Solutions

1. (10 points) V is the span of the given vectors in \mathbb{R}^{4}. Find orthonormal vectors whose span is V.

$$
\bar{v}_{1}=\left(\begin{array}{c}
0 \\
-1 \\
2 \\
0
\end{array}\right), \bar{v}_{2}=\left(\begin{array}{c}
3 \\
1 \\
1 \\
3 \sqrt{2}
\end{array}\right)
$$

Solution:

Rescale \bar{v}_{1} to make it a unit vector:

$$
\bar{b}_{1}=\frac{\bar{v}_{1}}{\left|\bar{v}_{1}\right|}=\frac{1}{\sqrt{5}} \bar{v}_{1}
$$

Check if \bar{b}_{1} is orthogonal to \bar{v}_{2} :

$$
\bar{b}_{1} \cdot \bar{v}_{2}=\frac{1}{\sqrt{5}}\left(\bar{v}_{1} \cdot \bar{v}_{2}\right)=\frac{1}{\sqrt{5}} \neq 0
$$

They are not orthogonal, so subtract off the \bar{b}_{1}-part of \bar{v}_{2} :

$$
\bar{v}_{2}-\frac{1}{\sqrt{5}} \bar{b}_{1}=\bar{v}_{2}-\frac{1}{5} \bar{v}_{1}=\left(\begin{array}{c}
3 \\
\frac{6}{5} \\
\frac{3}{5} \\
3 \sqrt{2}
\end{array}\right)
$$

This vector is orthogonal to \bar{b}_{1}, but needs to be rescaled to be a unit vector:

$$
\left|\left(\begin{array}{c}
3 \\
\frac{6}{5} \\
\frac{3}{5} \\
3 \sqrt{2}
\end{array}\right)\right|=\frac{12}{\sqrt{5}}
$$

An orthonormal basis is $\left\{\bar{b}_{1}, \bar{b}_{2}\right\}$ where \bar{b}_{1} is as above and \bar{b}_{2} is

$$
\bar{b}_{2}=\frac{\sqrt{5}}{12}\left(\begin{array}{c}
3 \\
\frac{6}{5} \\
\frac{3}{5} \\
3 \sqrt{2}
\end{array}\right)
$$

2. (15 points) For the subspace V in the previous problem, give the matrix that projects \mathbb{R}^{4} to V and the matrix that projects \mathbb{R}^{4} to V^{\perp}. (Note: It is acceptable to give the answer as a product of matrices, you do not need to perform the matrix multiplication.)

Solution:

The formula for the projection matrix is $P_{V}=A\left(A^{T} A\right)^{-1} A^{T}$, where A is a matrix whose columns are a basis for V. If we use the orthonormal basis for V found in the previous problem, then $A^{T} A=I D$, so we have $P_{V}=A A^{T}$ where:

$$
A=\left(\begin{array}{cc}
3 & \frac{\sqrt{5}}{12} 3 \\
\frac{6}{5} & \frac{\sqrt{5}}{12} \frac{6}{5} \\
\frac{2}{5} & \frac{\sqrt{5}}{12} \frac{3}{5} \\
3 \sqrt{2} & \frac{\sqrt{5}}{12} 3 \sqrt{2}
\end{array}\right)
$$

Projection to V^{\perp} is given by: $P_{V^{\perp}}=I D-P_{V}$
3. (15 points) Find the least squares best fit line for the points $(0,1),(1,2),(2,3),(4,4)$.

Solution:

Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 2 & 1 \\ 4 & 1\end{array}\right)$ and $\bar{b}=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$.
$A \bar{x}=\bar{b}$ has no solutions. The least squares best fit line is given by:

$$
\begin{aligned}
\bar{x} & =\left(A^{T} A\right)^{-1} A^{T} \bar{b} \\
& =\left(\left(\begin{array}{llll}
0 & 1 & 2 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1 \\
4 & 1
\end{array}\right)\right)^{-1}\left(\begin{array}{llll}
0 & 1 & 2 & 4 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right) \\
& =\left(\begin{array}{cc}
21 & 7 \\
7 & 4
\end{array}\right)^{-1}\binom{24}{10} \\
& =\frac{1}{35}\left(\begin{array}{cc}
4 & -7 \\
-7 & 21
\end{array}\right)\binom{24}{10}=\binom{\frac{26}{35}}{\frac{42}{35}}
\end{aligned}
$$

So, the least squares best fit line is: $y=\frac{26}{35} x+\frac{42}{35}$
4. (15 points) For the following matrix, find the eigenvalues and the maximum number of linearly independent eigenvectors. Find this many linearly independent eigenvectors.

$$
A=\left(\begin{array}{cc}
4 & 1 \\
-5 & -2
\end{array}\right)
$$

Solution:

The characteristic polynomial is $(\lambda-3)(\lambda+1)$, so there are two distinct real eigenvalues, 3 and -1 . There is an eigenvector for each eigenvalue, and eigenvectors for distinct eigenvectors form a linearly independent set, so there are at least two linearly independent eigenvectors. We are in \mathbb{R}^{2}, so there are at most two vectors in a linearly independent set. Thus, there are at most two linearly independent eigenvectors.

An eigenvector for A corresponding to eigenvalue 3 is a null vector for the matrix $A-3 I D=$ $\left(\begin{array}{cc}1 & 1 \\ -5 & -5\end{array}\right)$, and $\binom{-1}{1}$ is a null vector for this matrix.

An eigenvector for A corresponding to eigenvalue -1 is a null vector for the matrix $A+1 I D=$ $\left(\begin{array}{cc}5 & 1 \\ -5 & -1\end{array}\right)$, and $\binom{-\frac{1}{5}}{1}$ is a null vector for this matrix.
5. (5 points) For the following matrix, find the eigenvalues and the maximum number of linearly independent eigenvectors. Find this many linearly independent eigenvectors.

$$
A=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 3
\end{array}\right)
$$

Solution:

This matrix is in Jordan Form. The eigenvalues are the diagonal entries: 1, 2, 3. There are
four Jordan Blocks, so there are at most four linearly independent eigenvectors. They are:

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

6. (5 points) Find the determinant of the following matrix:

$$
\left(\begin{array}{ccc}
3 & 2 & 3 \\
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

Solution:

There are several methods to compute this. The answer is 2 .
7. (15 points) Describe the orbits of the discrete linear dynamical system $\bar{v}_{i+1}=A \bar{v}_{i}$ for the matrix

$$
A=\left(\begin{array}{cc}
0 & -1 \\
2 & 3
\end{array}\right)
$$

Solution:

A has eigenvalues 2 and 1 with corresponding eigenvectors $\bar{x}=\binom{-1}{2}$ and $\bar{y}=\binom{-1}{1}$, respectively.

The two linearly independent eigenvectors form a basis for \mathbb{R}^{2}, so any vector \bar{v}_{0} can be written as a linear combination $\bar{v}_{0}=a \bar{x}+b \bar{y}$ of these. The orbit of \bar{v}_{0} consists of the points $A^{k} \bar{v}_{0}=2^{k} a \bar{x}+1^{k} b \bar{y}$. Therefore, if $a=0$ then the orbit is a single fixed point of A. Otherwise, the orbit consists of points escaping to infinity exponentially quickly and moving parallel to the vector \bar{x}.
8. (5 points) Suppose V is a 4 dimensional subspace of \mathbb{R}^{9}. Let P_{V} be the matrix that projects \mathbb{R}^{9} onto the subspace V. What are the dimensions and rank of the matrix P_{V} ?

Solution:

P_{V} takes a vector in \mathbb{R}^{9} and gives back a vector in \mathbb{R}^{9}, so it is a 9×9 matrix.

The column space of P_{v} is V, so the column space is 4 dimensional. The rank of P_{V} is equal to the dimension of the column space, so P_{V} is rank 4.
9. (10 points) Suppose A is a 3×3 matrix whose entries all have absolute value less than or equal to 2 . Find such a matrix that has $\operatorname{Det}(A) \geq 30$. Is it possible to find such a matrix with $\operatorname{Det}(A) \geq 50$? Find one or explain why it is impossible.

Solution:

There are many ways to find such a matrix with determinant 32 . One way would be to make two entries along the diagonal equal to -2 , and make all the other entries equal to 2 .

It is not possible to have $\operatorname{Det}(A) \geq 50$. The Big Formula for the determinant has $3!=6$ entries, each of which is a product of three entries of the matrix. Thus, we have 6 terms each of which is at most 8 , so the determinant could not possibly be greater than 48 .

10. (15 points)

$$
A=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 4 & 2 \\
0 & 2 & 1
\end{array}\right)
$$

Find a matrix C such that $C^{-1} A C$ is diagonal.

Solution:

Find three linearly independent eigenvectors of A. Let C be the matrix whose columns are these linearly independent eigenvectors. Then C is invertible and $C^{-1} A C$ is diagonal.

The characteristic polynomial of A is $(2-\lambda)\left(\lambda^{2}-5 \lambda\right)$ which has roots 0,2 , and 5 .
(Note that A has a 0 eigenvalue; it is not invertible, but it is still diagonalizable.)
The eigenvector corresponding to 2 is just the first coordinate vector $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$. Column 3 is equal to 2 times column 3 , so a null vector, an eigenvector with eigenvalue 0 , is $\left(\begin{array}{c}0 \\ -\frac{1}{2} \\ 1\end{array}\right)$. Finally, and eigenvector for eigenvalue 5 is a null vector for the matrix $A-5 I D=\left(\begin{array}{ccc}-3 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 2 & -4\end{array}\right)$

A null vector for this matrix is $\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$.
So let $C=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -\frac{1}{2} & 2 \\ 0 & 1 & 1\end{array}\right)$

No new questions beyond this point.

