subspace of \(\mathbb{R}^3 \).

7. (Chapter 6: 40 points) Let \(S \) be the subspace of \(\mathbb{R}^4 \) spanned by the vectors

\[
\vec{x}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{x}_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{x}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}.
\]
(a) [10%] Explain, by citing a theorem, why S is a subspace.

(b) [30%] Find a Gram-Schmidt orthonormal basis $\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_3$ for subspace S.

8. (Chapters 1 to 6: 30 points) Let A be an $m \times n$ matrix and assume that $A^T A$ has rank $n - 1$. Prove that the rank of A cannot equal n.

9. (Chapter 5: 40 points) The matrix A below has eigenvalues 2, 3 and 3. Compute all eigenpairs of A. Is A diagonalizable?

\[
A = \begin{pmatrix}
4 & 1 & 1 \\
-1 & 2 & 1 \\
0 & 0 & 2
\end{pmatrix}
\]

10. (Chapter 6: 30 points) Define $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$. Let W be the column space of A. Write the normal equations for the inconsistent problem $A\mathbf{x} = \mathbf{b}$ and solve for the least squares solution \mathbf{x}.

Remark. Vector $\tilde{\mathbf{b}} = A\tilde{\mathbf{x}}$ is the near point to \mathbf{b} in the subspace W.

11. (Chapter 6: 30 points) Given vectors $\vec{q}_1, \vec{q}_2, \vec{q}_3$ in \mathbb{R}^3, define

\[
A = 2\vec{q}_1\vec{q}_1^T + 5\vec{q}_2\vec{q}_2^T + 7\vec{q}_3\vec{q}_3^T.
\]

(a) [10%] Prove that A is symmetric.

(b) [20%] The Spectral Theorem for symmetric matrices produces a similar formula where
2, 5, 7 are replaced by the eigenvalues of \(A \). Write the formula for \(3 \times 3 \) matrices \(A \) and explain all the symbols used in the formula.

12. **(Chapter 7: 30 points)** The spectral theorem says that a symmetric matrix \(A \) satisfies \(AQ = QD \) where \(Q \) is orthogonal and \(D \) is diagonal. Find \(Q \) and \(D \) for the symmetric matrix \(A = \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix} \).

13. **(Chapter 7: 40 points)** Write out the singular value decomposition for the matrix
\[A = \begin{pmatrix} 5 & 1 \\ 1 & 5 \end{pmatrix}. \]

14. **(Chapter 4: 30 points)** Let the linear transformation \(T \) from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \) be defined by its action on two independent vectors:
\[T \left(\begin{pmatrix} 3 \\ 2 \end{pmatrix} \right) = \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \quad T \left(\begin{pmatrix} 2 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 5 \\ 1 \end{pmatrix}. \]
Find the unique \(2 \times 2 \) matrix \(A \) such that \(T \) is defined by the matrix multiply equation \(T(\vec{x}) = A\vec{x} \).

15. **(Chapter 4, 7: 40 points)** Let \(A \) be an \(m \times n \) matrix. Denote by \(S_1 \) the row space of \(A \) and \(S_2 \) the column space of \(A \). Using only the Pivot Theorem and the Toolkit of swap, combo, multiply, prove that \(S_1 \) and \(S_2 \) have the same dimension.

16. **(Chapter 4: 20 points)** Least squares can be used to find the best fit line \(y = ax + b \) for the points \((1, 2), (2, 2), (3, 0) \). Find the line equation by the method of least squares.

17. **(Chapters 1 to 7: 20 points)** State the Fundamental Theorem of Linear Algebra. Include **Part 1**: The dimensions of the four subspaces, and **Part 2**: The orthogonality equations for the four subspaces.