MATH 2270-003 Exam 2 Fall 2010

Solutions

1. (10 points) V is the span of the given vectors in R*. Find orthonormal vectors whose

span is V.
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Solution:

Rescale ; to make it a unit vector:
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Check if by is orthogonal to 7s:
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They are not orthogonal, so subtract off the by—part of ¥y:
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This vector is orthogonal to by, but needs to be rescaled to be a unit vector:
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An orthonormal basis is {l_)l, 52} where b, is as above and by is
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2. (15 points) For the subspace V in the previous problem, give the matrix that projects
R* to V and the matrix that projects R* to V+. (Note: It is acceptable to give the answer

as a product of matrices, you do not need to perform the matrix multiplication.)
Solution:

The formula for the projection matrix is P, = A(ATA)"1AT, where A is a matrix whose
columns are a basis for V. If we use the orthonormal basis for V' found in the previous
problem, then ATA = ID, so we have P, = AAT where:
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Projection to V= is given by: P,. = ID — Py
3. (15 points) Find the least squares best fit line for the points (0,1), (1,2), (2,3), (4,4).

Solution:

Let A = and b =

=N = O
—_ = =
N N

AZ = b has no solutions. The least squares best fit line is given by:
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So, the least squares best fit line is: y = g—gx + %

=~ NN = O
— = =
N R




4. (15 points) For the following matrix, find the eigenvalues and the maximum number

of linearly independent eigenvectors. Find this many linearly independent eigenvectors.

Solution:

The characteristic polynomial is (A — 3)(A + 1), so there are two distinct real eigenvalues, 3
and -1. There is an eigenvector for each eigenvalue, and eigenvectors for distinct eigenvectors
form a linearly independent set, so there are at least two linearly independent eigenvectors.
We are in R?, so there are at most two vectors in a linearly independent set. Thus, there

are at most two linearly independent eigenvectors.

An eigenvector for A corresponding to eigenvalue 3 is a null vector for the matrix A —31D =

1 1 -1
< . 5), and ( . is a null vector for this matrix.

An eigenvector for A corresponding to eigenvalue -1 is a null vector for the matrix A+ 11D =

5 1 -1
< - 1), and ( 15> is a null vector for this matrix.

5. (5 points) For the following matrix, find the eigenvalues and the maximum number of

linearly independent eigenvectors. Find this many linearly independent eigenvectors.
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Solution:

This matrix is in Jordan Form. The eigenvalues are the diagonal entries: 1, 2, 3. There are



four Jordan Blocks, so there are at most four linearly independent eigenvectors. They are:
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6. (5 points) Find the determinant of the following matrix:
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Solution:
There are several methods to compute this. The answer is 2.

7. (15 points) Describe the orbits of the discrete linear dynamical system v;,, = Av; for
0 —1
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A has eigenvalues 2 and 1 with corresponding eigenvectors T = ( 5 ) and y = ( ) ),

the matrix

Solution:

respectively.

The two linearly independent eigenvectors form a basis for R?, so any vector 7y can be
written as a linear combination vy = ax + by of these. The orbit of 9y consists of the points
AF5y = 2%az +1%by. Therefore, if a = 0 then the orbit is a single fixed point of A. Otherwise,
the orbit consists of points escaping to infinity exponentially quickly and moving parallel to

the vector z.

8. (5 points) Suppose V is a 4 dimensional subspace of R?. Let P, be the matrix that

projects RY onto the subspace V. What are the dimensions and rank of the matrix Py ?
Solution:

Py takes a vector in R? and gives back a vector in R, so it is a 9 x 9 matrix.
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The column space of P, is V, so the column space is 4 dimensional. The rank of Py is equal

to the dimension of the column space, so Py is rank 4.

9. (10 points) Suppose A is a 3 x 3 matrix whose entries all have absolute value less than
or equal to 2. Find such a matrix that has Det(A) > 30. Is it possible to find such a matrix
with Det(A) > 507 Find one or explain why it is impossible.

Solution:

There are many ways to find such a matrix with determinant 32. One way would be to make

two entries along the diagonal equal to -2, and make all the other entries equal to 2.

It is not possible to have Det(A) > 50. The Big Formula for the determinant has 3! = 6
entries, each of which is a product of three entries of the matrix. Thus, we have 6 terms

each of which is at most 8, so the determinant could not possibly be greater than 48.

10. (15 points)

A:
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Find a matrix C such that C~'AC is diagonal.
Solution:

Find three linearly independent eigenvectors of A. Let C' be the matrix whose columns are

these linearly independent eigenvectors. Then C is invertible and C~*AC is diagonal.
The characteristic polynomial of A is (2 — A)(A* — 5)) which has roots 0, 2, and 5.

(Note that A has a 0 eigenvalue; it is not invertible, but it is still diagonalizable.)

1
The eigenvector corresponding to 2 is just the first coordinate vector | 0 |. Column 3 is equal
0
0
to 2 times column 3, so a null vector, an eigenvector with eigenvalue 0, is —% . Finally,
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A null vector for this matrix is | 2

So let C' =
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No new questions beyond this point.



