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CHAPTER 1

Localization of Categories

1. Localization of categories

1.1. Localization of categories. Let A be a category and S an arbitrary
class of morphisms in 4. In this section we establish the following result.

1.1.1. THEOREM. There exist a category A[S™'] and a functor Q : A —
A[S™] such that

(i) Q(s) is an isomorphism for every s in S;

(ii) for any category B and functor F : A — B such that F(s) is an iso-
morphism for any s in S, there exists a unique functor G : A[S™Y] — B
such that F = G o Q, i.e., we have the following commutative diagram of

functors:
A—L B
o\ A
A[S™Y

The category A[S™Y] is unique up to isomorphism.

The category A[S™!] is called the localization of A with respect to S.

We first prove the uniqueness. Assume that we have two pairs (C,Q) and
(C', Q") satistying the conditions of the theorem. Then, the universal property
would imply the existence of the functors G : C — €’ and H : C' — C such that
Q' =GoQ and Q = Ho(@Q', i.e., we would have the following commutative diagram
of functors:

Q/

C/
This implies that Q' = (Go H) o Q' and Q = (H o G) o Q. In particular, we have
the following commutative diagram of functors

¢ _.¢
HoG

A
ide
Q
C
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where ide is the identity functor on C. By the uniqueness of the factorization we
must have H o G = ide. Analogously, we get G o H = ide:. Therefore, H and G
are isomorphisms of categories.

It remains to establish the existence of A[S~!]. We put

ObA[S™!'] = Ob A.

It remains to define morphisms in A[S™1].
We fix two objects M and N in A. Let I, = (0,1,...,n), J, ={(i,i+1) |0 <
i <n—1}. A path of length n is
(i) amap L of I, into the objects of A such that Lo = M and L, = N;
(ii) a map ® of J, into the morphisms of A such that either ®(i,i + 1) = f; :
Li — Li+1 or @(’L,Z + 1) = S;: L,j+1 — L, with Si in S.

Diagrammatically, a path can be represented by an oriented graph as

fo fi Si—1 fi Sp—2 Sp—1

[ ] [ ]
M Iy L; L1 N

An elementary transformation of a path is:
(i) Switch of

fifl fz
- @ ® > @ - - -
L1 L; Liq
and
fiofia
Y ® .-
Ly Lit1
(ii) Switch of
s s
[} [ ] [ )
L P L
and
idy,
oe——> 0
L L
(iii) Switch of
s s
[ ] [ ] > @ -
L P L
and
idy,

e — > @ -

L L
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(iv) Switch of

idL S
° > 0 < °
L L P
and
S
o<+ o -
L P

Two paths between M and N are equivalent if one can be obtained from the
other by a finite sequence of elementary transformations. This is clearly an equiv-
alence relation on the set of all paths between M and N.

We define morphisms between M and N in A[S™1] as equivalence classes of
paths between M and N. The composition of paths is defined as concatenation. It
clearly induces a composition on equivalence classes. The identity morphism of an
object M is given by the equivalence class the path

o—————> @

M M

It is easy to check that A[S™!] is a category. We define the functor @ from A into
A[S™1] to be the identity on objects, and to map the morphism f : M — N into
the path

o——— @

M N

Clearly, Q(s) is represented by

o———> @

M N

and its inverse is

S

@+—— O

M N

Hence, Q(s), s € S, are isomorphisms. We define G to be equal to F on objects.
For a path of length n between M and N, we put
G(P)=G(®(n—1,n))o---0G(®(2,1)) o G(®(1,0))
where
F(Sz) s if (I)(ZJ + 1) = S;: Li+1 — L;

If a path P’ is obtained from another path P by an elementary transformation, it
is clear that G(P’) = G(P). Therefore, G is constant on the equivalence classes of
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paths. Hence, it induces a map from Hom 4;g-1(M, N) into Homp(G (M), G(N)).
It is easy to check that G, defined in this way, is a functor from A[S~!] into B such
that G o @ = F. Moreover, by the construction, G is uniquely determined by F'
Therefore, the pair (A[S™!], Q) satisfies the conditions of the theorem.

1.2. Localization of the opposite category. Let A°PP be the category
opposite to the category A. Let S be a class of morphisms in A. We can also
view them as morphisms in A°PP. The functor Q : A — A[S™!] can be viewed
as a functor from A°PP into the opposite category A[S~1]PP of A[S~!] which we
denote with the same symbol. For any morphism s € S, the morphism Q(s)
is an isomorphism in A[ST1]°PP. Hence, the functor Q : A°PP —s A[S—1]oPP
factors through the localization A°PP[S~1] of A°PP| i.e., we have a unique functor
a: APP[ST1] — A[S~1°PP such that the diagram of functors

Q

Aopp A[S1]erp
QOPP l /
Aopp [Sfl]

commutes. The functor « is identity on the objects. Moreover, if ¢ : M — N is
a morphism represented by a path

in A°PP[S~1], the morphism a(yp) is the morphism in A[S™1]°PP corresponding to
the morphism in A[S™!] represented by the path

Sn—1 Sp—2 fi Si—1 f1 fo

obtained by inverting the order of segments in the original path. This immediately
leads to the following result.

1.2.1. THEOREM. The functor a : A°PP[S™Y — A[STYPP is an isomorphism
of categories.

1.3. Localizing classes of morphisms. Let A be a category. If S is an arbi-
trary class of morphisms, it is very hard to say anything about A[S~!]. Therefore,
we concentrate on special types of classes of morphisms. For such classes, one can
give a more manageable description of morphisms.

A class of morphisms S in A is a localizing class if it has the following properties:

(LC1) For any object M in A, the identity morphism idy; on M is in S.
(LC2) If s, ¢ are morphisms in S, their composition s ot is in S.
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(LC3a) For any pair f in Mor.A and s in S, there exist g in Mor A and ¢ in S
such that the diagram

g

K > L
t ls
\

is commutative.
(LC3b) For any pair f in Mor.A and s in S, there exist g in Mor A and ¢ in S
such that the diagram

g

K < L
A
t Ts

is commutative.
(LC4) Let f,g: M — N be two morphisms. Then there exists s in .S such that
so f =sogif and only if there exists ¢ in S such that fot=got.
Clearly, if S is a localizing class in A, it is also a localizing class in the opposite
category A°PP.

1.3.1. ExaMPLE. Let S be a family of isomorphisms in A which satisfies (L.C1)
and (LC2). Then, S is a localizing class in A. To check (LC3a), we put K = M,
t = idy and g = s71 o f. The check of (LC3b) is analogous. It is obvious that
(LC4) holds.

Let A be a category and S a localizing class in A. Let A[S™!] be the local-
ization of A with respect to S. Then any morphism in A[S™!] is represented as a
composition of several morphisms Q(s)~t, s € S, and Q(f).

By (LC2), Q(sot)™t = Q(t)~t o Q(s)~!, hence any morphism in A[S™!] has
the form

Q(f1)oQ(s1) " 0 Q(f2) 0 Qs2) o0 Q(fn) 0 Qs) ™"

with s1,89,...,8, € S. On the other hand, by (LC3a), for any morphism f and
s € S, there exist g and t € S such that f ot = sog. Therefore, Q(f) o Q(t) =
Q(s5) 0 Q(g), and Q(s)"L o Q(f) = Q(g9) o Q(t)~!. By induction in n, this implies
that that any morphism in A[S~!] can be represented as Q(f)oQ(s)~! with s € S.
Analogously, it can also be represented by Q(s)~! o Q(f) with s € S. Therefore,
any morphism can be viewed as a left or right “fraction”.

We are going to describe now a more manageable description of morphisms in
A[S™!] which is suitable for computations.

Let A be a category and S a localizing class of morphisms in A. A (left) roof

between M and N is a diagram
AN

M N

where s is in S. The symbol ~ denotes that that arrow is in S.
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Analogously, we define a (right) roof between M and N as a diagram

L
t
g ~
M N
where ¢ is in S.

Clearly, going from A to the opposite category A°PP switches left roofs between
M and N and right roofs between N and M. Therefore, it is enough to study
properties of left roofs.

If
L K
AN N
M N M N

are two left roofs, we say that they are equivalent if there exist an object H in A
and morphisms p: H — L and ¢ : H — K such that the diagram

commutes and sop=toq € S.

1.3.2. REMARK. If

L K
AN N
M N M N

are two equivalent left roofs, Q(p o s) = Q(p) o Q(s) is an isomorphism in A[S™1].
Since Q(s) is also an isomoprphism, Q(p) is an isomorphism too. Analogously, we
see that Q(g) is also an isomorphism. Hence,

QN oQ(s) ™ =Q(NoQ(p)oQ(p) ' oQ(s) ' =Q(fop)oQ(sop)~!
=Qgoq)oQ(tog) ™ =Q(9) Q1) o Q(g) ' o Qt) ™" = Q(g) 0 Q1) .
This motivates the above definition.

1.3.3. LEMMA. The above relation on left roofs is an equivalence relation.
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Proor. Clearly, the commutative diagram
L
PR
M L N
L
L
AN
M N

is equivalent to itself. Moreover, the relation is obviously symmetric. It remains to
show that it is transitive. Assume that the roof

L
AN
M N
K
N
M N
and this latter is equivalent to
H
N
M N

Then we have the commutative diagrams

L

implies that the roof

is equivalent to

7N
N

and

NP

S o~
2 2
W<~—O0—>=
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where sop =toqg € Sand uov = tor € S. Consider now the morphisms
sop:P— Mandtor:@Q — M. Since tor € S, by (LC3a), there exists an
object R and morphisms z : R — P and a : R — @ such that z € S and the
diagram

R4>

z |~ Nitm

P4>

commutes. Now consider b=qgoz: R— K andc=roa: R — K. Clearly, we
have

tob=togqoz=sopoz=toroa==toc

hence, by (LC4), there exist an object T and w : T — R in S, such that bow = cow.
Now, put t =pozow and y =voaow. Then

sox = sopozow =togozow = tobow = tocow = toTr0aowW = UCVOAOW = UOY.
Moreover, since s o p, z and w are in S, this morphism is in S. In addition,
hoy = hovogow = gorogow = gocow = gobow = gogqozow = fopozow = fox,

i.e., the diagram

R
AN A

ST
NG

is commutative. Therefore, the roof

o

is equivalent to

N
Ve

and the relation is transitive. O

Analogously, we define a relation on right roofs. If

L K
N TN
M N M N
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are two right roofs, we say that they are equivalent if there exist an object H in A
and morphisms p: L — H and ¢ : K — H such that the diagram

commutes and pos=gqot € S.
Again, going from A to A°PP maps equivalent left roofs into equivalent right
roofs and vice versa.

1.3.4. LEMMA. The above relation on right roofs is an equivalence relation.
ProoF. This follows from 1.3.3 by switching from A to A°PP. O

Now we are going to establish a bijection between the equivalence classes of
left roofs and right roofs between two objects in A.

Let

be a left roof between M and N in A. Then, by (LCSb)7 there exists a right roof

\

\\

between M and N such that the diagram
K<2 M
I
N~<~—1L

f

K/
2N
M N

is another such right roof. Then, by (LC3b), there exists an object U and morphisms
u: K — U and v : K’ — U such that the diagram

commutes. Assume that

U< K

MTN NTt,

K<:—N
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commutes and v € S. Therefore, we have
uogos=uotof=uot'of=uog os.

By (LC4), there exists an object V in A and a morphism v : U — V in S such
that vouwog=wvou' og’. This in turn implies that

vouot=vou ot

is in S and the diagram

K
9 t
vou |~
M V N
vou
gl t/
K/

commutes. Therefore the above right roofs are equivalent.

It follows that we have a well defined function from left roofs between M and
N into equivalence classes of right roofs between M and N.

Now we claim that this map is constant on equivalence classes of left roofs
between M and N. Let

L L
AN AN
M N M N

be two equivalent left roofs between M and N. Then there exist an object W and
morphisms w : W — L and w’ : W — L’ such that the diagram

L
SN
M w N
- lw’
S, f/
I/

commutes and sow = s’ ow’ is in S. Assume that we have the right roofs between

M and N
K K’
SN TN
M N M N
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such that the diagrams

’

K<2 M K <2 M
R
f/

are commutative. Then the diagrams

K< M K<L M
tTN NTSOU’ t’T” NTslow’
NWW Nﬁw

are commutative, i.e., the above two right roofs correspond to the same left roof
between M and N. By the first part of the proof, these right roofs are equivalent.

It follows that the above map is constant on the equivalence classes of left roofs
between M and N. Therefore, we have a well defined map from the equivalence
classes of left roofs between M and N into the equivalence classes of right roof
between M and N.

Clearly, by going from A to A°PP we see that there exists an analogous map from
equivalence classes of right roofs between M and N into the equivalence classes left
roofs between M and N. Moreover, by their construction, it is clear that these maps
are inverses of each other. It follows that the above correspondence is a bijection
between equivalence classes of left roofs between M and N and equivalence classes
of right roofs between M and N.

Now we define the composition of equivalence classes of roofs. Again, it is

enough to consider left roofs.
L
AN
M N

Let
be a left roof between M and N and

K
AN
N P
a left roof between N and P. Then, by (LC3a), there exist an object U and
morphisms u : U — L in S and h : U — K such that

S~

¥ 2
L K
AN AN
M N P
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is a commutative diagram. It determines the left roof

U
PN
M P
which depends on a choice of U, u and h. We claim that its equivalence class is
independent of these choices. Moreover, this equivalence class depends only on the

equivalence classes of the first and second left roof.
To check this, we first consider the dependence on the first left roof. Let

L/
AN
M N

be a left roof equivalent to the first left roof, i.e., there exist an object V' and
morphisms v : V — L and v’ : V — L' such that the diagram

L/
commutes and sov = s’ o0’ is in S. Then there exist an object U’ and morphisms
w':U — L' in S and b/ : U’ — K such that
U/
u’ .“-»_h/

z N
L K
LN LN
M N P

is a commutative diagram. As before, it determines the left roof

U’ .
S/V W’
M P
By applying (LC3a) twice, we see that there exist objects W and W’ and morphisms

w: W —Vand w : W — V in S and morphisms a : W — U and a’ : W' —
U’ such that the diagrams

Wt w S

w - Nlu i Nlu,
\
L

\
V ——
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commute. Applying (LC3a) again, we see that there exists an object T' and mor-
phisms 7 : R — W and v’ : R — W' in S such that the diagram

R l>W
TVN "’i
W ==V

’
w

commutes. Now
/ / / / ! / / !
souoaor=sovowor=sov owor=sou odor
isin S, since s’ o v/, w’ and r’ are in S. Moreover,
/ / / ! ! / / / I / /
tohoaor = fouoaor = fovowor = flov'ow or' = flfou'oa’or' =toh'ca’or

and, by (LC4), there exists an object @ and a morphism ¢ : @ — R in S such
that

hoaorog=~h oad or' oq.
Ifweputb=aoroq:Q —Uandb =d or'oq: Q — U’, we see that
souob=souoaoroq=sou oa or'og=sou o/
isin Sand gohob=goh' ol ie., the diagram
U

sou T \ﬁh
b

M Q P
~ b,i /
sou’ goh'
U/
is commutative. Therefore, the above left roofs are equivalent. In particular, equiv-
alence class of the “composition” of two left roofs is independent of the choice of

U, u and h.
Now, we consider the dependence on the second left roof. Let

K/
SN
N P

be a left roof equivalent to the second left roof, i.e., there exist an object V' and
morphisms v : V — K and v’ : V — K’ such that the diagram

commutes and tov =t o0’ isin S.



14 1. LOCALIZATION OF CATEGORIES

By (LC3a), there exists an object U and morphisms v : U — L in S and
a: U — V such that the diagram

U %>V
U Nitou

\

commutes. Therefore, the diagram

AN AN

is commutative and the “composition” of the above left roofs is the given by

U .
Sy V‘\an
L P

Analogously, the diagram

U
L K’
NN
M N P

is commutative and the “composition” of these left roofs is the given by

U
sy Yu’oa
L P

which is identical to the above left roof. Therefore, the equivalence class of the
“composition” of left roofs is independent of the choice of the second left roof.

It follows that the above process defines a map from the product of the sets of
equivalence classes of left roofs between M and N and equivalence classes of left
roofs between N and P into the set of equivalence classes of left roofs between M
and P. By abuse of language, we call this map the composition of left roofs.

By passing from A to A°PP, we see that in an analogous fashion we can define
the composition of (equivalence classes) of right roofs.
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L
VN
M N
be a right roof between M and N and
K
N
N P

a right roof between N and P. Then, by (LC3b), there exist an object U and
morphisms v : K — U in S and h : L — U such that

Let

7 %
h .- oo

~ .

NN

is a commutative diagram. It determines the right roof

U
hV wt
M P

and its equivalence class depends only on the equivalence classes of the above two
right roofs.

We claim that the composition of roofs is compatible with the bijection between
left and right roofs. Let

L K
AN AN
M N N P

be two left roofs. Denote by

U Vv
SN TN
M N N P
the corresponding two right roofs such that the diagrams
f g
—— N K——N

F3E

— N——V
a b
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are commutative. Then there exist Q and R and morphisms ¢: Q — L, r: V —
Rin Sand h: Q — K, ¢c: U — R, such that the diagrams

L%Q\ZK
AN AN

and
R
U \%4
SN TN
M N P

commute. Therefore the composition of the left roofs is represented by the left roof

Q
X
M P

and the composition of the right roofs is represented by the right roof

R .
M P
Since

coagaosoqg=couo fogq=robotoh=rovogoh

the left roof corresponds to the right roof between M and P.

Now we prove that the composition of equivalence classes of left roofs is asso-
ciative. By the above discussion, this would immediately imply the associativity of
the composition of right roofs.

Let M, N, P and @Q be objects in A. Consider three left roofs

U Vv 7
LN N N
M N N P P Q
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and the corresponding commutative diagram

U Vv Z
AN AN AN
M N P Q

which can be constructed by repeated use of (LC3a). Then the composition of the
equivalence classes of the first two left roofs is represented by

X
7N
M P

and its composition with third left roof is represented by

w .
soxy \Y\lom
M Q

Analogously, the composition of last two left roofs is represented by the left roof

Y
N Q

and its composition with first left roof is represented by

W .
soxy \Y\lom
M Q

Therefore, the composition is associative.
For any object M in A we denote by idy; the equivalence class of the left roof

M

zty V*M

M M
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Then the commutative diagram

L
AN
M L
AN
idar ~ f
M M N

implies that the composition of the equivalence class ¢ of left roofs with idy; is
equal to . Analogously, the commutative diagram

L
<N
L N
AN N
M N N

implies that the composition of idy with the equivalence class of ¢ is also equal to
®.

Therefore, the objects of A with equivalence classes of left roofs as morphisms
form a category. We denote this category by AlS. Analogously, by taking equiva-
lence classes of right roofs as morphisms we get the category A%. From the previous
discussion it is clear that these categories are isomorphic. Therefore, by abuse of
notation we can denote them just by Ag and identify the morphism represented by
equivalence classes of corresponding left or right roofs.

We define an assignment Q) from the category A to the category Ag, which is
identity on objects and assigns to a morphism f : M — N the equivalence class
of left roofs attached to the roof

N

M N

We claim that this is a functor from A into Ag. Clearly, Q(idps) = idys for any
object M. If g : N — P is another morphism, the composition of the equivalence
classes Q(g) and Q(f) corresponds to the commutative diagram

M
A
M N
“V \ iy \
M N P

i.e., it is equal to Q(g o f).
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Since the diagram

!

~— M

=

idN ~ ~ id1\4

- >

=

-~

!

is commutative, if morphisms in 4g are represented by equivalence classes of right
roofs, the morphism Q(f) is represented by the equivalence class of the right roof

N .
SN
M N
Moreover, if s : M — N is in S, from the diagram
M
MV YM
M M
AN
M N M
we see that the equivalence class of the left roof
M
AN
N M
is a right inverse of Q(s). Moreover, from the commutative diagram
M
AN
M M
AN LN
N M N

we see that the composition of these equivalence classes in the opposite order is the
equivalence class of the left roof

N

N N
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and since the diagram
M

% T’LN
N M N
I s
N
is commutative, it is equal to idy. Therefore, the equivalence class of
M
AN
N N

is the inverse of Q(s). Hence, for any s € S, Q(s) is an isomorphism in Ag.
Let F be a functor from the category A into the category B, such that F(s) is
an isomorphism for any s € S. Let

L K
AN N
M N M N

be two equivalent left roof between M and N. Then there exist an object U in A
and morphisms v : U — L and v : U — K such that the diagram

commutes and sou =towv € S. It follows that

F(f) o F(u) = F(g) o F(v)
and
F(s)o F(u) = F(t) o F(v).

Since sow isin S, F'(s)o F'(u) is an isomorphism. Moreover, F'(s) is an isomorphism.
This implies that F'(u) is an isomorphism. Analogously, F'(v) is an isomorphism.
Hence,

and finally

F(f)oF(s)™ = F(f)o F(u)o F(u)~" o F(s)™!
=F(g9)oF(v)o F(v) L o F(t)~! = F(g) o F(t)~%.
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Hence, the map which assigns to the left roof

L
AN
M N
the morphism F(f) o F(s)~!: F(M) — F(N) is constant on equivalence classes
of roofs.

Therefore, we can define an assignment G which assigns to any object M in
Ag the object F(M) in B and to a morphism ¢ represented by the left roof

L
AN
M N
the morphism G(p) = G(f) o G(s)~*.
We claim that G is a functor from Ag into B. Clearly, it maps identity mor-

phisms into identity morphisms. Let ¢ : M — N and ¢ : N — P be two
morphisms determined by left roofs

L K
AN AN
M N N P

Then we have the commutative diagram
U
AN
L K
N AN
M N P

and the composition 1) o ¢ is represented by the left roof

U
7N
M P
Moreover, we have

G(y) 0 G(p) = F(g) o F(t) " o F(f) o F(s)™".
From the above commutative diagram we see that
F(f) o F(u) = F(t) o F(h),
- F(t) Yo F(f) = F(h)o F(u)™ .
Hence, we have
G(1)) o G(p) = F(g)o F(R)o F(u) o F(s)™' = F(goh)o F(sou)™' = G(¢) o ).
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It follows that G is a functor from Ag into B.

Clearly, we have Go @ = F. On the other hand, let H : Ag — B be a functor
such that H o Q = F. Then H(M) = F(M) = G(M) for any object M in Ag.
Moreover if ¢ : M — N is a morphism in Ag represented by the left roof

L
N
M N
we have o = Q(f) 0o Q(s)~! and

H(p) = H(Q(f)) o H(Q(s)) ™ = F(f) o F(s)™! = G(Q(f)) 0 G(Q(s) ™" = G(y)-

Therefore, H = G. Hence, G : Ag — B is the unique functor satisfying Go@Q = F.
It follows that the pair (Ag, Q) is the localization of A with respect to the localizing
class S, i.e., A[S71] = Ag. This construction of the localization is more practical
for actual calculation than the one from the first section.

Let A°PP be the opposite category of A. Let S be a localizing class in A.
Then S is also a localizing class in A°PP. By 1.2.1, we have an isomorphism « :
APP[ST1] — A[ST1]°PP of categories. This isomorphism is identity on objects,
and maps a morphism ¢ : M — N represented by the left roof

L
AN
M N
into a morphism in A[S~!]°PP corresponding to the morphism represented by the
right roof
L
N M

in A[S71].

The next result is an analogue of the “reduction to the common denominator”.

L;
AN
M N

be left roofs representing morphisms p; : M — N, 1 < i < n, in A[S71]. Then
there exist an object L in A, s € S and morphisms g; : L — N in A such that the

left roofs
L
N
M N

)

1.3.5. LEMMA. Let

)

represent p; for all 1 <i <mn.
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PRrROOF. The proof is by induction in n. If n = 1, there is nothing to prove.
Assume that n > 1 and that there exist K, ¢t € S and h;, 1 <i <n — 1, such that

K
M N
represent ¢; for 1 <i <n — 1. By (LC3a) there exist a commutative diagram

U-">L,
;o

where u is in S. Therefore, s =t ou = s, ou’ is in S. Then the diagram

AP
N

is commutative, i.e., the left roofs

U
/ Y@u
M N

represent ; for any 1 < ¢ < n — 1. Moreover,

M N

/\
\/

I,
NG

U

is commutative, i.e.,

frou'

N
A

M N
represents ¢,. Hence, L =U, g; = h;ou, 1 <i<n—1, and g, = f, o u satisfy
our conditions. O

Clearly, by going from A to its opposite category, we can deduce from the above
result an analogous result for morphisms represented by right roofs.
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1.4. Subcategories and localization. Let A be a category and B its sub-
category. Let S be a localizing class in 4. Assume that Sg = S N Mor(B) form
a localizing class in B. Then we have a natural functor B[Sgz'] — A[S™!]. This
functor maps an object in B into itself, and a morphism in B[Sy ! represented by

a left roof
L
AN
M N

into the equivalence class of the same roof in A[S™1].

1.4.1. PROPOSITION. Let A be a category, S a localizing class of morphisms in
A and B a full subcategory of A. Assume that the following conditions are satisfied:

(i) Sg =S NMorB is a localizing class in B;
(ii) for each morphism s : N — M with s € S and M € Ob B, there ezists
u: P — N such that sou €S and P € ObB.

Then the natural functor B[Sg'] — A[S™'] is fully faithful.

PROOF. Let M and N be two objects in B. We have to show that the map
HomB[ 1(M, N) — Hom 45-1)(M, N) is a bijection.
Flrst we prove that this map is an injection. Let

L K
M N M N

be two left roofs representing morphisms in B[S, 1] which determine the same mor-
phism in A[S™!]. Then this implies that we have the following commutative dia-
gram of roofs

where U isin 4 and sou =tov € S§. By (11)7 there exists Vin Band w: V — U
such that souow =tovow € S. Hence, we get the diagram

B
<[

/\
X

which is clearly commutative. It follows that the above left roofs determine the
same morphism in B[Sgl}. Hence, the above map is an injection.



2. LOCALIZATION OF ADDITIVE CATEGORIES 25

It remains to show surjectivity. Let

M% XN

be the left roof representing a morphism ¢ in Hom 4ig-1;(M, N). By (ii), there
exists U in B and v : U — L in S such that sou € S. Hence, we have the
commutative diagram

L
M U N
U
which implies that the left roof

also represents . On the other hand, it determines also a morphism between M
and N in B[Sgz'] which maps into ¢, i.e., the map is surjective. O

Therefore, one can view B[Sz '] as a full subcategory of A[S™!].
Analogously, by replacing A with its opposite category, we see that the following
result holds.

1.4.2. PROPOSITION. Let A be a category, S a localizing class of morphisms in
A and B a full subcategory of A. Assume that the following conditions are satisfied:
(i) Sg =S NMorB is a localizing class in B;
(ii) for each morphism s : M — N with s € S and M € Ob B, there exists
u: N — P such that uos €S and P € ObB.

Then the natural functor B[Sg'] — A[S™'] is fully faithful.

2. Localization of additive categories

2.1. Localization of an additive category. Assume now that A is an ad-
ditive category and that S is a localizing class of morphisms in A.

First we remark that (LC4) in the definition of the localizing class can be
replaced with

(LC4’) Let f : M — N be a morphism. Then there exists s in .S such that
so f =0 if and only if there exists ¢ in .S such that fot =0.

Clearly, since Hom 4(M, N) is an abelian group, so f = so g is equivalent to
so(f—g)=0,and fot =gotisequivalent to (f — g) ot = 0. Therefore, if we
replace f by f — g in (LC4’), it becomes identical to (LC4).

We want to show that the localization A[S™!] has a natural structure of an
additive category such that the quotient functor @ : A — A[S~!] is additive.
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Assume that M and N are two objects in A. Let ¢ and ¢ be two morphisms
in Hom 4{g-1](M, N). Then by 1.3.5, there exist an object L in A, s € S and
f,9: L — M such that these morphisms are represented by left roofs

L L
AN AN
M N M N
2.1.1. LEMMA. The morphism M — N determined by the left roof

L
SN
M N

depends only on ¢ and v, i.e., it is independent of the choice of L, s, f and g.

respectively.

PrOOF. Assume that ¢ and v are also represented by

K L
/\ /x
M N M N

respectively. Then we have the commutative diagrams

L
N
M U N
K

and
L
AN
~ p
M Vv N
\ p/ g/
K

where sor =tor’ € Sand sop=top €S5.
By (LC3a) we can complete the commutative diagram

’

|7/ e, v

v~ Ni

\
U—>M

sor
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with w € S. Then sorow = sopow € S. By (LC4), there exists ¢ € S,

q:Z — W, such that rowoqg=pow’ oq. Also,
tor'ow=sorow=sopow =top' ow €8
implies that
torowog=top ow oqes.
Hence, by (LC4), there exists ¢’ € S, ¢’ : X — Z, such that
Tlowoqoq/:plow/oqoq/,
Put
a=rowoqoq =pow' oqoq : X — L
and
a =r"owoqoqg =p owoqoq: X —K,
then we have

soa=sopow ogoq =top'ow' oqgog =tod

and, since sopow € S, ¢ € S and ¢’ € S, this is an element of S. Moreover,

foa=forowoqoqg =f or'owoqoq = fod
and
goa:gopowloqoq/:gloplowloqoq/:gloa/,

Therefore, the diagrams
L
X
K
and
L
X

N

are commutative. This in turn implies that

/\ /\

TN
Jos
TN
-

L
A
M X N
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commutes, i.e., the left roofs

L K
M N M N

represent the same morphism in A[S™1]. O

Therefore, we can denote the morphism determined by the left roof

L
SN
M N
by ¢+1). Clearly, this defines a binary operation (p, 1)) = -+ on Hom 4;5-1)(M, N).
Moreover, ¢ + 1 and 1 + @ are equal to the equivalence classes of the left roofs

L L ,
ZE AN
M N M N

i.e., this operation is commutative.
Let ¢, ¥ and x be three morphisms in Hom 4js-17(M, N). By 1.3.5, we can
represent them by the left roofs

L L L
AN AN AN
M N M N M N

for some object L in A, S € S and f,g,h € Homy(L,N). Then ¢ + (¢ + x) is

represented by the left roof
L
/ Y(g‘s’h)
M N

and (p + 1) + x is represented by the left roof

L
/ \\(f{+g)+h
M N

Since the addition of morphisms in Hom 4 (L, N) is associative, the binary operation
on Hom 4;g-1)(M, N) is also associative.
If we represent the morphism ¢ and ¥ by right roofs

K K
/N /\X
M N M N
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corresponding to

such that the diagrams

K< M
- “TS
L

N <——

f

commute. Then we have

-~

K
T
N L

B —
g

to(f+g)=tof+tog=aos+bos=(a+b)os,

i.e., the diagram

commutes. Therefore, the right roof

K
I~
N

L

-

K
aV N
M N

corresponds to the left roof

L
N
M N

and represents ¢ + 1. It follows that, if we use right roofs to represent morphisms
instead of left roofs, we get the same binary operation on the sets of morphisms.
We denote by 0 the morphism in Hom 4;5-1)(M, N) represented by the left roof

M
LN
M N
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Let s: L — M be in S. Then we have the commutative diagram

hence the left roof

L
AN
M N

represents 0 too. This implies that ¢ +0 = ¢ for any ¢ in Hom 4;5-1)(M, N)

represented by a roof
L
AN
M N

It follows that 0 is the neutral element in Hom 4;g-1j(M, N). Moreover, it is clear
that the inverse of ¢ is represented by the left roof

L .
N
M N
Therefore, Hom 4g-1j(M, V) is an abelian group.
Let M, N, P be three objects in .A. We claim that the composition

HomA[SA](M, N) X HOH]_A[Sfl](N, P) — HomA[SA](M, P)

is biadditive.
Let x be in Hom 4;g-1)(M, N) and ¢ and ¢ in Hom 4g-17(N, P). Let

L L K
NG AN AN
N P N P M N
be left roofs representing ¢, 1 and x respectively. Using (LC3a) we get the diagram
U

u o W

RN

yz N
K L
N AN
M N P
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and we see that the composition of ¢ o x is represented by the left roof

U
tou Yv
M P
Analogously, from the diagram
U

s N
K K
AN AN
M N P
we see that the composition of ¥ o x is represented by the left roof
U .
ty Yv
M P
Therefore, p o x + 1 o x is represented by the left roof
U
ty Yv—kgov
M P
On the other hand, ¢ + 1 is represented by the left roof
L ,
SN
N P
hence the commutative diagram
U
AN
K L
SN AN
M N P
implies that (¢ + 1) o x is represented by the left roof
U .
t;m/ wjg)ov
M P

It follows that (¢ + ) o x = @ o x + oy, ie., the composition is additive in the
first variable.
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Now, let ¢ and ¢ be in Hom 4;g-1)(M, N) and x in Hom 4;g-1(N, P). Let

L L K
AN AN AN
M N M N N P
be left roofs representing ¢, ¥ and x respectively. Using (LC3a) we get the diagram

P N

L K
AN AN
M N P

and we see that the composition of y o ¢ is represented by the left roof

U .
M P
Analogously, from the diagram

. A
L K
AN AN
M N P

we see that the composition of x o is represented by the left roof

1% .
sy Yy
M P
Using (LC3a) again, we construct the commutative diagram
WU
Niu
e/

\
4 v

w o~
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with uow’ =vow € S. Therefore, we get the commutative diagrams

w
L K
SN AN
M N P
and
w
vow Yw
L K
NN
M N P

which imply that left roofs

W W
soucV \Xc)xow/ sovy Wow
M P M P

represent y o ¢ and y o v respectively. Therefore, x o ¢ + x 0 ¥ is represented by

the left roof
w
sovy \Owow/-‘rhoyow
M P

On the other hand, we have
fouow =toxow
and
gouow =govow=toyow.
Hence,
(f+g)ouow =to(zow +yow)
and the diagram
W

wow’ zow' +yow
~

L K

AN AN

M N P
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is commutative. Therefore, x o (¢ + 9) is represented by the left roof

W
souow/ \\hO(zow'erow)
M P

This implies that x o (¢ + 1) = x 0 ¢ + x 0 ¥, i.e., the composition is additive in
the second variable. It follows that the composition of morphisms is biadditive.

The zero object in A[S™!] is the zero object 0 in A. To see this, consider an
endomorphism of 0 in A[S~!]. Tt is represented by a left roof

M
LN
0 0

Then we have the commutative diagram

hence the morphism is also represented by the left roof

0 .
id/ X
0 0

It also represents the zero morphism. Therefore, the only endomorphism of 0 in
A[S™1] is the zero morphism. This implies that 0 is the zero object in A[S™1].

Moreover, if M and N are two objects in A[S™?], we define their direct sum M &
N as the direct sum of these objects in .A. The canonical injections and projections
in A[S™!] are the morphisms corresponding to the corresponding morphisms in A.

It is clear that A[S™!] becomes an additive category in this way.

Let f,g : M — N be two morphisms in A. Then the corresponding morphisms
Q(f) and Q(g) in A[S™!] are represented by left roofs

M M
SN N
M N M N

respectively. Hence, Q(f) + Q(g) is represented by the left roof

M ;
zty \\fig
M P
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ie., Q(f) +Q(g) = Q(f + g). Therefore, the quotient functor @ : A — A[S™1] is
additive.

Let B be an additive category and F' : A — B an additive functor such that
F(s) is an isomorphism for any s € S. Then, by 1.1.1, there exists a functor
G : A[S7!] — Bsuch that F = G o Q. Clearly, G(M) = F(M) for any object M
in A. Moreover, if ¢ is a morphism of M into N in A[S™!] represented by a left

roof
L
SN
M N
we have G(¢) = F(f) o F(s)™ L.

If ¢ and ¢ are morphisms in A[S™!] between M and N, by 1.3.5, they are
represented by left roofs

L L
/\f\\ /\g\\
M N M N

the sum ¢ + v is represented by the left roof

L .
N
M N
Therefore, we have

Glo+v)=F(f+g)oF(s)™ = F(f)o F(s)™' + F(g) o F(s)™' = G(¢) + G(v),

i.e., the functor G is additive.
Therefore, we proved the existence part of the following result.

)

2.1.2. THEOREM. Let A be an additive category and S a localizing class. There
exist an additive category A[S™'] and an additive functor Q : A — A[S™'] such
that

(i) Q(s) is an isomorphism for every s in S;

(ii) for any additive category B and additive functor F : A — B such that
F(s) is an isomorphism for any s in S, there exists a unique additive
functor G : A[S™Y] — B such that F = GoQ, i.e., we have the following
commutative diagram of functors:

A—L B
|
A[S]

The category A[S™Y] is unique up to isomorphism.

PRrROOF. The proof of uniqueness is identical to the corresponding proof in
1.1.1. O
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Let A°PP be the opposite category of A. Let S be a localizing class in A. As
we remarked before, S is also a localizing class in A°PP. Moreover, we have an
isomorphism « : A°PP[S™1] — A[ST1]°PP of corresponding categories. From its
construction, and 2.1.2, it follows that « is an additive functor. Therefore, we have
the following result.

2.1.3. THEOREM. The functor o : A°PP[S™] — A[STYPP is an isomorphism
of additive categories.

Now we want to characterize zero morphisms in localizations.

2.1.4. LEMMA. Let ¢ : M — N be a morphism in A[S™1] represented by a

left roof
L
AN
M N
Then the following conditions are equivalent:

(i) ¢ =0;
(ii) There exists t € S such that fot =0.
(ili) There existst € S such that to f =0.

PRrROOF. First we remark that by (LC4’) the conditions (ii) and (iii) are equiv-
alent.

Assume that (i) holds. Then 0 = Q(f) o Q(s)~*, and Q(f) = 0. Therefore, the

left roof
L
z‘V \\f
L N

represents the zero morphism in Hom 4;5-1)(L, N). The zero morphism between L
and N is represented by the left roof

L
iV \
L N

Hence, these left roofs are equivalent, i.e., there exists U in A and ¢ : U — L such

that the diagram
L
¢7 T X
L U
L
commutes and ¢ is in S. This implies that f ot = 0.

Conversely, if (ii) holds, fot = 0 and Q(f) o Q(¢t) = 0. Hence, Q(f) = 0 and
p=Q(f)oQ(s)"' =0. 0

N

t
t
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By switching A with its opposite category, we get the dual result for morphisms
represented by right roofs.

2.1.5. LEMMA. Let ¢ : M — N be a morphism in A[S™1] represented by a

right roof
L
7N
M N

Then the following conditions are equivalent:
(i) ¢ =0;
(ii) There exists t € S such that to f =0;
(ili) There exists t € S such that fot =0.

2.1.6. COROLLARY. Let f: M — N be a morphism in A. Then the following
conditions are equivalent:
(i) Q(f) =0;
(ii) There exists t € S such that to f = 0;
(iii) There exists t € S such that fot=0.

PROOF. The morphism Q(f) is represented by the left roof

M .
2N
M N
Hence, the result follows from 2.1.4. O

2.1.7. COROLLARY. Let M be an object in A. Then the following conditions
are equivalent:
(i) Q(M) = 0;
(ii) There exists an object N in A such that the zero morphism N — M s
mn S;
(iii) There exists an object N in A such that the zero morphism M — N is
in S.

PRrROOF. By switching to the opposite category we see that (ii) and (iii) are
equivalent.

Assume that Q(M) = 0. This implies that Q(idp;) = 0. Hence, by 2.1.6, there
exists s € S, s : N — M such that s = idys o s = 0. This implies (ii).

If (ii) holds, the zero morphism Q(N) — Q(M) is an isomorphism. This
implies that Q(M) = Q(N) = 0. O

Finally we have the following consequence of the above results.

2.1.8. LEMMA. Let f: M — N be a morphism in A. Then:
(i) If f is a monomorphism, then Q(f) is a monomorphism;
(ii) If f is an epimorphism, then Q(f) is an epimorphism.

ProoFr. Clearly, by switching from A to the opposite category A°PP, we see
that (i) and (ii) are equivalent.
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Therefore, it suffices to prove (i). Let ¢ : L — M be a morphism in A[S™}]
such that Q(f) o ¢ = 0. Then the morphism ¢ is represented by a left roof

U
SN
L M
and we have ¢ = Q(g) o Q(s)~!. This implies that

0=Q(f)ov=Q(f)oQ(9)oQ(s) " =Q(fog)oQ(s)~"

and Q(f og) =0. By 2.1.6, it follows that there exists ¢t € S such that fogot =0.
Since f is a monomorphism, this implies that g ot = 0. By using 2.1.6 again, we
see that Q(g) = 0. It follows that ¢ = Q(g) o Q(s)~! = 0. Therefore, Q(f) is a

monomorphism. (Il

2.2. Localization of abelian categories. Let A be an abelian category and
S a localizing class in A. Then, by the results of the preceding section, the local-
ization A[S™1] of A with respect to S is an additive category.

We want to prove now that A[S™!] is an abelian category.

2.2.1. LEMMA. Let ¢ : M — N be a morphism in A[S™']. Then ¢ has a
kernel and a cokernel.

PrOOF. The morphism ¢ is represented by a right roof

L
7N
M N

Therefore, ¢ = Q(s)™! o Q(f). Since Q(s) is an isomorphism, y : K — M is a
kernel of ¢ if and only if it is a kernel of Q(f).

By our assumption, f : M — L has a kernel k : K — M in A. We claim
that x = Q(k) : K — M is a kernel of Q(f) in A[S™].

Let ¢ : P — M be a morphism in A[S™!] such that Q(f) o+ = 0. Then ¢
can be represented by a left roof

U
SN
P M
and 1 = Q(g) o Q(t)~!. Hence,
0=Q(f) o =Q(f) Q) o Q) ' =Q(fog)oQ(t)"
and Q(f og) = 0. By 2.1.6, it follows that there exists morphism v : V. — U,

v € S, such that fogowv = 0. Hence, g o v can be uniquely factor through the
kernel, i.e., there exists unique morphism w : W — K such that kow = gow.

Therefore, Q(k) o Q(w) = Q(g) © Q(v), and Q(g) = Q(k) o Q(w) o Q(v) . Hence,
v =Q(9)0Q(t)™ = Q(k) o Qw) 0 Q(v) 1o Q(t) ™ = x 0 Q(w) 0 Q(v) 0 Q).
Hence, 9 factors through x : K — M.
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Assume that ¢ = y o = x o § are two factorizations. Then we have y o
(e — B) = 0. Since the kernel k : K — M is a monomorphism, by 2.1.8, x is a
monomorphism. This implies that « = § and the above factorization is unique.
Hence, x : K — M is a kernel of Q(f).

This result, by switching from A to the opposite category A°PP  implies also
the existence of a cokernel of . |

Therefore, any morphism ¢ : M — N in A[S™!] has a kernel and cokernel.
Let x : kerop — M be a kernel of ¢ and p: N — coker ¢ a cokernel of ¢. Then
we denote a cokernel of x by a : M — coim . Clearly, since ¢ o x = 0, there
exists a unique morphism v : coim ¢ — N such that the diagram

ker ¢ X M N “ coker ¢

|

coim ¢

commutes. Since « is a cokernel, it is an epimorphism. Therefore,
0=pop=pogoa

implies that p ot = 0. Also, we denote a kernel of p by § : imp — N. Then
there exists a unique morphism @ : coim ¢ — im ¢ such that ¢ = g o @, i.e., the
diagram

©

ker ¢ X M N & coker @

| AT

coim ¢ — im

commutes. To show that A[S™!] is an abelian category, we have to show that the
map @ : coim ¢ — im ¢ is an isomorphism.
Assume that ¢ is represented by a left roof

L
LN
P M

ie., o =Q(f)oQ(s)"!. Since A is abelian, we have a commutative diagram

)

ker f b L N > coker f

coim f T> im f
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where f : coim f — im f is an isomorphism. By applying the functor Q, we get
the commutative diagram

LG R CLC B S L B

w| o

coim f ——=im f

Q(f)

where Q(f) is an isomorphism. By the argument in the proof of 2.2.1 and the dual
argument, we conclude that Q(k) : ker f — L is a kernel of Q(f) and Q(c) : N —
coker f is a cokernel of Q(f). This in turn implies that Q(a) : L — coim f is a
coimage and Q(b) : im f — N an image of Q(f).

Since ¢ = Q(f) o Q(s)™!, clearly we can assume that Q(c) : N — coker f is a
cokernel of ¢ : M — N, i.e., we can put coker ¢ = coker f and p = Q(c). This in
turn implies, by the same argument, that Q(b) : im f — N is a kernelof p : N —
coker i, i.e., we can put im ¢ = im f and 8 = Q(b). Finally, since ¢ = Q(f)oQ(s)~ !,
Q(s) o Q(k) : ker f — M 1is a kernel of ¢, and we can put kerp = ker f and
X = Q(s) o Q(k). Analogously, this implies that Q(a) o Q(s)™! : M — coim f is
a cokernel of y, and we can put coim ¢ = coim f and a = Q(a) o Q(s)~!. This in
turn implies that

Q(N)eQ(s) ' =p=PBopoa=Q(b)opoQ(a)oQ(s)™"
and
Q) o poQ(a) =Q(f) =Q(b) 0 Q(f) 0 Qa).
Since Q(b) is a monomorphism, this implies that ¢ o Q(a) = Q(f) o Q(a). Since
Q(a) is an epimorphism, it follows that ¢ = Q(f). Hence ¢ is an isomorphism.
This implies that the category A[S™1] is abelian.

2.2.2. THEOREM. Let A be an abelian category and S a localizing class in A.
Then the localization A[S™!] is an abelian category.
The quotient functor Q : A — A[S™!] is ezact.

PROOF. It remains to prove the exactness of the functor @ : A — A[S™!]. If

M-l N_2,p
is an exact sequence in A, we have to prove that
M Q(f) N Q(9) p

is exact. Clearly, we have Q(g) o Q(f) = 0. On the other hand, if ¢ : im f — N is
an image of f, the above argument implies that Q(4) : im f — N is an image of
Q(f). Moreover, if k : ker g — N is a kernel of g, Q(k) : kerg — N is a kernel of
Q(g). Hence, the exactness of the first sequence implies the exactness of the second
sequence. (I

A nontrivial full subcategory B of A is thick if for any short exact sequence
0—M —M-—M"—0

in A, M is in B if and only if M’ and M" are in B. Clearly, a thick subcategory of
A contains 0.

2.2.3. LEMMA. Let B be a thick subcategory of A. Then
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(i) B is strictly full subcategory.

(ii) B is abelian.
(iii) Any subobject and any quotient of an object M in B is in B.
(iv) Any extension of any two objects in B is in B.

PROOF. (i) Let M be an object in B and i : N — M an isomorphism. Then
0 N —— M 0 0

is exact. Therefore, N is in B.
(iii) If M is in B and M’ a subobject of M in A, we have the exact sequence

0 —— M M M 0
in A. Since B is thick, M’ and M" are in B.
(iv) If
0 M’ M M 0

is an exact sequence in A and M’ and M" are in B, the extension M of M’ and
M" is in B.
(ii) Let M and N be two objects in B. Then we have the exact sequence
0 M MeN N 0

in A. Hence, M @ N is in B, and B is additive. If f : M — N is a morphism
in B, it is also a morphism in A. Hence, its kernel, image, cokernel and coimage
exist in A, and since B is thick, they are objects in B. Moreover, they represent
kernel, image, cokernel and coimage of f in B. This implies that the canonical
representation of a morphism f in A is the canonical representation of f in B, and
B is abelian. O

2.2.4. LEMMA. Let A be an abelian category and S a localizing class in A. Then

the full subcategory B consisting all objects M in A which are isomorphic to 0 in
A[S™Y] is thick.

PrOOF. Let
0 —— M’ M M 0
be a short exact sequence in A. Then, since @ : A — A[S™!] is an exact functor,
0 —— QM) —— QM) —— Q(M") ——> 0

is exact in A[S™!]. If M is in B, we have Q(M) = 0. By exactness, we must have
Q(M') =0and Q(M") = 0. Therefore, M' and M" are in B. Conversely, if M’ and
M are in B, we have Q(M') = Q(M") = 0 and, by exactness, we have Q(M) = 0.
Hence, M is in B. It follows that B is a thick subcategory of A. (I

Let B be a thick subcategory of A. Let Si be the class of all morphisms
f: M — N in A such that ker f and coker f are in B.

2.2.5. LEMMA. The class Sg of morphisms in A is a localizing class.

Proor. Clearly, if A°PP is the opposite category of A, the full subcategory
of A°PP consisting of all objects in B is isomorphic to the opposite category of B,
therefore we can denote it by B°PP. Clearly, going from A to A°PP identifies Si
with Spopr. This allows to argue by duality.

Obviously, (LC1) holds for Sp.
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If s and t are in Sg and sot is defined, we see that ker(sot) = ¢~!(imtNker s),
i.e., we have the following exact sequence

0 — kert — ker(sot) — imt Nkers — 0.

By the definition of Sg, kers is in B. Since B is thick, by 2.2.3, it follows that
imt Nkers is in B. Applying 2.2.3 again, it follows that ker(s o t) is in B. By
duality, we conclude that coker(s ot) is in B. Therefore, s ot is in Sp, and (LC2)
holds for Sg.

Let f : M — N be a morphism in 4 and s : P — N a morphism in Sg.
Let p and ¢ be the natural projections of M & N onto the first and second factor.
Denote by i : M — M @& P and j : P — M & P, the canonical monomorphisms.
Then we can construct the diagram

‘| E

MT>N

where @ is the fiber product of M and P over N, i.e., the kernel of the morphism
fop—soq: M@®P — N. Let m: QQ — M & P be the canonical inclusion.

We claim that ¢ is in Sg. The morphism ¢ is induced by the restriction of p
to Q, i.e., t = pom. Therefore, the kernel of ¢ is the intersection of 0 & P with
ker(f op—soq). Clearly, this is equal to 0 @ ker s. Since B is thick and this object
is isomorphic to ker s, it is in B. It follows that kert is in Sj.

Let L =im(fop—sogq). Since f = (fop—soq)oiand s = (fop—soq)oj, we
see that im f C L and ims C L. Therefore, in the above diagram, we can replace
N by L, i.e., we can consider

Clearly, since B is thick and L C N, cokernel of the morphism s : P — L is in
Sp. Let r : M — cokert be the natural morphism. Then r ot = 0, i.e., we have
ropom = 0. This implies that rop factors through coker m, i.e., rop = r’o( fop—soq)
for some morphism r’. Moreover, since p and r are epimorphisms, 7’ has to be an
epimorphism onto cokert. By composing with j we see that

O=ropoj=r'o(fop—soq)oj=r'os,

i.e., kerr’ D ims. This implies that r’ factors through cokers. It follows that
cokert is a quotient of cokers. Since s is in Sz and B is thick, we conclude that
cokert is in B. Hence, ¢ is in Sp. Therefore, (LC3a) holds. By switching to the
opposite category, we see that (LC3b) holds too.

If to f =0 for some t € Sg, we have im f C kert. By the definition of S, kert
is in B. Since B is thick, im f is also in B. On the other hand, im f is isomorphic to
M/ ker f, and we see that M/ ker f is in B. Therefore, the inclusion s : ker f — M
isin Sg and fos=0.
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By duality, this implies that if f : M — N is a morphism such that fos=0
for some s € Sp, there exists ¢ in Sp such that ¢t o f = 0. Therefore (LC4’) holds
for Sp. O

Let B be a thick subcategory of A. Denote by Sz the localizing class constructed
in 2.2.5. Let M be in B. The morphism M — 0 has kernel equal to M and
cokernel 0. Therefore, this morphism is in S, and M is isomorphic to 0 in A[Sg"].
On the other hand, if M is isomorphic to 0 in A[Syz 1], the identity morphism on
M represented by the left roof

M
icy \’idj\w
M M

has to be equal to the zero morphism represented by the left roof

M
TN
M M
Therefore, there exists u : U — M such that the diagram
M

AN
~ u

M U M

XA

commutes and u € Sp. It follows that u is a zero morphism. Therefore, the cokernel
of uwis M, and M is in B.

Therefore, B is the thick subcategory of all objects in A that are isomorphic to
0 in A[S;"]. Hence, we will denote A[Sz'] by A/B and call it the quotient category
of A with respect to the thick subcategory B.

2.2.6. PROPOSITION. Let A be an abelian category and let B and C be two thick
subcategories of A. Then
(i) the full subcategory BNC is a thick subcategory of A.
(ii) The natural functor B/(BNC) — A/C is fully faithful.

Proor. (i) Follows immediately from the definition.

By (i), C N B is a thick subcategory of B too.

Clearly, any morphism in B which is in S¢ is also in Spnc. Therefore, the
natural functor from B into A/C factors through the functor i : B/(BNC) — A/C.

Let M and N be two objects in B and ¢ : M — N a morphism in B/(BNC).
Then it can be represented by a left roof

L
AN
M N
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where L is also in B, s : L — M is a morphism in Sgnc and f: L — N is a
morphism in B. If i(¢) = 0, by 2.1.6, there exists a morphism ¢ : K — L in Se
such that fot = 0. This implies that cokert is in BNC and im¢ is in B. Therefore,
the natural morphism w : im¢ — L is in Sgne. Since f ou = 0, by recalling
2.1.6 again, we see that ¢ = 0. Hence, the homomorphism Homp/znc)(M, N) —
Hom 4/¢ (M, N) is injective.

Consider now morphism ¢ : M — N in A/C. Then it can be represented by

a left roof
L
LN
M N

where L is in A, s is in S¢ and f : L — N is a morphism in A. Let K be the
quotient of L by ker s Nker f and let ¢ : L — K be the quotient morphism. Then
there exist t : K — M and g : K — N such that s =toqg and f = gogq. This
implies that the diagram

L
M L N
t g
K
commutes. Since ¢ is an epimorphism, im¢ = ims and cokert = cokers. In

addition, kert is a quotient of ker s. Hence, ¢ is also in S¢. It follows that we can
replace the left roof representing v with the left roof

K
AN
M N
Hence, from the beginning, we can assume that kers Nker f = 0. Let 7 :
M — M®N and j : N — M & N be the canonical monomorphisms. Then,
tos+jof:L— M® N is a monomorphism. Hence, L is in B in this case. It

follows that the left roof above determines a morphism in B/(BNC).
O

Therefore, we can identify B/(B N C) with a full subcategory of A/C.

3. Appendix: Additive and Abelian Categories

3.1. Additive categories. Let A be a category such that Hom (M, N) is
an abelian group for any two objects M and N in A. In addition, for any three
objects M, N and P in A, the composition map (f, g) — gof from Hom 4 (M, N) x
Hom 4(N, P) — Hom 4 (M, P) is biadditive.

Let M and N be two elements in A. The product M x N of M and N is the
object M x N with morphisms p: M x N — M and ¢ : M x N — N with the
following universal property. For any pair of morphisms f: P — M, g: P — N
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there exists a unique morphism h : P — M x N such that f = poh and g = qoh,
i.e., such that the diagram

commutes.
Let M and N be two objects in A and M x N their product. Then we can
consider the diagrams

and

M ~ M \>/< N - N
which imply the existence of unique morphisms ¢ : M — M x N and j: N —
M x N such that
poi=idy, qoi=0
and
poj=0, qoj=r1idyn.
Define the morphism ¢ =iop+ joq from M x N into itself. Then we have
po¢=poiop+tpojoqg=p
and
qop=gqoiop+qojoq=gq.
Therefore, we have a commutative diagram

M x N
¢ idpx N

M -~ M x N — N
which, by uniqueness of the vertical arrow, implies that ¢ = idp;x -
3.1.1. LEMmMA. We have
iop+joq=idyxn-

Let @ be an object in A, and a : M — @ and b: N — @ two morphisms.
Then we can define the morphism ¢: M x N — @ by

c=aop+bog.
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We clearly have

coi=aopoi+bogoi=a
and

coj=aopoj+bogoj=hb,
i.e., the diagram

M—s MxN< N

N7

commutes. Assume that d : M x N — @ is another morphism which makes the
above diagram commutative. Then, by 3.1.1, we have
d=do(iop+joq)=doiop+dojog=aopobog=c,

hence d = ¢ and this morphism is unique.

Therefore, M x N is also a coproduct of M and N.

The category A is called additive if any two objects in A have a product and
there exists an object 0 called zero such that Hom 4(0, M) = Hom 4 (M, 0) for any
object M in A.

3.2. Abelian Categories. Let A be an additive category. Let f: M — N
be a morphism in 4. The morphism &k : K — M is a kernel of f if fok =0, and
for any g : P — M such that fog = 0, there exist a unique morphism h : P — K
such that g = k o h, i.e., the following diagram

\
h
v f

KT>M*>N

commutes. Clearly, a kernel of the morphism f is determined up to an isomorphism.

3.2.1. LEMMA. Let k: K — M be a kernel of f : M — N. Then k is a
monomorphism.

PrROOF. Let g and h be two morphisms of P into K such that ¢ = kog = koh.
Clearly, fo¢ = fokog=0. Hence, the morphism ¢ has a unique factorization
through K, i.e., g = h. O

Dually, we say that ¢ : N — C is a cokernel of f if co f = 0, and for any
g : N — P such that g o f = 0, there exist a unique morphism h : C' — P such
that ¢ = h o ¢, i.e., the following diagram

P
/ A
g
h
M *f> N —— C
commutes.

3.2.2. LEMMA. Let C : N — C be a cokernel of f : M — N. Then c is a
epimorphism.
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PROOF. Let g and h be two morphisms of C into P such that ¢ = goc = hoc.
Clearly, o f = goco f = 0. Hence, the morphism 1 has a unique factorization
through C, i.e., g = h. (]

Assume that A is an additive category where any morphism has a kernel and
a cokernel.

3.2.3. LEMMA. Let f: M — N be a morphism.
(i) The morphism f is a monomorphism if and only if 0 — M is a kernel

of f.
(ii) The morphism f is an epimorphism if and only if N — 0 is a cokernel

of f.

PrOOF. (i) Assume that f is a monomorphism. Let h : P — M be a mor-
phism such that foh = 0. Then, foh = f o0 and since f is a monomorphism,
h = 0. Therefore, h factors through 0, and this factorization is clearly unique. It
follows that 0 — M is a kernel of f.

Let 0 — M be a kernel of f. Consider the morphisms g and h form P into M
such that fog= foh. Then fo(g—h)=0, and g — h factors through the kernel
0 of f. Hence, g — h =0 and g = h. It follows that f is a monomorphism.

(ii) Let h : N — P be a morphism such that ho f = 0. Then, ho f =00 f
and since f is an epimorphism, h = 0. Therefore, h factors through 0, and this
factorization is clearly unique. It follows that N — 0 is a cokernel of f.

Let N — 0 be a cokernel of f. Consider the morphisms g and h form N into P
such that go f = ho f. Then (9—h)o f =0, and g — h factors through the cokernel
0 of f. Hence, g — h =0 and g = h. It follows that f is an epimorphism. O

Assume that the morphism f : M — N has a kernel £k : K — M and
cokernel ¢ : N — C. Then, by 3.2.1 and 3.2.2, k is a monomorphism and c is an
epimorphism. Let i : M — I be the cokernel of k : K — M. Since fok = 0, the
morphism f factors through I, i.e., there exists a unique morphism « : I — N such
that f = ¢ oi. On the other hand, 0 = co f = coaoi. Since ¢ is an epimorphism,
this implies that co a = 0, and « factors through a kernel j : J — N of ¢, i.e.,
there exists a unique morphism g : I — J such that « = j o 8. This in turn
implies that

f=aoi=jopoi.
This factorization

K-t o n_c
ia

C
A ]
j
J

>

I
B

is called the canonical factorization of f.

An additive category A is called abelian if any morphism in 4 has a kernel and
a cokernel, and in the canonical factorization of any morphism f, the morphism
B : 1 — J is an isomorphism.






CHAPTER 2

Triangulated Categories

1. Triangulated categories

1.1. Definition of triangulated categories. Let C be an additive category.
Let T': C — C be an additive functor which is an automorphism of the category C.
We call T the translation functor on C. If X is an object of C, we use the notation
T™(X) = X[n] for any n € Z.

A triangle in C is a diagram

X—Y —Z7Z—TX).

We are going to represent a triangle schematically as

AN

X—Y

A morphism of triangles is a commutative diagram

X Y z T(X)
ST I I
X' Y’ z T(X')

A morphism of triangles is an isomorphism of triangles if u, v and w are isomor-
phisms.

The category C is a triangulated category if it is equipped with a family of
triangles called distinguished triangles, which satisfy the following properties:

(TR1.a) Any triangle isomorphic to a distinguished triangle is a distinguished tri-

angle.
0
% \
idx

(TR1.b) For any object X in C,
X—X

is a distinguished triangle.

49
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(TR1.c)

(TR2)

(TR3)

(TR4)

2. TRIANGULATED CATEGORIES

For any morphism f: X — Y in C, there exists a distinguished triangle

Z
% \
x— 1 .y
Z
h g
i)

f

X——Y

The triangle

is distinguished if and only if the triangle

T(X)
=T(f) h
1]
Y g A

is distinguished.

Let
X Y Z T(X)
1 Jro
X’ Y’ A T(X")

be a diagram where the rows are distinguished triangles and the first
square is commutative. Then there exists a morphism w : Z — Z’ such
that the diagram

X Y Z T(X)
S I R
X' Y’ z T(X')

is a morphism of distinguished triangles.
Let f, g and h = g o f be morphisms in C. Then the diagram

x 1oy 2,z T(X)
lT(idx)

Y’ T(X)

|
7| | idz | K&

. ¢ T(Y)
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where the rows are distinguished triangles can be completed to the dia-

gram
x Jtoy 2,z T(X)
idxl gl lu lT(idX)
X sz by T(X)
7| idz | | |
y 24— 7z S X' T(Y)

l bl idx,l JT(‘”
Pty s X 2 T(Z)

where all four rows are distinguished triangles and the vertical arrows are
morphisms of triangles.

The second property is called the turning of triangles axiom, and the fourth
property is called the octahedral axiom. To see the connection consider the octahe-
dral diagram

v/

where the original diagram consist of three distinguished triangles over three mor-
phisms f, g and h which form a commutative triangle. This diagram can be com-
pleted by adding the dotted distinguished triangle which completes the octahedron.
The other sides containing dotted arrows are commutative and define morphisms
between pairs of original distinguished triangles. In particular, the square diagrams
connecting Y on the bottom to Y’ on the top through Z and Z’, and Y’ on the top
to T(Y) on the bottom through 7'(X) and X’ commute.

Let C and D be two triangulated categories. An additive functor ¥ : C — D
is called graded if
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(FT1) T o F is isomorphic to FoT.
If F:C — D is a graded functor and let  be the isomorphism of F o T into

ToF. If
VA
h g
(1]
f

X— =Y
is a triangle in C, by applying F' to it, we get a diagram

F(f) F(g) F(h)

F(X) F(Y)

F(Z) .
nxoF(h) F(g)
(1]
F(X) — L F(Y)
We say that F' maps the first triangle into the second one.
If we have a morphism of triangles

F(2) F(T(X)) —— T(F(X))

i.e., we get a triangle

X Y Z T(X)
S N
X' Y’ Z T(X')

by applying F' we get the commutative diagram
F(X) —— F(Y) —— F(Z) —— F(T(X)) 2 T(F(X))
P | F | P | | Feren | e
FX) —— FY') — F(Z) —— FT(X') —— T(F(X")

Nx!

and by collapsing the last two rectangles into one, we get a morphism of triangles.
Clearly, if the original morphism is an isomorphism of triangles, so is the latter one.

Let C and D be two triangulated categories. A graded functor F': C — D is
called ezact if

(FT2) F maps distinguished triangles into distinguished triangles.

Let C and D be two triangulated categories. Let F' and G be two exact functors
between C and D. A morphism w : FF — G of functors is a graded morphism if the
diagram

F(T(X)) = T(F(X))

(
wT(X)l lT(wx)

G(T(X)) —— T(G(X))

nG,x
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commutes for any X in C. In this case for any distinguished triangle

Z

(1]
X—Y

we get a commutative diagram

Nnr,x

F(X) — FY) —— F(Z) —— F(T(X)) —— T(F(X))

wxl le JWZ le(X) lT(wX)

GX) — GY) — G(Z2) —— G(T(X)) —— T(G(X))

ne,x

and by collapsing the last two rectangles into one, we get a morphism of triangles.
Since F' and G are exact functors, this morphism is a morphism of distinguished
triangles.

1.2. The opposite triangulated category. Let C be a triangulated cate-
gory. Let C°PP be the opposite category. We define the translation functor on C°PP
as the inverse of the translation functor X — T'(X) on C. If

A
h g
(1
f

X———Y

is a distinguished triangle in C, we declare

X
T (h) f
(1]
g9

J———Y
to be a distinguished triangle in CPP.
1.2.1. PROPOSITION. The category C°PP is a triangulated category.

We call C°PP the opposite triangulated category of C.
First we need a simple fact.

1.2.2. LEMMA. Let
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be a distinguished triangle in C. Then

is a distinguished triangle in C.
PRrROOF. Clearly,

x 1oy 2,7 T(X)

idxl —ider idzJ/ J{idT(X)

X Y Z T(X)
—f -9 h
is an isomorphism of triangles. Since the top row is a distinguished triangle, the
bottom row is also a distinguished triangle. (I

Now we can check the axioms of triangulated categories for CPP.
Let X be an object in C. Then we have the distinguished triangle

0
% \
idx

X—X

in C. By turning this triangle, we get distinguished triangle

X
idx
(1]
X
0
% \
idx

X—X

0

in C. This implies that

is a distinguished triangle in C°PP.
Let f : X — Y be a morphism in C°PP. Then f :Y — X is a morphism in
C. There exists a distinguished triangle

Z
h g
i
y— 1 o
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in C. By turning this triangle we get the distinguished triangle

X
g f
1]
) -7~ (h) v

T2

T-(2)
T (g) —T7'(h)
1]
! Y

X
is a distinguished triangle in C°PP. Therefore, (TR1) holds for C°PP.

Let
Z
h g
(1]
f

X——Y

in C. Hence,

be a triangle in C°PP. It is a distinguished triangle if and only if

X
(h) f
(1]
g

T
A

Y

is a distinguished triangle in C. Therefore, it is distinguished if and only if the

turned triangle
Y
! g
(1]
_1 —h
T (X)) ————— =7

is a distinguished triangle in C. On the other hand, this is a distinguished triangle

if and only if
T-1(X)
ij/ N
(1]
Y 5 Z
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is a distinguished triangle in C°PP. By 1.2.2 and (TR2), it follows that this triangle
is distinguished if and only if

T1(X)
Ty \
(1
Y d Z
is distinguished in C°PP. This establishes (TR2).
Let

X/ / V' 9 VA h 71 (X/)
a diagram in C°PP where the rows are distinguished triangles and the first square is
commutative. Then it gives the diagram

z 4y L, x T(Z)
z' ' X/ T(Z')
g’ £ T(h')

with rows which are distinguished triangles and the commutative middle square in
C. By turning these triangles we get the diagram

f T(h) —T(9)

Y X T(Z) T(Y)

vT Tu T(U)T

Y X/ T(Z") —— T(Y")
f! T(h') —T(g)

with rows which are distinguished triangles and the commutative first square in C.
By (TR3), there exists a morphism w : Z' — Z such that

y Lo x T iy 19 iy

UT Tu T(w)T T(U)T

Y’ X' T(Z) — T(Y")
# (k') —T(g")

is a morphism of triangles in C. This immediately implies that

x 1y 45z I r(x)

1 e
x Ly L M ey
is a morphism of triangles in C°PP. This establishes (TR3) for C°FP.
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Finally, let h = go f in C°PP. Consider the diagram

X J oy 7z T rx)

idxl ql lidq-—l(;()
X sz bty 5 7X)
fl idzl lT’l(f)
y — 257 S5 x —L 7YY)

where the rows are distinguished triangles and the squares in the first column
commute. This leads to the diagram

X 7z 9,y IO, px
ol

y bz o x T iy
gl mxl

7 oy L x TU pgn

in C where the rows are distinguished triangles and the squares in the middle column
commute. By turning the rows we get the diagram

z 4y O, pxy 1Y p(z)
idzJ( fl idr(z)
z 'y x T pyy 1Y iz
gi idxl T(g)
y L x P9 pizy 1Y iy

where the rows are distinguished triangles and the squares in the first column
commute. By (TR4), this diagram can be completed to an octahedral diagram

s x 9L pyy ZEO (g
deJV lT(v) lT(g)
y Lo x T2 iy XY 1y

T(t)l T(s)l lidT(Z') lTQ(t)

s 1z M T



58 2. TRIANGULATED CATEGORIES

in C. By turning the last row three times we get the distinguished triangle

X' Y’
and, by 1.2.2, the distinguished triangle
ZI
—w "
(1]
X' = Y’
in C. This implies that
Z Y

is a distinguished triangle in C°PP. Hence, our original diagram completes to the
octahedral diagram

X Ty sz T, 7X)

b e

Y’ ° T-1(X)

y —2 < X T-1(Y)
aJ/ b lidxz lT’l(a)
VA v Y/ u X/ T (w) T—l(Z/)

in C°PP. This establishes (TR4) and completes the proof of 1.2.1.

1.3. Cohomological functors. Clearly, a distinguished triangle

Z
h g
i)
x— 1 .y

y 257

leads to an infinite diagram

T '(h) f

X
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1.3.1. LEMMA. Let

h g
(1]

f

X Y

be a distinguished triangle. Then the composition of any two consecutive morphisms
in the triangle is equal to 0, i.e.

gof=hog=T(f)oh=0.

ProOF. By (TR2) it is enough to prove that we have g o f = 0. Consider the
diagram

X >, x 0 T(X)
idxl fl lT(z‘dX) .
x -ty 2,27 T(X)

By (TR1) the rows in this diagram are distinguished triangles. By (TR3) there
exists a morphism v : 0 — Z which completes the above diagram to the diagram

X X, x 0 T(X)
idXJ( fl ul lT(z’dx)
x 1oy 2,7 T(X)

which is a morphism of triangles. Since u must be the zero morphism, from the
commutativity of the middle square we conclude that g o f = 0. (]

Let C be a triangulated category and A an abelian category. Let F : C — A
be an additive functor. For any distinguished triangle

Z

(1]

we have
F(g)oF(f)=0

by 1.3.1. Moreover, the above long sequence of morphisms leads to the following
complex

-1
F(T™"(h) F(f) F(h)

F(X) Fy) 29 p(z) F(T(x)) 229D

of objects in A.
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An additive functor F' : C — A is a cohomological functor if for any distin-
guished triangle

7z
h g
]
X ! Y
we haVe an exact sequence
Fx) 29 pryy £Y pz)

in A. Therefore, the above complex is exact.

1.4. Basic properties of triangulated categories. The results of this sec-
tion do not depend on the octahedral axiom (TR4).
Let f : X — Y be a morphism. Then, for any object U in C, it induces
a morphism f, : Home(U, X) — Home(U,Y) given by f.(¢) = fo¢; and f* :
Home(Y,U) — Home (X, U) given by f*(¢) = o f.
Let
A

h g
(1]

X ! Y

be a distinguished triangle and U an object in C. Then f, g and h induce morphisms
in the following infinite sequences of abelian groups

-+ Home(U, X) L% Home (U, Y) 2 Home (U, Z) 2 Home (U, T(X)) 2925

and

P9 Home (T(X), U) ™5 Home (2, U) L5 Home(Y, U) L5 Home (X, U) = . ..

The next result says that these are long exact sequences of abelian groups.

1.4.1. PROPOSITION. Let U be an object in C. Then

(i) The functor X — Home (U, X) from C into the category of abelian groups
s a cohomological functor.

(ii) The functor X —— Home(X,U) from C°PP into the category of abelian
groups is a cohomological functor.

PROOF. Clearly, it is enough to prove (i). Hence, it is enough to prove that
im f, = ker g.. We know that im f, C ker g,.

Assume that v : U — Y is such that g.(u) = 0, i.e., gou = 0. Then we can
consider the diagram
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where the middle square commutes and the rows are distinguished triangles. By
turning both triangles we get the diagram

U 0 T(U) 4 7(U)
o o |
Yy % .z T(x) =29 7(y)
which we complete by (TR3) to a morphism of distinguished triangles
U 0 TU) =4 7(U)
ul ol lT(v) lT(u)
Yy % .z 7(x) =29 7(v)
By turning these triangles back, we get the morphism of distinguished triangles
LR 5y 0 T(U)
S
x 1oy 2,7 T(X)

Hence, we constructed v : U — X such that u = fov = f.(v). It follows that
u € im f,. Hence, ker g, C im f,, and ker g, = im f,. O

1.4.2. LEMMA. Let

X Y Z T(X)
S I B
X’ Y’ 7z T(X')

be a morphism of two distinguished triangles. If two of morphisms u, v and w are
isomorphisms, the third one is also an isomorphism.

ProOF. By turning the triangles we can assume that v and v are isomorphisms.
By 1.4.1, we have the following commutative diagram

Hom(Z', X) — Hom(Z',Y) — Hom(Z',Z) — Hom(Z',T(X)) — Hom(Z',T(Y))

u*l ’U*l w*l lT(u)* J{T(v)*
Hom(Z', X') - Hom(Z',Y') - Hom(Z',Z') —Hom(Z',T(X’')) —Hom(Z',T(Y"))

where both rows are exact and all vertical arrows are isomorphisms, except possibly
the middle one. By five lemma, the middle arrow is also an isomorphism. Therefore,
there exists a : Z' — Z such that w(a) = woa =1idy.

Analogously, by 1.4.1, we have the following commutative diagram

Hom(T(Y"), Z) — Hom(T(X"),Z) —Hom(Z', Z) — Hom(Y’,Z) — Hom(X', Z)

I

Hom(T(Y),Z) — Hom(T(X),Z) — Hom(Z,Z) — Hom(Y,Z) — Hom(X,Z)
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where both rows are exact and all vertical arrows are isomorphisms, except possibly
the middle one. By five lemma, the middle arrow is also an isomorphism. Therefore,
there exists b: Z' — Z such that w*(b) = bow = idz. It follows that

b=bo(woa)=(bow)oa=a.

Hence, w is an isomorphism. O

Therefore, in the morphism

x 1y z T(X)
idx l idyl wl lT(idx)
x 1y A T(X)

of two distinguished triangles based on f : X — Y, the morphism w : Z — Z’
is an isomorphism. It follows that the third vertex in a distinguished triangle is
determined up to an isomorphism. We call it a cone of f.

AN

be a distinguished triangle in D. If two of its vertices are isomorphic to 0, the third
one is isomorphic to 0.

1.4.3. LEMMA. Let

X Y

ProOOF. By turning the triangle, we can assume that it is equal to

X
%\
0——0

i.e., X is a cone of the isomorphism id : 0 — 0. By (TR1b), this cone is isomorphic
to 0. O

AN

X——Y

1.4.4. LEMMA. Let

be a distinguished triangle. Then the following statements are equivalent:

(i) f is an isomorphism;

(ii) Z =0.
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PRrROOF. Consider the following morphism of distinguished triangles

X X, x 0 T(X)
idXJ/ fl J/ lT(idX) .
X ——=Y Z T(X)

If Z = 0, the first and the third vertical arrow are isomorphisms, therefore by 1.4.2,
f+X — Y is an isomorphism.

Conversely, if f : X — Y is an isomorphism, then first two vertical arrows are
isomorphisms, and by the same result the third vertical arrow is an isomorphism,
ie, Z=0. (]

The following result is a refinement of (TR3).

1.4.5. PROPOSITION. Let

A
h g
(1]
X ! Y
and
Z/
R’ q
(1l
X’ s Y
be two distinguished triangles andv : Y — Y'. Then we have the following diagram
xJtoy 2oz " opx)
u v w T(u)
\ \ \
X —Y —7 >T(X')
f g h

and the following statements are equivalent:
(i) ¢ ovo f=0;
(ii) there exists u such the the first square in the diagram is commutative;
(iii) there exists w such that the second square in the diagram is commutative;
(iv) there exist u and w such that the diagram is a morphism of triangles.

If these conditions are satisfied and Hom(X, Z'[—1]) = 0, the morphism u in (ii)
(resp. w in (iil)) is unique.

PRrROOF. By 1.4.1, we have the following exact sequence
Hom(X, Z'[~1]) — Hom(X, X") 1= Hom(X,Y") L% Hom(X, Z')

Therefore, if ¢’ (vo f) =g ovof =0,vof = [, (u) = fouforsomeu: X — X'.
Therefore, (i) implies (ii).
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Moreover, if Hom(X, Z'[—1]) = 0, the morphism w is unique.
Conversely, if (ii) holds,
govof=gofou=0
by 1.3.1, and (i) holds.
Analogously, by 1.4.1, we have the following exact sequence
Hom(X[1], Z') — Hom(Z, Z') L Hom(Y, Z') 1 Hom(X, 2')

Therefore, if f*(¢’ ov) = ¢’ ovo f = 0, there exists w : Z — Z’ such that
g*(w) =wog=g ow,ie., (iii) holds.
Moreover, if Hom(X[1], Z’) = Hom(X, Z’[—1]) = 0, the morphism w is unique.
Conversely, if (iii) holds,
govof=wogof=0
by 1.3.1, and (i) holds.
Finally, (ii) implies (iv) by (TR3). O

1.4.6. COROLLARY. Let

h g
]
X / Y

be a distinguished triangle such that Hom(X, Z[—1]) = 0. Then:

(i) If
Z/
A\
(1l
I

X——Y

is another distinguished triangle based on f : X — Y, there exists a
unique isomorphism u : Z — Z' such that the diagram

x 1oy 2,7 "X

idxl idyJ{ Jru lidT(x)

x J oy L,z M, rx)

is an isomorphism of triangles.

(i) If
Z
1
f

X—Y

is another distinguished triangle, h' is equal to h.
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PROOF. (i) Counsider the diagram

!

X y 24— 2z T(X)
idxl idyJ{ J/ZdT(X)
X J oy 2,z M,

where the first rectangle commutes. By (TR3) we can complete it to a morphism
of distinguished triangles

f h

X y 2 z T(X)
idxl myl lu iidﬂx.)
x J oy Ly M px

By 1.4.2, w is an isomorphism. This, together with Hom(X, Z[—1]) = 0, implies
that Hom(X, Z’[—1]) = 0. Hence, by 1.4.5, the morphism w is unique.
(ii) Consider the diagram

Xx Joy 2,z "X
idyJ/
x Loy 2z "X

The identity morphism idx : X — X satisfies the condition (ii) in 1.4.5. Also, the
identity morphism idz : Z — Z satisfies the condition (iii) in 1.4.5. Therefore, by
1.4.5, we have a morphism of triangles

f

X y —2— Zz T(X)

ul idyl er lT(u)

x oy 2z Mrx
By the uniqueness part in 1.4.5, we must have u = idx and w = idz. Therefore
h="n. |

1.4.7. LEMMA. Let

7z
h g
1]
X ! Y

and

—>Y



66 2. TRIANGULATED CATEGORIES

be two distinguished triangles. Then

VA
h@h' gdg’
[1]
XoXx 191 Yoy

1s a distinguished triangle.

Proor. By (TR1) there exists a distinguished triangle

U
/ \
fer

XX —— YoV

based on f @ f’. Moreover, if p: X® X' — X andq: Y @Y’ — Y are canonical
projections, we have the diagram

xox 29 yay U T(X ® X')
T Jro
X — Y Z T(X)
f g h
Which by (TR3) we can complete to a morphism of distinguished triangles
xox 1 yay U T(X ® X)
L
X — Y Z T(X)
f g h

Analogously, if p’ : X® X' — X’ and ¢’ : Y ®Y’' — Y’ are canonical projections,
we get a morphism

xox 1 yay U T(X ® X')
p’l q'l lu’ lT(p')
X sy 7 T(X')

f/ g/ h/

of distinguished triangles.
Let ¢ : U — Z & Z' be the morphism determined by u and u’. Then we have
the commutative diagram

xox Y. vey — U —— T(X®X)
idX@X'J( idy@y’l lﬂp J{idT(XGBX')

XX ——Y®Y —— ZoZ —— T(XpX')
fer 9Dg’ heh’
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Let V be in C. The above diagram implies that the diagram

Hom(V, X X') —2—» Hom(V,X & X')
(feaf’)*l l(f@f’)*

Hom(V,Y &Y") —< Hom(V,Y &Y’

l l(gEBg')*
Hom(V, U) — & Hom(V,Z® Z')
| o
Hom(V,T(X & X)) —2— Hom(V,T(X & X'))
T(f@f’)*l lT (fef)

Hom(V,T(Y @ Y")) 4, Hom(V,T(Y & Y"))

l l

is commutative. Since the first column comes from morphisms into a distinguished
triangle, it is exact by 1.4.1. By the same result, we also have the long exact
sequences

) T(f)«

L5 Hom(V, Y) 25 Hom(V, Z) 5 Hom(V, T(X)) —22 ...

and

L5 Hom(V,Y") &5 Hom(V, 7') 2 Hom(V, T(X")) V0=

The direct sum of the last two long exact sequences is the long exact sequence
appearing in the second column of the above diagram. By the five lemma we see
that ¢, : Hom(V,U) — Hom(V,Z & Z') is an isomorphism. Analogously, by



68

2. TRIANGULATED CATEGORIES

considering the morphisms of the diagram into V', we get the commutative diagram

l

Hom(T(Y @ Y’),V)
T(f@f')*l
Hom(T(X & X'),V)
(h@h/)*l
Hom(Z & Z',V)
(géBg')*l
Hom(Y @Y’ V)
(f@f')*l
Hom(X @ X', V)

l

— " Hom(T(Y ®Y"),V)
lT(féBf’)*
— %, Hom(T(X & X"),V)

l

—~ Hom(U, V)

l

“_,  Hom(Y &Y', V)

—
l(f®f’)*
—“ 5 Hom(X & X',V)

|

As above, using 1.4.1, we conclude that this diagram has exact columns and by the
five lemma we see that ¢* : Hom(Z @ Z', V) — Hom(U, V) is an isomorphism for
arbitrary V in C. Therefore, there exist « : Z®Z — U and §: Z® Z' — U
such that a o p = @, () = idzgz, and p o 8 = p*(B) = idy. Moreover,
a=ao(pof)=(acp)of=4

and ¢ : U — Z ® Z' is an isomorphism. O

1.4.8. COROLLARY. Let i : X — X @Y be the natural inclusion and p :
X @Y — Y the natural projection. Then

Y
0 p
(1

X— = XpY

0
% \
X" x

is a distinguished triangle.

Proor. Clearly,



1. TRIANGULATED CATEGORIES 69

and

(1]
v idy
are distinguished triangles by (TR1). By (TR2),

Y
idy
(1]

0——Y

Y

is also a distinguished triangle. The sum of the first and third distinguished triangle
is a distinguished triangle by 1.4.7. (]

This result has the following converse.

Y
0 v
1]
X - Z

be a distinguished triangle in C. Then there exists an isomorphism ¢ : XY — Z
such that the diagram

1.4.9. COROLLARY. Let

0

X > Xy L5 v T(X)

idxl LPJ{ lidy J{idT(X)

X —— Z Y —— T(X)

is an isomorphism of triangles.
In particular, the composition s of the canonical morphism j: Y — X @Y
and p: X @Y — Z satisfies vos =idy.

ProoOF. By turning the commutative diagram
0

X —s Xey 2y T(X)

idXJ, lidy J,idT(X)
X "5 z sy —2 s T(X)
and using (TR2) and (TR3), we see that there exists ¢ : X @ Y — Z such that
the diagram

0

X —— Xy —2-5 v T(X)

idxl «pl lidy J/idT(X)

X "5 z sy —2 s T(X)
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is a morphism of triangles. By 1.4.2, ¢ is an isomorphism.
Moreover,
vos=vopoj=poj=idy.

O

In other words, a cone of a zero morphism of X into Y is isomorphic to X @Y.

1.5. Monomorphisms and epimorphisms in triangulated categories.
Let C be a triangulated category and X and Y two objectsin C. Let i : X — XY
be the canonical inclusion and p : X &Y — X the canonical projection. Then we
have poi = idx. Hence, if i o & = 0 for some morphism «, we have

a=poioa=0;
and ¢ is a monomorphism. Analogously, if o p = 0 for some morphism (3, we have
B=pPopoi=0;

and p is an epimorphism. We claim that these are essentially the only monomor-
phisms and epimorphisms in a triangulated category.

1.5.1. PROPOSITION. (i) Let f + X — Y be a monomorphism in C.
Then there exist an object Z in C and an isomorphism ¢ : X & Z — Y
such that f is the composition of the natural inclusion i : X — X & Z
with .
(ii) Let f : X — Y be an epimorphism in C. Then there exist an object Z in
C and an isomorphism ¥ : X — Y & Z such that f is the composition of
1 with the natural projectionp:Y & Z — Y.

Proor. (i) Let f: X — Y be a monomorphism in C. Let

Z

(1]

X Y

!

be a distinguished triagle based on f. Then, by 1.3.1, we have f o h[—1] = 0. Since
f is a monomorphism this implies that h[—1] = 0 and h = 0. By 1.4.8 we conclude
that there exists an isomorphism of distinguished triangles

0

X ‘s Xez Lz T(X)

idxl @l lidz lidT(x) .

X —— v Z —— T(X)

This clearly implies (i).
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(ii) Let f: X — Y be an epimorphism in C. Let

be a distinguished triagle based on f. Then, by 1.3.1, we have go f = 0. Since
f is an epimorphism this implies that ¢ = 0. By turning this triangle we get the
distinguished triangle

Y
0 f
(1

By 1.4.8 we conclude that there exists an isomorphism of distinguished triangles

Ul-1 —— vl-1]ey —2—5 vy

idy[-1) l vl lidy lidu

U-1] —— X Y U
—h[-1] f 0
If we put Z = U[—1] and ) = v~ !, the statement (ii) follows. O

1.6. Localization of triangulated categories. Let C be a triangulated cat-
egory. A localizing class S in C is compatible with triangulation if it satisfies

(LT1) For any morphism s, s € S if and only if T'(s) € S.
(LT2) The diagram

X Y zZ T(X)
sl tl lT(s)
X' Ve z T(X')

where rows are distinguished triangles, the first square is commutative
and s,t € S can be completed to a morphism of triangles

X Y Z T(X)

TP R A

X' Y’ A T(X")
where p € S.

Let C be a triangulated category and S a localizing class in C compatible with
the triangulation. Let Q : C — C[S™!] be the quotient functor. Then, for any
s€5,(QoT)(s) = Q(T(s)) is an isomorphism. Therefore, the functor QoT factors
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through C[S™1], i.e., we have the following commutative diagram of functors

c T, ¢

o| |e

Cls~) —— Cl57]

Ts

It is clear that T is an automorphism of the category C[S~1]. In the following, by
abuse of notation, we denote it simply by 7.

A triangle
Z
% \

X—Y

in C[S™1] is distinguished if there exists a distinguished triangle

AN

U V
in C and an isomorphism of triangles
U V w T(U)
T N
X Y Z T(X)

in C[S71].

1.6.1. THEOREM. Let C be a triangulated category and S a localizing class in C
compatible with the triangulation. The category C[S™1] is triangulated. The natural
functor Q : C — C[S™Y] is ezact.

PROOF. First we prove that C[S~!] is triangulated.
Let f : X — Y be a morphism in C[S™!]. Then f can be represented by a

roof
U
N
X Y

where s € S. Since C is a triangulated category, there exists a distinguished triangle

V

%\
Y

g9

U
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based on g : U — Y. Consider the diagram

Q(9) Q(v) Q(w)

U Y v T(U)
Qw{[ myl lmv lT@X$)
X % v T(X)

7 Q) T(Q())oQ(w)

This is clearly an isomorphism of triangles in C[S™1]. Therefore,

zYQsDQ:>/// \\\if

X4>Y

is a distinguished triangle in C[S~!] based on f : X — Y. Hence (TR1) is satisfied.
(TR2) follows immediately from the definition of distinguished triangles in
C[S™1].
To prove (TR3) we can assume that both distinguished triangles came from
distinguished triangles in C, i.e., that in the commutative diagram

X Q(f) % Q(9) 7 Q(h) T(X)

wl wl lT(so)

X' Y’ Z' T(X")
Qf") Q(g") Q(R)

the rows are distinguished triangles in C[S~!] and the first square commutes.
The morphisms ¢ and 1 can be represented by roofs

U
X X’
Vv
AN
Y Y’

respectively; i.e., we have the diagram

x I vy

NTS ~Tt

U |4

o &

X — Y

and
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Consider now the morphisms fos: U — Y and ¢t : V — Y. Since S is a
localizing class, they can be completed to a commutative diagram

a

U ——V

St
U —Y

fos

in C. On the other hand, we have the commutative diagram

and the top and bottom roof are equivalent. Therefore, we can represent ¢ with

the roof
U/
SV “t’
X X'

and the analogue of the above diagram now looks like

x 1 v

sot/TN NTt

a

U —— V

wl ]

X/TY/

where fosot’ = aot, i.e., the top square commutes in C. By relabeling the objects
and the morphisms we can assume that we had

x 1 vy

]~ ~|e

a

U —V

o |»

X’T>Y’

at the beginning and that the top square is commutative in C.
We have o = Q(u) o Q(s)™1, ¥ = Q(v) o Q(t)~!. Since the first square in the

original diagram is commutative, we have

Yo Q(f) =Q(f) o,
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ie.,

This leads to
Q) o Q)™ o Q(f) 0 Q(s) = Q(f") o Q(u).
On the other hand, the commutativity of the top square implies that Q(f)oQ(s) =
QU o) = Q(t o a) = Q(t) 0 Q(a), and we gt
Q) o Q(a) = Q(f') o Q(u),

i.e., the lower square commutes in C[S™1]. This implies that there exists r : U"” —
U, r € S, such that the following diagram commutes

U
e
U U// Y/

i.e., the top and bottom roofs are equivalent. In particular, we have
voaor= fouor.

Since the diagram

U
X /j"\ X’
sor iid%
U//

is commutative in C, i.e., y is also represented by the roof

Ul/
2N
X X’
and we can replace the above diagram with

x I vy

SOTTN NTt

aor

U//

X’T>Y’

where both squares commute in C.
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By relabeling objects and morphisms again, we can assume that we had

x 1 v

STN ~}

U —2- Vv

ul lu

X —Y
ﬂ

from the beginning and that both squares in the diagram are commutative in C.

AN

U———V
be a distinguished triangle in C based on a : U — V. Then our diagram can be
considered as a part of a bigger diagram

f h

X y 24— 2z T(X)
]~ |~ ~Jre
v 2> v w T(U) ,
. /| |7
X' Y’ z' T(X")
s g w

where rows are distinguished triangles in C. By (LT2), there exists p : W — Z,
p € S, which completes the top of this diagram to a morphism of distinguished
triangles in C. By (TR3), there exists w : W — Z’ which completes the bottom
of this diagram to a morphism of distinguished triangles in C. Therefore, we have

the diagram

f h

X y 24— 7 T(X)
R
U —2— Vv W T(U)
I N
f g v TED

where all squares are commutative. Let x : Z — Z’ be a morphism represented

by the roof
/ X

z z,
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then the above diagram can be interpreted as a morphism

x QU y QW 5 a0 g

I CR

X' Vgl 7z T(X')
QU Q") Q)

of distinguished triangles in C[S~!]. This establishes (TR3).
It remains to show that the octahedral axiom (TR4) is satisfied. Let ¢ : X —
Y be the morphism represented by the roof

U
N
X Y

and ¥ : Y — Z be the morphism represented by the roof

Vv
/ X
Y Z .
Then their composition is represented by

s N
U Vv
X Y Z
i.e., by the roof

w
SV w/
X zZ .
From the commutative diagram
U
SN
~ s ~
X Y
X
sos’ fos’

w
w



78 2. TRIANGULATED CATEGORIES

we see that the top roof is equivalent to the bottom roof, i.e., ¢ is represented by

a roof
w
SV Y/
X Y .
Hence, after relabeling of objects and morphisms we can assume that

(i) ¢ : X — Y is represented by

U
N
X Y ;

(ii) ¥ : Y — Z be the morphism represented by the roof

v
N

Y Z
(iii) x =¥ o : X — Z is represented by

2 Q
U v
N AN
X Y 7
U
N
X Z .

We put h = go f’ and W = Z. Since C is a triangulated category we can construct
an octahedral diagram determined by morphisms f’, g and h; i.e.,

i.e., by

v v W' —— T(U)

idUl gl lu lT(idw

h Vi —— T(U)

U w
pl ] v [
Vv 2w

U —— T(V)

Lol l

w2V 2 U s T(W)
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in C. The image of this octahedron in C[S™!] is clearly the diagram of the same

type.
Now we consider the starting part of the octahedral diagram

X ‘v z' T(X)
idx | v| |
X X5z Y’ T(X)
wl deJV lT(“")
vy Y 7 X' T(Y)
in C[S™1]. Its top part
L z' T(X)
idxl wl lidT(X)
X Z Y’ T(X)
X
we can expand to a diagram
X 25y Z —— T(X)

Q(tﬁ TT(Q(S))
Q)

[
U
idul Q(g)l l@(u') lidTw)
U W
|

Q(s)

Q)
Q idwl lT(cxs))
7z

(s)
X

X

where the top and bottom squares in the first row commute in C[S™!] by our
construction. The middle row is the morphism of distinguished triangles coming
from the above octahedron. Since we already proved that (TR3) holds in C[S™!],
we can complete the top and bottom row with morphisms o« : W/ — Z’ and
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B: V' — Y’ to the diagram
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X Y 7' —— T(X)
Q(s) Q(tﬁ Ta TT(Q(S))
v 2Y, W —— T(U)
idUl Q(g)l lQ(U,) JridT(U)
U W Vi — s T(U)

Q)
Q(s)l idWJ{ l@ lT(Q(s))
X z Y — 5 T(X)

X

in C[S™!] where all three rows are morphisms of distinguished triangles. As we

remarked, 1.4.2 doesn’t depend on the octahedral axiom, hence we can apply it to

above diagram and conclude that o and 3 are isomorphisms in C[S™1].
Analogously, we expand the middle part

X 25z Y’ T(X)
el itz | |7
Y —— 7 X’ T(Y)
of the above diagram to
X 25z Y’ T(X)
o) i [ [r@e
v 2, w v/ T(U)
an| Jowr  |rw)
o w U’ T(V)
Q(t)l Miwl lT(Q(t))
Y Z X' T(Y)
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As in the preceding argument, there exists v : X’ — U’ which completes this
diagram to

X 25 7z Y’ T(X)
o | ia] E [r@en
v 2", w 1% ()

o | i | | ew |
Vo W U’ (V)
av| | | | @
Y —— Z X’ T(Y)

and 7y is an isomorphism.
Define now

u=BoQ)oa™l, v=70QW)ef" and w=T(a)oQ)or",
Then the commutative diagram

Q(u")

W' 1% U’ T(W')
ST U
7 —— Y —— X' —— T(Z)

shows that the second row is a distinguished triangle in C[S™!]. Finally, we can put
all of this together and get the octahedral diagram

X 5y zZ' T(X)
idx ) u T(idx)
X X5 z Y’ T(X)
» idy v T(e)
vy —Y 7 X' T(Y)
idyr
Z' Y’ X’ T(Z")
u v w

in C[S™!]. This proves (TR4) in C[S™!]. Hence, C[S™!] is a triangulated category.
From the definition of distinguished triangles in C[S™!] it is clear that @ is an
exact functor. O

1.6.2. THEOREM. Let C and D be two triangulated categories and F : C — D
an ezxact functor. Let S be a localizing class in C compatible with the triangulation
such that s € S implies F(s) is an isomorphism in D. Then there exists a unique
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functor Fg : C[S™Y] — D such that the diagram

C
Qi r
ClS™'——=D
Fs

of functors commutes. The functor Fs : C[S™1] — D is exact.

PRrROOF. The existence of an additive functor Fis such that F' = Fs o @ follows
from 2.1.2 in Ch.1. We have to prove that Fg is exact.
First, we have

ToFsoQ=ToF and FgoToQQ=FsoQoT=FoT,

ie., ToFgo@ and FgsoT o @ are isomorphic. Let 1 be the isomorphism of F o T
into T o F. Then, for any object X in C, nx : (FoT)(X) — (T o F)(X) is an
isomorphism. Moreover, for any morphism f: X — Y in C, the diagram

(FoT)(x) DY, (por)(v)

(T o F)(X) LB (76 7))

commutes. Since the objects in C[S~!] are the same as in C, for any object X we
have the isomorphism nx : (FsoT)(X) — (T'0 Fs)(X). Moreover, if ¢ : X — Y
is a morphism in C[S~!] represented by a left roof

U
SN
X Y ;

(To F)(s) onu = nx o (FoT)(s)

we have

and
(T o F)(g)onu =mny o (FoT)(g).
The first relation implies that
(T o Fs)(Q(s)) onu = nx o (Fs o T)(Q(s))
and
oo (FsoT)(Q(s)™h) = (To Fs)(Q(s)™!) onx

since Q(s) is an isomorphism. Therefore, we have
Ny o(FsoT)(p) = yo(FsoT)(Q(9)oQ(s)™") = nyo(FsoT)(Q(g))o(FsoT)(Q(s) ™)

= (ToFs)(Q(g)) oo (FsoT)(Q(s)™") = (T'o Fs)(Q(g)) o (T'o Fs)(Q(s)™") o mx
= (T o Fs)(Qg) 0 Q(s) ™) onx = (To Fs)(w) onx
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i.e., the diagram

(T o Fs)(X) =@ p o py(yv)

wx | [

(Fs o T)(X) 2222 (s o T)(Y)
commutes. Hence, 7 induces an isomorphism of 7' o Fis into Fig o T', which defines

the grading of the functor Fl.
4
% \
X Y

Let
be a distinguished triangle in C[S™!]. By definition, there exists a distinguished

triangle
w

U Vv
and an isomorphism of triangles
U v w T(U)
T A
X Y Z T(X)

in C[S~!]. By applying Fg to this commutative diagram and using the grading of
Fs, we get the commutative diagram

F(U) —— F(V) —— F(W) —— F(T(U)) —2— T(F(U))
Fs(@) | P ) | e | P | s
Fs(X) —— Fs(Y) —— Fs(Z) —— Fs(T(X)) —— T(Fs(X))
By collapsing the last two squares in one, we get an isomorphism of triangles
FU) —— FV) —— F(W) —— T(F(U))
Fs(@ | Ps(h) | | s | st
Fs(X) —— Fs(Y) —— Fs(Z) —— T(Fs(X))

in D. Since F' is exact, the top triangle is distinguished in D. This implies that the
bottom one is also distinguished. Hence, Fs is an exact functor. ([

Let C°PP be the opposite category of C. Let S be a localizing class in C. As
we remarked before, S is also a localizing class in C°PP. Moreover, we have an
isomorphism « : CPP[S™!] — C[S™1]°PP of corresponding categories. From its
construction, and 1.6.2, it follows that « is an additive functor. Therefore, we have
the following result.
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1.6.3. THEOREM. The functor a : C°PP[S™Y] — C[ST1]|°PP is an isomorphism
of triangulated categories.

We also have an analogous result about cohomological functors.

1.6.4. PROPOSITION. Let C be a triangulated category, A an abelian category
and F : C — A a cohomological functor. Let S be a localizing class in C compatible
with the triangulation such that s € S implies F(s) is an isomorphism in A. Then
there exists a unique functor Fs : C[S™'] — A such that the diagram

C
Qi -
ClS—1] —— A

of functors commutes. The functor Fs : C[S™'] — A is a cohomological functor.

PRrROOF. The existence of an additive functor Fg such that F' = Fg o Q) follows
from 2.1.2 in Ch.1. We have to prove that Fg is a cohomological functor.

Let
Z
% \

X—Y

be a distinguished triangle in C[S™!]. By definition, there exists a distinguished

triangle
W

U—V

in C and an isomorphism of triangles

U 1% W T(U)
l bl l lm)
X Y z T(X)

in C[S~1]. By applying Fs to the first part of this commutative diagram we get the
commutative diagram

FU) —— FV) —— F(W)
Fs(a)l Fs(b)l lFs(c)
Fs(X) —_— Fs(Y) e Fs(Z)

in A. Since F is a cohomological functor, the top row is exact in A. This implies
that the bottom one is also exact. Hence, Fig is an cohomological functor. [



1. TRIANGULATED CATEGORIES 85

1.7. Triangulated subcategories. Let C be a triangulated category. Let D
be a full subcategory of C such that
TS1) the zero object is in D;
) for any two objects X and Y in D, X @Y is also in D;
TS3) an object X in C is in D if and only if T'(X) is in D;
) for any two objects X and Y in D and a morphism f: X — Y there is
a Z in D such that

Z

is a distinguished triangle in C.

Then D is an additive category, Clearly, all triangles in D with vertices which are
objects in C define a triangulated structure in D, i.e., D is a triangulated category.
Moreover, the inclusion functor is exact. We say that D is a full triangulated
subcategory of C.

1.7.1. PROPOSITION. Let C be a category, S a localizing class of morphisms in
C compatible with triangulation and D a full triangulated subcategory of C. Assume
that the following conditions are satisfied:
(i) Sp = SN Mor(D) is a localizing class in D;
(ii) for each morphism s : Y — X with s € S and X € Ob(D), there exists
u:Z —Y such that sou € S and Z € Ob(D).

Then Sp is compatible with the triangulation of D, and D[S’Bl] is a full triangulated
subcategory in C[S™1].

Proor. Clearly, Sp is compatible with triangulation. Therefore, by 1.6.2 the
natural inclusion of D into C induces an exact functor ¢ from triangulated category
D[S, into C[S™!]. Clearly, ¢ is the identity on objects, and by 1.4.1 in Ch. 1, it
is also fully faithful. Therefore, D[S;'] is a full additive subcategory of C[S™!].

It remains to show that D is a full triangulated category. If

AN

X—Y

is a distinguished triangle in D[S5'], then it is also distinugished triangle in C[S™1],
since the inclusion is an exact functor. Conversely, if

VA
%\
X— Y

f
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is a distinguished triangle in C[S™!] with all vertices in D[S;'], there exists a
distinguished triangle

ZI
(1)
X Y
f
in D[S,']. Therefore, we have the diagram
x Ly Z T(X)
ide( idyl Jidﬂx?)
x Loy 7z T(X)
which can be completed to an isomorphism of triangles
x Ly Z T(X)
idxl idyl J lidT(m
x 1y A T(X)
in C[S™!] by 1.4.2. Since D[Sy'] is a full subcategory, this is an isomorphism of
triangles in D[S5']. Hence, the top triangle is distinguished in D[S5"]. O

By going to the opposite categories, we can also prove the dual result.

1.7.2. PROPOSITION. Let C be a category, S a localizing class of morphisms in
C compatible with triangulation and D a full triangulated subcategory of C. Assume
that the following conditions are satisfied:
(i) Sp = SN Mor(D) is a localizing class in D;
(ii) for each morphism s : X — Y with s € S and X € Ob(D), there exists
u:Y — Z such that uos € S and Z € Ob(D).

Then Sp is compatible with the triangulation of D, and ’D[Sgl] is a full triangulated
subcategory in C[S™1].

1.8. S-injective and S-projective objects. Let C be a triangulated cate-
gory and S a localizing class in C compatible with the triangulation. Let C[S™!]
be the localization of C with respect to S and @ : C — C[S™!] the corresponding
quotient functor.

We say that an object X in C is S-null, if Q(X) = 0.

An object I in C is called S-injective if Home (M, I) = 0 for any S-null object
M in C. We denote by Z the full subcategory of C consisting of S-injective objects.

An object P in C is called S-projective if Home (P, M) = 0 for any S-null object
M in C. We denote by P the full subcategory of C consisting of S-projective objects.

Clearly, both Z and P are strictly full.

Let C°PP be the triangulated category opposite to C. As we remarked before, S
is also a localizing class compatible with triangulation in C°PP. Moreover, by 2.1.7
in Ch. 1, an object X is S-null in C if and only if it is S-null in C°PP. It follows that
S-injective objects in C are S-projective in C°PP and vice versa. Therefore, we can
restrict ourselves to the study of S-injective objects.
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1.8.1. LEMMA. (i) The category T is a full triangulated subcategory of C;
(ii) The category P is a full triangulated subcategory of C.

PROOF. As we remarked, it is enough to show (i).
Clearly, 0 is in Z. Moreover, if I and J are in Z, we have
Home (M, I @ J) = Home (M, I) @ Home(X,J) =0

for any S-null object M in C. Therefore, I @ J is in Z. Hence, 7 is a full additive
subcategory of C.
Since @ is an exact functor, we have Q(T'(M)) = T(Q(M)), i.e,, QT (M)) =0
if and only if Q(M) = 0. Hence, M is S-null, if and only if T'(M) is S-null.
Let I be an S-injective object in C. Then we have
Home (M, T(I)) = Home(T~H(M),I) =0

for any S-null object M in C. Hence, it follows that T(I) is in Z. Analogously, we
see that T—1(I) is also in Z. Hence, Z is translation invariant.

Let
K
% \
] ——mm > J

be a distinguished triangle in C such that I and J are S-injective. Let M be an
S-null object in C. Since by 1.4.1, Home (M, —) is a cohomological functor form C
into the category of abelian groups, we conclude that Home (M, K) = 0. This in
turn implies that K is also S-injective.

Therefore, 7 is a full triangulated subcategory of C. O

Put Sz = SN Mor(Z) and Sp = S N Mor(P).

1.8.2. LEMMA. (i) Any morphism in St is an isomorphism.
(ii) Any morphism in Sp is an isomorphism.
PROOF. Again, it is enough to prove (i).
Let s : I — J be a morphism in Sz. Since Z is a full triangulated subcategory,
there exists a distinguished triangle

K

[————J

in C with K in Z. By applying the exact functor Q : C — C[S™!] to this distin-
guished triangle, we get the distinguished triangle

Q(K)
Q) ————> Q)
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in D. Since s is in S, Q(s) is an isomorphism and Q(K) = 0 by 1.4.4. Hence, K
is S-null. Since K is also S-injective, it follows that Home (K, K) =0 and K = 0.
Applying again 1.4.4, it follows that s is an isomorphism. O

By 1.3.1 in Ch. 1, this immediately implies that Sz is a localizing class in 7
and Sp is a localizing class in P. Moreover, they are compatible with translation.
Hence, we have the following result.

1.8.3. LEMMA. (i) The family Sz is a localizing class compatible with
translation in T.
(ii) The family Sp is a localizing class compatible with translation in P.

1.8.4. LEMMA. Let M and I be objects in C. Assume that I is S-injective. Let
s: I — M be a morphism in S. Then there is a morphism t : M — I such that
tos=1id;.

PROOF. We have a distinguished triangle

in C. Applying the exact functor @) on it we get the distinguished triangle

Q)
Q) ——————= QM)

in C[S™!]. Since Q(s) is an isomorphism, we see that Q(N) = 0, i.e., N is S-null.
By 1.4.1, applying the functor Home(—, I) to the above distinguished triangle, we
see that the morphism Home(M,I) — Home(I,1) given by f —— fos is an
isomorphism. Therefore, there exists a morphism ¢ : M —— I such that tos =
idg. (Il

By 1.7.2, the natural functor Z[S;'] — C[S™!] identifies Z[S;'] with a full
triangulated subcategory in C[S™1]. On the other hand, since morphisms in Sz are
isomorphisms, Z = Z[S; . Therefore, we can identify Z with a full triangulated
subcategory of C[S™1].

Analogously, we can identify P with a full triangulated subcategory of C[S™1].

Let C and D be two triangulated categories and FF:C — D and G: D — C
an adjoint pair of exact functors, i.e.,

Hom¢ (G(N), M) = Homp (N, F(M))
for any object M in C and N in D. Let S and T be two localizing classes compat-

ible with translation in C and D, respectively. Assume that the functor G maps
morphisms in 7" into S. Then we have the following result.

1.8.5. LEMMA. The functor F maps S-injective objects into T-injective objects.
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PROOF. Let I be an S-injective object in C. Let N be a T-null object in D.
Then, by 2.1.7 in Ch. 1, there exists an object N’ in D such that the zero mor-
phism N’ — N is in T. By our assumption, this implies that the zero morphism
G(N') — G(N) isin S. Applying 2.1.7 in Ch. 1 again, we see that G(N) is S-null.
Therefore, Home (G(N),I) = 0. This in turn implies that Homp(N, F(I)) = 0. Tt
follows that F'(I) is T-injective. O

An analogous result holds for S-projective objects.

1.9. Abelian and triangulated categories. Let A be an abelian category.
Let

0 — s X 1 v 9,7 4o

be a short exact sequence in A. We say that this short exact sequence splits if there
exists a morphism s : Z — Y such that g o s = idz. In this case, there exists
a natural morphism v : X & Z — Y such that the compositions of the natural
inclusions ix : X — X ® Z and iy : Z — X & Z with ~ are equal to f and s
respectively. Hence, the following diagram

0 X X, Xaoz 2z 0
idXJ/ ’yl lidz
0 X Y A 0
f g

with exact rows is commutative. By five lemma, v : X®Z — Y is an isomorphism.
An abelian category A is semisimple if any short exact sequence in A splits.
Let A be a semisimple abelian category. Let f : X — Y be a morphism in A.
Then, we have the short exact sequences

00— kerf — X — coim f — 0
and

00— imf—Y — coker f — 0
and the isomorphism f :coim f — im f such that f is the composition of X —
coim f followd by f and im f — Y. Since the above short exact sequence split,

we see that there exist the isomorphisms o : X — ker f @ coimf and 8: Y —
coker f @ im f such that the diagram

X e Y

‘| g

ker f @ coim f ———— coker f @ im f
o f

commutes.
Let C be a triangulated category. Assume that C is also abelian. We want to
describe the structure of such category. First, let

f

0 X y — 2.7 0

be a short exact sequence in C. Then g is an epimorphism, and by 1.5.1, there exist
an object U in C and an isomorphism ¢ : Y — Z ® U such that g is a composition
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of ¢ with the natural projection p: Z & U — Z. Let s be the composition of the
natural inclusion i : Z — Z @ U with the inverse of ¥. Then we have

gos=goy loi=pooyploi=idy

and the above short exact sequence splits. Therefore, it follows that C is a semisim-
ple abelian category.
Let f: X — Y be a morphism in C. By the above discussion,

f=p"o(f@0)ca.
On the other hand, by 1.4.8
T(ker f) @ coker f

N

ker f coker f

is a distinguished triangle; and by 1.4.4

AN

coim f —> im f

is a distinguished triangle. Therefore, by 1.4.7,
T(ker f) @ coker f ,

td7 (ker £) D0

ker f & coim f — coker f & im f

[ oo
idcoker f 0 ’

is a distinguished triangle. By (TR3) and 1.4.2, follows that the comutative diagram

where

X — Y

| d

ker f @ coim f ——— coker f @ im f
0 f
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leads to an isomorphism v : Z — T'(ker f) @ coker f such that «, § and ~ define
an isomorphism of a distinguished triangle

VA
h g
(1
X—Y
f

based on f with the distinguished triangle

T(ker f) @ coker f

7 (ker 1) B0

ker f & coim f — coker f & im f

It follows that any distinguished triangle based on f is isomorphic to

T'(ker f) @ coker f

AN

where g is the composition of the natural projection Y — coker f with the natural
inclusion coker f — T'(ker f) @ coker f, and h is the composition of the natural
projection T'(ker f) @ coker f — T'(ker f) with the natural inclusion T'(ker f) —
T(X).

On the other hand, let C be a semisimple abelian category with an automor-
phism T'. We consider a collection of triangles

A
h g9
(1
X— Y
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in C which are isomorphic to the triangles of the form

TU)esW
idr () S0 t
(1]
UV wov

0idy

[ o 0
Z.dcoker f 0

We claim that this collection of triangles defines a structure of a triangulated cate-
gory on C. From the above discussion it is clear that the axiom (TR1) is satisfied.
If we turn the above triangle, we get the triangle

T(U) & T(V)
—(0®idr(vy) idruyeo
[1]
TU)e W

with

WeV -
and since the diagram
t idy ) @0 —(0®idr(vy)
WeV —— TU)eoW ———— TU)pT(V) ———— T(W)aT(V)

al ZdT(U)QBldWJV J/b lT(a)

VOW —— s T0) oW —— TV)oT(U) ———0 T(V)aT(W)

idp vy D0
with
[0 0 [0 —idy [0 idr
u_L‘dT(w 0]’ G_L‘dw 0} and b_[idnw 0

is commutative, this triangle is also distinguished. From this we can immediately
deduce that (TR2) holds.



CHAPTER 3

Derived Categories

1. Category of complexes

1.1. Complexes. Let A be an additive category. A graded A-object is a family
X = (X";n € Z) of objects of A. The object X" is called the homogeneous
component of degree n of X".

Let X" and Y~ be two graded A-objects and n € Z. We denote by Hom? (X", Y")
the set of all graded morphisms of degree p, i.e., the set of all families f = (f™;n € Z)
with f* € Hom(X", V"+P).

A complex of A-objects is a pair (X', dx) consisting of a graded A-object X~
and a graded morphism dx € Hom' (X', X") such that dx odx = 0. The morphism
dx is called the differential of the complex. We can view the complex as a diagram

m—1
an
L— X X X Xy Xt

If (X',dx) and (Y, dy) are two complexes of A-objects, a morphism of complezes

f:(X,dx) — (Y,dy) is a graded morphism f € Hom®(X",Y") such that
fodx =dyof;

i.e., the diagram

! dy

L — X! X"

fn—IJ/ fﬂl Jrfnﬁ»l

—1 n
dy dy

YTL

Ynfl

commutes.

The category of complezes of A-objects is the category C'(A) with complexes of
A-objects as objects and morphisms of complexes as morphisms.

Let X* and Y~ be two complexes of A-objects. We denote by Home(4)(X",Y")
the abelian group of all morphisms of X" into Y.

We define a translation functor T : C(A) — C(A) as the functor which
attaches to a complex X the complex T'(X ") such that

T(X)" = X" and dip ) = —di!
for any n € Z; and to any morphism f : X' — Y of complexes the morphism
T(f) : T(X') — T(Y") given by T(f)" = f**! for any n € Z. Clearly, T is
an automorphism of the category C(A). Often we are going to use the notation
TP(X') = X [p], where X [p] is the complex X shifted to the left p times.
The complex
=0 —0—...

is the zero object in C'(A).

93
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Also, for any two complexes X  and Y we define the complex X @ Y where
(XY )P =XPaYP and dg(@y =dyody : XPoYP — XPTL g YPH! for all
p € 7Z. We call X' @Y the direct sum of complexes X and Y.

Clearly, we have the natural morphisms ix : X' — X @Y, iy : ¥ —
XY, px: X @Y — X and py : X @Y — Y which satisfy

px oix =tidx, pyoiy =titdy and ixopx +iyopy =idxey-
Therefore, we have the following result.
1.1.1. LEMMA. The category C(A) is an additive category.
Define an additive functor C' : A — C(A) by

X ifp=0,

d dexy =0
0 iftpAo;, ¢ 000

C(X)P = {
for any object X in A, and

[ ifp=0,

C(f)p{o if p 0

for any morphism f: X — Y in A.
1.1.2. LEMMA. The functor C : A — C(A) is fully faithful.

Hence A is isomorphic to the full subcategory of C(A) consisting of complexes
X" with X? =0 for p # 0.

We say that a complex X' is bounded from below (resp. bounded from above)
if there exists ng € Z such that X™ = 0 for n < ng (resp. X" = 0 for n > ny).
The complex X' is bounded if it is bounded from above and below. We denote
by C~(A) (resp. C*(A) and C?(A)) the full subcategories of C(.A) consisting of
bounded from above complexes (resp. bounded from below complexes and bounded
complexes). Obviously all these subcategories are invariant for the action of the
translation functor. Also, they are additive.

In the following we are going to use the shorthand C*(A) for any of the above
categories.

1.2. Opposite categories. Let A be an additive category and A°PP its op-
posite category. Denote by C(A) and C(A°PP) the corresponding categories of
complexes.

For any complex X' in C(A) we define by (X ") the complex in C'(A°P) in the
following way: (X )P = X P for all p € Z; and the differential df(x) (X —
1(X )P+ s given by d;(ZFl Xl s X~ PforallpeZ.

A morphism f : X — Y defines the family of morphisms ¢(f)? = f~7 :
Y P — X P in A°PP for p € Z. Moreover, we have

&gy ot = fPod ™ =dyP o fTPT = u(fPH o d

oY)
for all p € Z; i.e., «(f) is a morphism of ¢«(Y") into ¢(X ") in C(A°PP).
Therefore, we can interpret ¢ as an additive functor from the opposite category
C(A)°PP of C'(A) into C(A°PP). Clearly, ¢ : C(A)PP — C(APP) is an isomorphism
of categories. Evidently, the functor ¢ induces also isomorphisms of C*(A)%PP —

C~(A°PP), C~ (A)°PP —s CF(A%PP) and Cb(A)PP — CO(APP).
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By abuse of notation, we denote by T the translation functors on C'(A) and

C(A°PP). For an object X in C'(A), we have
T(X)P = uX)PH = X777 =T7HX )P = (T(X )P
and
p+l p—2
iy = ~die) = ~dX" = dri = dire )
for all p € Z; i.e., we have T(¢(X")) = «(T~1(X")). Let f : X' — Y~ be a morphism
in C(A). Then
TP =Pt =2t =T )P =uT ()
for all p € Z; i.e., we have T(u(f)) = «(T~1(f)). Therefore, we have
Tovr=10T !

1.3. Homotopies. Let f : X' — Y be a morphism in C(A). Then f is
homotopic to zero if there exists h € Hom™' (X", Y") such that

f=dyoh+hody.

We call h the homotopy.
Let Ht(X",Y") be the set of all morphisms in Home 4y (X", Y") which are ho-

motopic to zero.
1.3.1. LEMMA. The subset Ht(X",Y") is a subgroup of Home 4y (X', Y").

PROOF. Clearly, the zero morphism is in Ht(X",Y"). Assume that f,g €
Ht(X,Y"). Then there exist homotopies h and k such that f = dy oh+ hodx
and g = dy ok + k odx. This implies that

f+g=dyo(h+k)+ (h+k)odx,
i.e.,, f+ g is homotopic to zero. Therefore, Ht(X ,Y") is closed under addition.

Moreover, —f = dy o (—h) + (—h) odx, so —f is homotopic to zero. This implies
that Ht(X ,Y") is a subgroup. O

We say that the morphisms f: X° — Y and g : X' — Y are homotopic
if f—ge Ht(X,Y") and denote f ~ g. Clearly, ~ is an equivalence relation on
HomC(A) (X', Y)

1.3.2. LEMMA. Let X', Y and Z  be three complexes of A-objects and f :
X — Y and g : Y — Z two morphisms of complexes. If either f or g is
homotopic to zero, g o f is homotopic to zero.

PrOOF. Assume that f is homotopic to zero. Then there exists a homotopy
h € Hom (X", Y") such that f = dy o h + h o dx. This implies that

gof=godyoh+gohodx =dzogoh+gohodx
where goh € Hom™ (X", Z"). Therefore, goh is a homotopy which establishes that
g o f is homotopic to zero.

Assume that g is homotopic to zero. Then there exists a homotopy k €

Hom (Y, Z") such that g = dz o k + k o dy. This implies that
gof=dzokof+kodyof=dzokof+kofodx

where ko f € Homfl(X', Z"). Therefore, k o f is a homotopy which establishes

that g o f is homotopic to zero. ]
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Let X and Y~ be two complexes of A-objects. Put
HomK(A) ()('7 Y) = HomC(A) (AX'7 YA)/Ht(X', Y)

This is an abelian group of classes of homotopic morphisms between X" and Y.

Let X', Y and Z be three complexes of A-objects. By the above lemma, the
composition map (g, f) = g o f from Homeg(4)(Y",Z") x Home(a)(X',Y") into
Home(4)(X', Z°) induces a biadditive map Hompg 4y (Y™, Z") x Hom g (4)(X",Y")
into Hom g (4y(X", Z*) such that the following diagram commutes

HOHIC'(A)(Y',Z') X Homc(A)(X',Y') _— Homc(A)(X',Z')

! l

HOHIK(A)(Y',Z') X HOHIK(A)(X',Y') _— HOI’DK(_A)(X',Z')

Let K(A) be the category consisting of complexes of A objects as objects and
classes of homotopic morphisms as morphisms. We call this category the homotopic
category of complexes of A-objects and denote it by K (A).

The zero object in K(A) is the zero object in C'(A). Also, for any two com-
plexes in K(A) we define their direct sum as the direct sum in C(.A). Moreover,
the canonical inclusions and projections are just the homotopy classes of the cor-
responding morphisms in C'(A).

This immediately leads to the following result.

1.3.3. LEMMA. The category K(A) is an additive category.

1.3.4. LEMMA. Let f : X° — Y be a morphism of complexes. Then the
following statements are equivalent:

(i) f is homotopic to zero;
(ii) T'(f) is homotopic to zero.

PROOF. If f is homotopic to zero, there exist a homotopy h € Hom™ (X", Y")
such that f = dy o h + hodx. The homotopy h is given by a family of mor-
phisms h? : XP — YP~! Therefore, we can interpret it also as a morphism
k€ Hom™ Y(T(X"),T(Y")). In this case, we have

T(f)P = fp+1 _ d’;/ o hPtL L ppt2 o dz;rl — Pl o — kPt d’}

T(Y) (X)

for all p € Z, i.e., T(f) is homotopic to zero with the homotopy —k.
The proof of the converse is analogous. O

Therefore, the translation functor 7" induces an isomorphism of Hom g (4) (X", Y")
onto Hom g (4)(T(X"), T(Y")). It follows that T induces and automorphism of the
additive category K (A). By abuse of language and notation, we call it the transla-
tion functor and denote again by 7.

As before, we define the full subcategories K (A), K~ (A) and K°(A) of com-
plexes bounded from below, resp. complexes bounded from above and bounded
complexes.

Again, we are going to use the shorthand K*(A) for any of the above categories.

Clearly, all of these subcategories are additive and invariant under the transla-
tion functor.

Let H : C(A) — K(A) be the natural functor which is the identity on objects
and maps morphisms of complexes into their homotopy classes. This is clearly an
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additive functor which commutes with the translation functors. Moreover, we have
the additive functor K = Ho C': A — K(A).

1.3.5. LEMMA. The functor K : A — K(A) is fully faithful.

PrOOF. Let X and Y be two objects in A. Then K(X) and K(Y) are com-
plexes such that K(X)? = K(Y)? = 0 for all p # 0. Therefore any morphism
in Hom™'(K(X),K(Y)) must be 0. In particular, Ht(K(X),K(Y)) = 0 and
Homp () (K(X),K(Y)) = Homg(a)(K(X), K(Y)). The statement follows from
1.1.2. (I

Hence A is isomorphic to the full subcategory of K (.A) consisting of complexes
X with X? =0 for p # 0.

Let f: X° — Y be an element in Ht(X",Y"), ie., there is a homotopy
h:X — Y suchthat f=dy oh+hodx. Then h? : X? — YP~! and we can
interpret it as a morphism of Y?~! into X? in A°PP for any p € Z. Therefore, we
can view AP as a morphism from (Y )P into +(X")P for any p € Z. Hence, we
can define k € Hom ™ (+(Y"), (X ")) by k? = h=P*! for all p € Z. Clearly, we have

(P =P =dy o h TP P o d = kP o dfly) + i) o K

forallp € Z, i.e., «(f) = kod,(y)+d, x)ok. It follows that +(f) is in Ht(¢(Y "), ¢(X")).
Therefore, ¢ defines a bijection of Ht(X ", Y") onto Ht(¢(Y "), ¢(X")). Hence, ¢ induces
a functor from K (A)°PP into K(A°P) which is an isomorphism of categories. By
abuse of notation, we denote it also by ¢. Clearly, ¢ induces an isomorphisms
K+ (AP — K~ (A°PP), K~ (A)°PP — KT(A°PP) and Kb(A)°PP — Kb(A°PP).
Also, we have

Tor=10T7 1

1.4. Cohomology. Assume now that A is an abelian category. For p € Z
and any complex X in C(A) we define

HP(X') = ker d% [ im d% "

in A. If f: X° — Y is a morphism of complexes, f?(kerds) C kerd} and

fPimd% ") € imd? !, and f induces a morphism HP(f) : H?(X) — HP(Y").

Therefore, H? is a functor from the category C(A) into the category A. Clearly,

the functors H?, p € Z, are additive. they are called the cohomology functors.
Clearly,

HP(T(X')) = kerdf )/ imdfy ) = kerdi™ /im dfy = HPVH(X)
and HP(T(f)) = HP*1(f). Therefore,
HP =H o TP
for any p € Z, and it is enough to study the functor H° : C(A) — A.

1.4.1. LEMMA. Let f: X' — Y and g : X' — Y~ be two homotopic mor-
phisms of complexes. Then HP(f) = HP(g) for all p € Z.

PROOF. By the above remark it is enough to prove that H°(f) = H%(g). Let
h be the corresponding homotopy, then we have

fo—g®=dytoh® + o d.
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This implies that the restriction f© — g° to ker d% agrees with the morphism dy' o
hY. Therefore, the image of fO — g° : kerdy — Y© is contained in im d;,l. It
follows that f°—g" induces the zero morphism from ker d% into H(Y"). Therefore,
HO(f) — H°(g) = H(f —g) : H(X") — H°(Y") is the zero morphism. O

Therefore, the functors H? : C(A) — A induce functors H? : K(A) — A.
Clearly, these functors are additive. Moreover, they satisfy
HP =H o TP

for any p € Z.
The cohomology functors H? : K(A) — A can also be interpreted as func-

tors from K(A)°PP — A°PP. For any p € Z, HP(.(X")) is the cokernel of the

morphism im df ()(1.) — ker df (X) in A°PP. Therefore, it is the kernel of the mor-

phism coker d” (_Xl) — coimd’, (x)- In A, this can be interpreted as the cokernel of
imd;{p_1 — kerdy”, i.e., as H P(X"). Therefore, we have H?(1(X")) = H ?(X")
for all p € Z. Analogously, for any morphism f : X° — Y in K(A) we have
HP((f)) = HP(f) : HP(Y') — H P(X") for all p € Z. Therefore, it follows
that HP o = H~P for all p € Z.

1.5. Cone of a morphism. Let A4 be an additive category. Let f : X — Y~
be a morphism of complexes in C*(A). We define a graded object C'; by

Ct=X"t'eYy"
for all n € Z. Also, we define dgf O — C}”l by
W [=dEt 0
Cy — fnJrl d@
for any n € Z. Clearly, we have
dn+1 n_ _an+2 0 7d7)L(+1 0
Cy © Cy — fn+2 dr}L/Jrl fn+1 d’r{/
B d}+2d?{+1 0
- _fn+2dT)L(+1 + dT)L/+1fn+1 dg—ﬁ-ld?/
i.e., dc, is a differential and (C’J}, do, ) is a complex in C*(A). We call this complex
the cone of the morphism f.

Consider the graded morphism iy : Y" — ('} given by i} = iy» : Y" — C}
for all n € Z. Then we have

0 [—d¥T 0] 0 0] _ . "
cp Oty = {fn)il d’;:| L'dY"] = {d?/} :Zf+1 ody
forall n € Z, i.e., iy : Y' — C} is a morphism of complexes in C*(A).
Analogously, we consider the graded morphism py : C; — T(X") given by
P} =pxnt1 : CF — X! for all n € Z. Then we have

n - _dn+1 0 n n n
p?"rl OdCf = [Zan+2 O] |:fn)_~(_1 d?/:| = [—dX+1 O} - dT(X) Opf

for all n € Z, i.e., py : Cy — T(X") is a morphism of complexes in C*(A).
Clearly, from the construction we always have

=0,

pfO’if:O.
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Let f : X' — Y be a morphism in C(A). Then, we can consider the morphism
t(f): (Y) — +«(X"). The cone of this morphism is given by the graded object

iy =TeY ) @ uX ) =Y )" ouX )" =y "ex,
for all n € Z. For any n € Z, the differential of the cone is
n+1 e
7dbl(—;)1 0 _ |:_dY 2 01:|
L(f)n+ dZL(Y) f*’ﬂfl an

as a matrix from Y"1 @ X " into Y "2 @ X! in A°PP. It corresponds to
the morphism represented by the matrix

_d;n*Q f—n— 1
0 d)_(n_l

between Y ™" 2@ X" land Y " 1@ X " in A
On the other hand, the complex +(C_y) is given by

WCp) =0T =Xy

n —

Cupy

and its differential is given by
e —dy" 0
n _ n—1 _ X
dL(Cf) - dC’f - |:_f—n d$_1:|
for all n € Z. Therefore, the shifted complex ¢(C})[1] satisfies
(UCHI" =)™ = Ot = X" @ y =)

with the differential

dn _ _dn+1 _ _d7n72 _ d)_(n_l 0
(CeH[1] — W(Cy) Cy - f—n—l _d;n72

for all n € Z. Let s be a morphism of C,s) into t(C_y)[1] given by canonical
isomorphisms s" : Y"1 @ X" — X" @Y "1 for all n € Z, then the above
calculations shows that s : C, sy — +(C_f)[1] is an isomorphism.

Consider now the natural morphisms

S(X) () . Pucs) T((Y)).

The morphism 5y : ¢(X") — C’L'( P is given by the canonical monomorphisms
iy P UX) — L(Y)" ™ @ (X )™ for all n € Z. On the other hand, p_; :
C’;f — T(X") is given by the canonical morphisms Py Xt gynr — Xxntl
for p € Z. Therefore, t(p_f)" = p;" : X"t — X"l Y are the
canonical morphisms for all n € Z, representing ¢(p_s) : o«(T(X")) — (C_y).
Since «(T(X")) = T71(«(X")), by applying the translation functor we see that
t(p—g)[] - (X)) — (C_f)[1] is represented by the canonical morphisms X " —
X" @Y "L It follows that we have the commutative diagram

u(f)

(X)) C

«(f)

vo- ) ls
uC-p)[1]
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On the other hand, the morphism p,(s) : C; ;) — T(.(Y")) is given by the canonical
epimorphisms pj, : (Y )" @ (X)) — oY) for all n € Z. Moreover, i_j :
Y — C"_; is given by the canonical morphisms i” ; : Y™ — X"t pY™ forn € Z.
Therefore, ¢(i—f)" = i;™ X"l @Y " — Y " are the canonical morphisms
for all n € Z, representing t(i_¢) : t(C_y) — ¢(Y"). As in the above calculation,
by applying the translation functor, we see that ¢(i—f)[1] : t(C_¢)[1] — «(Y")[1] is
represented by the canonical morphisms X " @Y "~} — Y"1 for all n € Z.
It follows that the diagram

Pu(f)

C

o(f) T((Y"))

ls il
U(C-p)[1]
is commutative. From the above results we see that the following holds.

1.5.1. LEMMA. The morphism s : C,yy — (C_y)[1] is an isomorphism of
complezes.
Moreover, the following diagram

(XY —D o PO vy

o(f)
L(pm is All
U(C-p)[1]

s commutative.

Assume now that A is an abelian category. Then we have an exact sequence
of complexes

0 vy s o s T(X) —— 0.

1.5.2. LEMMA. Let f: X' — Y be a morphism of complezxes in C*(A). Then
the sequence

O’i 0
HO(v) 8 go(es) 2, po(xy

15 exact.
Proor. Consider C} = X' ®Y? and its subobject im d% @Y. Clearly, im da;
is a subobject of imd% @ Y°. Now consider the morphism

d% 0 ] |0 0] [d% O
0 idyo| fO ddyo| — |—=f° 0
from X% @ Y into imd% @ Y°. Clearly, it is equal to the morphism which is the

composition of

X0pyY? - Xay!

idxo 0]
0 0
with —d%f. Therefore, it induces a zero morphism of X° @ Y into the quotient of

(imd% @ Y°) by imdg;. It follows that

4% 0 0 0
[0 idyo] and {fo idyo]
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induce the same morphism of X% ® Y into (imd% & Y?)/im d(_;;. Hence,
0@ Y?) +imdg, = imdy &Y.
Therefore, we have
kerdg,, N (imdx @ Y°) = kerdg, N (0@ Y?) +imdg,) = (0@ kerdy,) + imdg;.
This in turn implies that the kernel of H%(py) is equal to the image of H(iy). O

1.6. Standard triangles. Let A be an additive category. Let f: X' — Y~
be a morphism in C*(A). Then the diagram

Cy
pf if
(1]
f

X Y.
is called the standard triangle in C*(A) atteched to f.

1.6.1. LEMMA. Let

X f vy

ul lv
X, — Y]
g
be a diagram in C*(A) which commutes up to homotopy. Then there exists a
morphism w : C’]'c — C such that the diagram

. f . g . .
X y- —1 0 —L (X))

I I R

X Y, — Cy T(X;)
g 1g Py

commutes up to homotopy.

If the first diagram commutes in C*(A), the second diagram commutes in
C*(A).

PROOF. By the assumption, vo f : X° — Y7 is homotopic to gou : X* — Y7.
Therefore, there exists a graded morphism h : X° — Y] of degree —1 such that

gou—wvof=dy,oh+hodx.
We define a graded morphism w : C'; — €y by
n umtt 0
w = |:—h"+1 U"}

for all n € Z. We have

B ot = —dx™t 0 [utt 0] —dH 0

Cy - gn+]1 d’r}L/l _hn+1 o™ gn+1un+1 _ d’r{}l hn+1 d%””

|: _un-‘er’r)L(Jrl 0 :| |: un+2 0 :| |:_d1’)7,(+1 0

_ wn+lodn
vn+1fn+1 4 hn+2d}+1 ,Un+1d§p/ _hn+2 vn+1 fn+1 d?/ Cy
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for all n € Z. Therefore, dc, ow = w o dc,, i.e., w is a morphism of complexes.
In addition, we have

w” o = U’n+1 0 0 _ 0 — " o™
T =nnt o lidyn |~ o] T 9

for all n € Z, i.e.,
WOoly =140V
and the second square in the diagram commutes.
Finally, we have

n+1
un—i—l Op}L — [un+1 0} — [ian,+1 0] |: u 0:| n n

_hn+1 o™ = p_q ocw
for all n € Z, i.e.,

UOPf =pgow
and the last square in the diagram commutes.

Finally, if the first diagram commutes, h = 0, and the statement follows as
above. (]

Let f: X' — Y be a morphism of complexes. Then we have the morphism
ir Y — C}. Let D} be the cone of iy. Then

D}l — Y’n-‘rl D C}I _ Yn-‘,—l o Xn+1 ey y"

for any n € Z and its differential is

" —qntt 0 0
n o __ _dY+1 0 _ 5/ _dn+1 0
Dy — i7}+1 chL*f - X

idynin  fUL O dp

Define a graded morphism o : T(X") — D} by

_fn+1
o = idX'rH»l
0
for any n € Z. Then
7d$+1 0 0 7fn+1 d¢+1fn+1
b, o = 0 —d% 0| lidxnn | = | —d¥T
idynsr  fPHL dy 0 0
fn+2an+1 fn—i—Q
= | —dx™ | == |—idxee | dYT = o™ o dy
0 0

forany n € Z, ie., a : T(X') — Dy is a morphism of complexes.
Also, define a graded morphism 8 : D}y — T(X") by
Br =10 idxni1 0]
for any n € Z. Then
—dit 0 0
dfxyoB" = [0 —dy™ 0] =[0 ddxne= O] | 0 —di™h 0 | =p" odp,
idyn+n  frT 0 dR

for any n € Z, ie., f: Dy — T(X") is a morphism of complexes.
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First, we have
_fn+1
ﬁn oa™ = [0 ian,+1 0] ian+1 = idX1L+1
0
for any n € Z, i.e., Boa =idp(x).
On the other hand, if we denote by h : D} — D} the graded morphism of
degree —1 given by
0 0 idyn
R =10 0 O
0 0 0

for any n € Z, we have

n—1in n+1 jn
de 'R+ R

—dy 0 0 1[0 0 ddy 0 idyt™ [=dy 0 0
=10 —d%¥ 0[]0 0 O0|+]0 0 0 —d¥t o0
idy- f* d¥'] [0 0 0 0 idynir  fPH 0 dp

0
0
0
_dg id?}?}-&-l fn+1 ] Zdn'H fn+1 0

0 0
=0 0 0 |+ 0 0 0
0 0 idyn 0 0  idyn
idyt™ 0 0 f”+1
= 0 ’ian+1 0 — 10 Zan+1 0 ZidD?—OénOﬂn,
0 0 idyn 0 0 0

for any n € Z, ie., ao 3 : Dy — Dy is homotopic to the identity morphism.
Therefore, we proved the following result.

1.6.2. LEMMA. The morphism o : T(X') — D} is an isomorphism in the
homotopic category of complexes.

This implies the following result.

1.6.3. LEMMA. The diagram
vy oo 2 rx) 4

idyl idc-fl la lidﬂy,)

v if Vor vig D T(Y)
f f

commutes up to homotopy.

PrOOF. Clearly, we have

_fn+1
pioa™ = [idynys 0 0] |idxnir | = —f"" = =T(f)"
' 0
for any n € Z. Hence, p;; o = —T(f) and the third square commutes.
On the other hand,
0 0
Broif = [0 ddxntr 0] |idxnss 0 | = [idxner 0] =pf

0 idyn
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for any n € Z. Hence, we have Boi;, = py. By 1.6.2, it follows that aopy = aofBoi;,
is homotopic to i;,. Therefore, the second square commutes up to homotopy.  [J

2. Homotopic category of complexes

2.1. Triangulated structure on the homotopic category of complexes.
Let A be an additive category. Denote by K*(A) the corresponding homotopic
category of complexes of objects in A. Let T be the corresponding translation

functor on K*(A).
7

We say that a triangle
X — =Y

in K*(A) is distinguished if it is isomorphic to the image of a standard triangle in
K*(A). The main goal of this section is to prove the following theorem.

2.1.1. THEOREM. The additive category K*(A) equipped with the translation
functor T and the class of distinguished triangles in K*(A) is a triangulated cate-

gory.

Clearly, the axioms (TR1.a) and (TR1.c) are satisfied. The next lemma implies
that (TR1.b) holds.

2.1.2. LEMMA. Let X be a complex of objects in A. Then the cone Ciq,. of
the identity morphism idx- on X is isomorphic to 0 in K*(A).

PRrROOF. Clearly, as a graded object
C'=Cy, =TX)® X"
Let h be a morphism of the graded object C" of degree —1 given by

w [0 idxn
=l )

for all n € Z. Then we have

g R+ R

_[mdx 0 1[0 idxe] 0 idxen —dxtt 0
~ lidx. d¥') 00 0 0 idxne  d%
Jo —dn]  fidxen d%] fidxess 0]
- {0 idxn] * [ 0 07| 0 idy) =0
for all n € Z. Hence, dch + hdc = idc- and ide- is homotopic to 0. Therefore,
C" =0in K*(A). O

Therefore, the diagram

idy-

X X 0 —— T(X)

idxi z‘dxl lo lidT(X‘)

x e x Cig, — T(X')
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is commutative in K*(A) and the vertical arrows are isomorphisms. Since the
bottom row is the image of a standard triangle, the top row is a distinguished
triangle. This completes the proof of (TR1).

Now we prove (TR2). Let

7
(1]

X Y

f

be a distinguished triangle in K*(A). By definition, there exists a standard triangle

such that its image in K*(.A) is isomorphic to the above distinguished triangle, i.e.,
we have an isomorphism of triangles!

X f v g 7
I I R

U v c, T(U)

a z‘

in K*(A). By 1.6.2 and 1.6.3, the image of the triangle

W)
—T(a) Pa
(1]
Vv - C,

is isomorphic to the image of a standard triangle in K*(A). Therefore, it is a
distinguished triangle in K*(A). It follows that

h =T(f)

y 2 7 T(X) —=% T(Y")

S L

v C; TU) — = TU)

LThe underlined symbols represent homotopy classes of the corresponding morphisms.



106 3. DERIVED CATEGORIES

is an isomorphism of triangles in K*(.A). Since the bottom triangle is distinguished,
the top one is also distinguished by (TR1.a). Therefore,

7(X)
=T(f) h
(1]
Y 5 Z
7(X)
=T(f) h
(1]
Y Z

is a distinguished triangle in K*(.A). By definition, there exists a standard triangle

7N

U——F—"7—=V

is a distinguished triangle.
Assume now that

such that its image in K*(.A) is isomorphic to the above distinguished triangle, i.e.,
we have an isomorphism of triangles

y 9z My opxy 29 pix
R
U——V — ¢ —— I(U)

in K*(A). Consider now the morphism T~2(a) : T-2(U) — T-2(V") and its
standard triangle

T=2(a)

py W)
As a graded object

sy =T (U T2 (V) = U™ 0 V2 = T2(C)
and its differential is

n+1 n—1
de = dT 2(U+)1 0 = [_dgl noz] = dal"*Z C:):
T—2(a) T ( )n d%*2(V') CLn dV ( a)
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Therefore, Cp_ () =T~ 2(C;) and

is a distinguished triangle in K*(A). By applying 72 to the above isomorphism
of triangles, we see that

T7HX")
=T (f) T=2(h)
(1]
(v T-2(Z
) ——= (2)
is a distinguished triangle. Therefore, the first part of the proof implies that

2(h

is a distinguished triangle. Applying this argument again and again, we see that

_ y \I(Q)

T=H(f)

A

=T~ 1(g

FAN

i
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and

(1l

X Y

are distinguished triangles in K*(A). Therefore, (TR2) holds.
Now we prove (T3). Let

X Y zZ T(X)
| | |
X; Yy Z; T(Xy)

be a diagram in K*(.A) such that its rows are distinguished triangles and the first
square commutes. Then there exist standard triangles

C

a

(1]

U. a V

&
% \
b

U, ——=WV;

and

such that their images in K*(.A) are isomorphic to the above distinguished triangles.
This implies that there exist morphisms of complexes v : U — U; and v : V' —
V] such that the image of the diagram

v —2- v c, T(U")
|l Jre
U; 1% c; T(U;)

in K*(A) is isomorphic to the above diagram. In particular, the first square com-
mutes up to homotopy. By 1.6.1, there exists a morphism of complexes w : C;, —
C, such that the diagram
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commutes up to homotopy. This implies that there exists a morphism 7= — Z;
which completes the diagram

X e z T(X")
I I | |
X; Yy Z; T(X3)

to a morphism of triangles in K*(A).
Now we prove (TR4). We first need a different characterization of distinguished
triangles in K*(A).

2.1.3. LEMMA. Let f: X' — Y be a morphism in K*(A) anda : X — Y~
a morphism of complexes which represents f. Then the following conditions are
equivalent:

(i) The triangle

18 distinguished.
(ii) There exists an isomorphism u : Z'° — C., such that the diagram

x L,y z T(X")
N
X e ¥V O T(X)

is an isomorphism of triangles.

PRrROOF. Clearly, (ii) implies (i).
The image of the standard triangle

C,
% \
X. a Y

is distinguished in K*(A). Therefore, we have the diagram

x -1 vy zZ T(X")
idX‘J( idy- l lidT(X')
X Y o T(X")

! P

where both rows are distinguished triangles and the first square commutes in
K*(A). Since we already established (TR3), it follows that this diagram can be
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completed to a morphism of triangles

x Ly z T(X")
idy. l idy- l l lidnxn
X e c, T(X")

! P

Moreover, since 1.4.2 in Ch. 2 doesn’t depend on the octahedral axiom, this mor-
phism must be an isomorphism. O

Let f: X — Y, g:Y — Z and h = g o f be three morphisms in K*(A).
Consider the diagram

x L,y Z; T(X")
wl Jore
X sz Yy T(X')
7| iz | |7
vy 2 7 X; T(Y")

where the rows are distinguished triangles and the squares in the first column
commute. By 2.1.3, there exist morphisms of complexes a : X° — Y~ and b :
Y — Z and ¢ = b o a which represent f, g and h respectively, such that the
triangles

Z

and
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are isomorphic to the images of the standard triangles

C

a

and

C;
% \

X — 7

111

respectively, and the isomorphisms are given by identity morphisms of X, Y and

7. Therefore, the above diagram is isomorphic to the image of the diagram

X —t sy ey o Py T(X)

a

idle bl lidT(x-)

X c VA ic C Pe T(_X)

o iy | |r@

vtz o 2 T(Y)

where the squares in the first column commute.

In the proof of 1.6.1, we established that the morphisms u : C;, — C; and

v:C, — C, given by

n [lidxnir 0 n a0
S0 T 0 idge

complete this diagram to a commutative diagram

X —4 5y ey o Py (X))

idx- b

—
—
IS
—

<.

U
hud
>

|
X c A e C: Pe T(X) .
al mzl l” lT(a)
Y 7

ip Cb Pov T(Y )
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2.1.4. LEMMA. The triangle

is distinguished in K*(A).

Proor. To establish this it is enough to complete the diagram

T (ia)ops

¢, —— C. —— G 7(C,)
wo,| e e
c, C; — Cy —— T(Ca)
U 2 Pu
to the diagram
C(,l u CC v Cb T(ia)ops T(Ca)

de,| e E e

o Ce —
u Ty Pu

which commutes up to homotopy and where w induces an isomorphism in K*(A).

This would imply that the image of the top row in K*(A) is a triangle isomorphic

to the image of a standard triangle in K*(.A), i.e., that it is a distinguished triangle.
As graded objects

Co=T(Y)®Z and C, =T(C,)oC., =T*(X)aTY e T(X)a 7,

with differentials

- [ 4]

Cy, — bn+1 erz
and
dit? 0 0 0
o = —dgtt 0] _ [—a"t? —dptt 0 0
Qo Lt dy | Jidxaer: 00 —diN 0
0 e

Hence, we can define a morphism of degree zero w : C;, — C;, by

0 0
n _ idyn+1 0
w' = 0 0 |7 €.

0 idgn
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0 0 0 0
it o gn — |idynee 0 —dy™t 0] _ [—dgtt 0
Co 0 0 vl 4y 0 0
0 idgnt1 | ot dy
dyt? 0 0 0[] o 0
_ et —aptt 0 0| |idyser 0 | _
idxn+e 0 —dx 0 0 0 Cu
0 prtl et gn 0 idgn
for every n € Z, i.e., w is a morphism of complexes.
Now, we have
0 0
Nt — idxn+e 0 0 0] |idyn+ 0 . 0 0
Pu 10 ddyess 0 O 0 0 |~ lids™ o
0 idgn
0 . o
N [idywl] lidyn+1 0] =T(ia)" o}

for every n € Z, i.e., the third square in above diagram commutes.

113

Now we want to prove that the middle square commutes up to homotopy. We

—idxn1

|

0
an+1

0

n—+1
de
Cn+1

0
_an-i-l

idxn+1

OO OO

0
dy

have
0 0 0 0
n o n_no_ idY7l+1 0 an+1 0 o 0 0
wrer Tk = g 0 0 idgn idxnii 0
0 idgn 0 idgn
0 0 0 0
et 0 0 0 |
0 0 id xn+1 0
O idZ7L O len
for all n € Z. Let h : C, — C;, be a graded morphism of degree —1 given by
idxnt1 0
n_ 0 0
h" = 0 0 ,n € Z.
0 0
Then we have
e R R,
dytt 0 0 0 idxnsr 0 idxniz 0
I e 0 0 0 0 n 0 0
idxnt1 0 —d% 0 0 0 0 0
0 oo dyt 0 0 0 0
dytt 0 —d%t 0
—a™tt 0 0 0
= lidger ol 7| 0 0
0 0 0 0

0

OO OO
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for every n € Z. Therefore,
dc,oh+hodc, =i, —wou,

i.e., wowv is homotopic to i,.
It remains to show that w : C;, — C., is an isomorphism in K*(A). We define
a graded morphism 6 : C;, — C} of degree 0 by the formula
o — 0 idyn,+1 a"+1 0
o 0 0 0 idZn

for all n € Z. Then we have

d?)l(+2 0 0 0
9n+1o n o 0 idynJrz an+2 0 _an+2 —d$+1 0 0
= 0 0 0 idzwr+1 ian+2 0 _d?(-‘rl 0
0 prtt L
o 0 7d§l/+1 7an+2d;L(+1 0 B 0 7d?,+1 7d§7,/+1an+1 0
~ o pntt cntl d’I’ZL 1o pntl pntlgn+l dTZL
bt dy] [0 0 0 idgn b

for all n € Z. Therefore, 6 : C;, — C; is a morphism of complexes.
Moreover, we have

0 0
0 idynt1 a™t! 0 idyn+1 0 idynt1 0 .

n n __ _ _ n

00w = [0 0 0 idyn 0 0| = 0 idg|
for all n € Z. Therefore, 6 o w = id¢,.
On the other hand, we have

0 0 0 0 0 0

W o " — idyn+1 0 0 ’idyn+1 a”‘“ 0 o 0 idyn+1 a”“ 0

a 0 0 0 0 0 ddgn| |0 0 0 0

O idzn O O O ZdTZL

for every n € Z. If we define a graded morphism x of C,, of degree —1 by

0 0 ddxnir O
. 1000 0 0
XZTloo o0 0
00 0 0
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for all n € Z, we have

dtt 0 0 0 0 0 idynsr O
n+1 mn

el m o omilom | —a —dy 0 0|00 0 0
do, oX"H+x"ede, = g 0 —dax o0 |loo o 0
0 oot dytjloo 0 0

0 0 ddxnt> O] [ d%? 0 0 0

400 0 o0 —a™*? —dytt 0 0

00 0  0f [idgat= 0 —d¥%' 0

00 0 0 0 prtt et gy
0 0 dyt 0 dem 0 —d¥tt 0 idxn+2 0 0 0
oo ant 0O 0 o _ | 0 0 —a" 0
— |00 denH 0 0 0 | 0 0 idgnts O
00 0 0 0 o 0 0 0

for all n € Z. Therefore,
dc,ox+xode, =idc, —wob.

Hence, w o 6 is homotopic to id¢,. This implies that w induces an isomorphism in

K*(A). O
Therefore,
Ly 2,0 —= T(X)
idxl gl lg JridT(X-)

h 7 i Cc b, T(X)

7| iz | |2 |

Y sz o B Ty

zal L;l lidcg lza

0 —to 0 — ¢ B ey

is an octahedral diagram in K*(.A). This clearly implies that (TR4) holds in K*(.A),
and completes the proof 2.1.1.

2.2. Opposite category of the homotopic category of complexes. Let
A be an additive category and A°PP its opposite category. Then, by the results of the
preceding section, the categories K (A) and K (A°PP) are triangulated categories.
Therefore, K(A)°PP has the structure of a triangulated category as the opposite
triangulated category of K(A). In this section we want to establish the following
result.

2.2.1. THEOREM. The functor v : K(A)°PP — K (APP) is an isomorphism of
triangulated categories.

PrROOF. We already established that ¢ is an isomorphism of additive categories
and that it commutes with the translation functors on K (A)°PP and K(A°PP). Tt
remains to show that it maps distinguished triangles onto distinguished triangles,
i.e., that ¢ is an exact functor.
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Let

h g
(1]
f

X Y

be a distinguished triangle in K(A)°P?. Then, by definition of the triangulated
structure on the opposite category

7

T(Z)

is a distinguished triangle in K (.A). Let a be a representative of the homotopy class
f- Then, by 2.1.3, we have the commutative diagram

f T(h)

Y X 1(2) —29% 7(v7)

ldYJ, zdxl u J/idT(x-)

Yo —— X C, —— T(Y)

Z

a ~a

where u : T(Z) — C, is an isomorphism. By turning this diagram we get the
isomorphism

Z oy S x W, iy
T’l(u)Jr id')/l id')(l lu
T-1(C" : X C

(C,) ) - - u

of distinguished triangles in K(A). Going back to K (A)°PP, we get that

¥ =T Y(p,) L TTNE)

X Y —% T-YC,)) —= T71X")
id'Xl ’id'yl lT‘l(u) lidr—ux-)
X Y zZ — T7HX)
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is an isomorphism of triangles. By applying ¢ to this isomorphism, we get the
isomorphism of triangles

ux) 2 vy T((C,)) T((X"))

idwx»l idw')l lT(L(u)) lidm(x»)

o(X7) T oY) T Uz W T(u(X))

~T(u(p,)) T(.(i,))
ey e

To show that the bottom triangle is distinguished, it is enough to show that the
top triangle is distinguished. On the other hand, by 1.5.1, we see that the following
diagram is commutative

—L Z*La B*Lu
(xy) Ly o S T(X)

idux»l *idw')l ls lidm(x))

() 0 ) =B ey T )

since the top triangle is the image of a standard triangle corresponding to —i(a)
in K(A°PP), it is distinguished in K (A°PP). This in turn implies that the bottom
triangle is distinguished in K (.A°P). Hence,

uz)
2
(1]
(X ) e (Y)

is distinguished in K (A°PP). It follows that ¢ is an exact functor. d

2.3. Homotopic category of complexes for an abelian category. As-
sume now that A is an abelian category.

2.3.1. THEOREM. The functor H® : K*(A) — A is a cohomological functor.
PROOF. It is enough to show that for any distinguished triangle

7

in K*(A), the sequence

HO(v) 229, o7y 20, oo xy)
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is exact in A. Let a : X° — Y be a morphism of complexes representing f and
let
C

a

be the corresponding standard triangle. Then we have the isomorphism of triangles

x Loy 4z )

idle idy-J/ J{u J,idT(X.)

x Loy Lo Eypx)

a

in K*(A), where the bottom triangle is the image of the above standard triangle
in K*(A). This induces a commutative diagram

Oy L9, oz IO o (xy)

idHO(Y')l HO(U)\L lidHO(X')
0 . Ho(ia) 0 . HO(Pa) 0 .
HA(Y') —— HY(C,) —— H(T (X))

in A, where the vertical arrows are isomorphisms. Therefore, it is enough to show
that the bottom row is exact. This is proved in 1.5.2. O

This result has the following reformulation.

7
h g
(1l
X f

be a distinguished triangle in K*(A). Then
P
HP(f)

2.3.2. COROLLARY. Let

v

P
H?(g)

s = HP(X) HP(Y") mr(zy 20 gy xy o

is exact in A.

This exact sequence is called the long exact sequence of cohomology of the
distinguished triangle

7
h g
(1l
X ! Y.

Let AP be the opposite category of A. Then the functors HP : K(A) — A,

p € Z, induce the functors from K (A)°P into A°PP which we denote by the same
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symbol. If
7
h g
(1l
X / v
is a distinguished triangle in K (A)°FP,
X
T(h) f
(1]
7 g v

is a distinguished triangle in K (A). Therefore, we have an exact sequence

Pt (h)
R

s ar(z) 29 geyy 2D gy HPY(Z) ..

is exact in A. By interpreting it as an exact sequence in A°PP we get the long exact
sequence

P P P
s ar(x) D gy 9D ey O ey ey

so we can view H? as a cohomological functor from K (A)°PP into A°PP. Combining

this with 2.2.1, we see that the isomorphism ¢ idetifies the cohomological functors

HY: K(A)PP — A°PP and HO : K(A°PP) — A°PP. More generally, we have the

following commutative diagram of functors

K(A)erp _ts K (A°rp)

|
H*P

Acpp
for any p € Z.

3. Derived categories

3.1. Quasiisomorphisms. Let A be an abelian category. Denote by K*(.A)
the corresponding homotopic category of complexes with triangulated structure
considered in the last section.

A morphism f : X° — Y in C*(A) is called a quasiisomorphism if HP(f) :
H?(X') — HP(Y") are isomorphisms for all p € Z.

If f: X — Y is a quasiisomorphism, and g : X° — Y is homotopic to f, g is
also a quasiisomorphism. Therefore, by abuse of language, we say that a morphism
in K*(A) is a quasiisomorphism if all of its representatives are quasiisomorphisms.

Denote by S* the class of all quasiisomorphisms in K*(.A).

An object X" in K*(A) is called acyclic if HP(X') = 0 for all p € Z.

3.1.1. LEMMA. Let f: X' — Y~ be a morphism in K*(A). Then the following
conditions are equivalent:

(i) The morphism f is a quasiisomorphism.
(ii) The cone of f is acyclic.
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AN

X ——Y

PROOF. Let

be a distinguished triangle based on f. By 2.3.2, we have the long exact sequence
of cohomology

P p+1
s ar(x) Y gy o Bz - Ertxe) 2 ey

Hence, if f is a quasiisomorphism, HP(f) and HP*!(f) are isomorphisms and
H?(Z') =0 for all p € Z. Therefore Z" is acyclic.
Conversely, if Z" is acyclic, from the same long exact sequence

) H"(f)

-+~ = HP(Z') —» HP(X HY(Y')—> HY(Z) — ...

we conclude that HP(f) is an isomorphism for all p € Z, i.e., f is a quasiisomor-
phism. O

3.1.2. PROPOSITION. The class S* of all quasiisomorphisms in K*(A) is a
localizing class compatible with the triangulation.

PROOF. First we show that S* is a localizing class.

First, if s and ¢ are quasiisomorphisms, H?(s) and HP(t) are isomorphisms for
all p € Z. This implies that HP(s ot) = HP(s) o HP(t) are isomorphisms for all
p € Z,ie., sotis a quasiisomorphism.

Clearly, for any X', the identity morphism idx- is a quasiisomorphism.

Assume that we have a diagram of the form

7

|7
X. S Y

Then we can construct a distinguished triangle

U
p g
(1]
X s v

based on s. By 3.1.1, since s is a quasiisomorphism, U" is acyclic. By turning this
triangle, we get the distinguished triangle

T(X")
—T(s) P
1]
Yy : U
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Also we can consider a distinguished triangle based on i o f

e

and the commutative diagram

7z Vot (7))
fl z‘dUl lT(f).
Y — U T(X) — T(Y")

2 P —T(s)

By (TR3), we can complete this diagram to a morphism

7z | [GE———

fl idui l lT(f)

Y —— U T(X') — T(Y)
i p —T(s)

of distinguished triangles. Since U is acyclic, by 3.1.1, we conclude that u is a
quasiisomorphism. Therefore, if we apply the inverse of the translation functor to
the last commutative rectangle and put

W =V1[-1], t=u[-1]] and g¢=-v[-1],

we get the commutative diagram

where t and s are in S.
Analogously, if we have a diagram of the form

X —2 5 v

7| :
7

we can construct a distinguished triangle

U
p i
(1]
X S v
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based on s. By 3.1.1, since s is a quasiisomorphism, U" is acyclic. By turning this
distinguished triangle, we get the distinguished triangle

On the other hand, we can consider the distinguished triangle based on — f op[—1] :
Ul-1— Z,

v

—fop[—1] t

This diagram can be completed to a morphism of distinguished triangles

vy A oy sy Ly
idU.[,I]J( fl lg lidu:
U[-1] Z v U
—fop[~1] t

By 3.1.1, since U" is acyclic, we see from the second distinguished triangle that ¢ is
a quasiisomorphism. Therefore, the middle square completes the original diagram
to

X. S Y

1k

zZ —>t vV

Now we want to show that for two morphisms f,g: X' — Y we have so f =
s o g for some s in S*, if and only if there exists ¢ in S* such that fot = got.
Clearly, by replacing the morphisms with their difference, it is enough to show that
so f =0 for some s in S* is equivalent to f ot = 0 for some ¢ in S*.
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If so f =0, we can consider the diagram

X 0 T(X) e, 7ix)
7| | |
Y ——Z —— U — T()

where the first row is the distinguished triangle obtained by turning the distin-
guished triangle based on the identity morphism on X and the second row is the
distinguished triangle based on s. By (TR3), this diagram can be completed to a
morphism of distinguished triangles

X 0 T(X) 0, 7ix)
N
Y —— 2 —— U —— T(Y)

This implies that f = p[—1] o v[-1].
Since s is a quasiisomorphism, U’ is acyclic. Therefore, if we consider the
distinguished triangle

X U]
o[ -1]

based on v[—1], we see that ¢ is a quasiisomorphism by 3.1.1. Moreover, by 1.3.1,
we have v[—1] ot = 0. This in turn implies that

fot=p[—1]ov[-1]ot=0.

Conversely, if f ot =0, we can consider the diagram

X ‘v “sU T(X)
[ |
0 z — 7 0

the first row is the distinguished triangle based on ¢ and the second row is the
distinguished triangle obtained by turning the distinguished triangle based on the
identity morphism on Z'. By (TR3), this diagram can be completed to a morphism
of distinguished triangles

X —tsy v T(X)
I K |
0 77— 7 0

Hence, we have f = vou.
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Since t is a quasiisomorphism, V" is acyclic. If we consider the distinguished
triangle

based on v, we see by 3.1.1 that s is a quasiisomorphism. Moreover, by 1.3.1,
sowv = 0. This implies that

sof=sovou=0.

Therefore, S is a localizing class.

Finally, we have to check that S* is compatible with triangulation. Obviously,
S* is invariant under the translation functor 7'

On the other hand, consider the morphism

X Y z T(X")
l tl Ju JT(S)
X; Y, Z T(X;)

of distinguished triangles where s and ¢ are quasiisomorphisms. For any p € Z, this
leads to a commutative diagram

H(X') —— HP(Y') —— HP(Z') — HPL(X) —— HPL(Y)
H%)l HP(t)J HP(u)l lm“(s) lH”“(t)

H?(X;) —— H"(Y;) —— H"(Z;) —— H'*'(X;) —— H"TY(Y))

where HP(s), HP*!(s), HP(t) and HP™1(t) are isomorphisms. Therefore, by the
five lemma, HP(u) is an isomorphism. Since p € Z is arbitrary, this in turn implies
that u is a quasiisomorphism. [

3.2. Derived categories. Let .4 be an abelian category, C*(.A) the corre-
sponding category of complexes and K*(A) the homotopic category of complexes.
By 2.1.1, K*(.A) is a triangulated category.

Let S* be the class of all quasiisomorphisms in C*(A). Also, let S* be class
of quasiisomorphisms in K*(.A). Then, by 3.1.2, S* is a localizing class compatible
with the triangulation of K*(A). The localization of the category K*(A) with
respect to the class S* of all quasiisomorphisms is denoted by D*(A) and called
the derived category of A.

By definition, the cohomological functor H® : K*(A) — A maps quasiiso-
morphisms in K*(A) into isomorphisms in A. Therefore, by 1.6.4, it induces a
cohomological functor from D*(.A) into A. By abuse of notation, we denote it also
by HO.
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More explicitly, let

h g
(1]
X f
be a distinguished triangle in D*(A). Then

v

P P P
s mr(x) D geeyy 9 geizy 2O e xey o
is exact in A. This exact sequence is called the long exact sequence of cohomology
of the distinguished triangle
7
h g
(1l

X ! Y.

Clearly, we have the canonical functors C*(A) — K*(A) — D*(A). More-
over, any morphism s € S* induces an isomorphism in D*(A). By 1.1.1 in Ch. 1,

(A).
the above functor factors through the localization C*(A)[S*1], i.e., we have the
following commutative diagram

C*(A) —— K*(A)
| Je
CH (A —— D*(A)

3.2.1. THEOREM. The functor v : C*(A)[S*~1] — D*(A) is an isomorphism
of categories.

PRrROOF. Clearly, ¢ is an identity on objects. Assume that X  and Y are two
objects in C*(A) and f and g two homotopic morphisms of X" into Y. We claim

that Q(f) = Q(g).
First, from the proof of 1.6.1, applied to the diagram

X f v

iy | v

X g v
which commutes up to homotopy, we see that there exists a morphism wu : CJ} —

such that the diagram
Y.

n ian-H 0
= _hn+1 idYn

~

Cy

g

-

Q

commutes in C*(A), and
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for any n € Z. Therefore, by applying 1.6.1 again to the commutative diagram
yr C;
myi lu
yo c,
we see that there exists a morphism v : Dy — Dy such that the diagram

Pig

Dy —=Y°
!
Pig
D,
commutes in C*(A), and
idyn+1 0 0
" = 0 ian,-H 0
0 —h" idyn
for any n € Z. This implies that
idyn+1 0 0
Brov®=1[0 idyntr O 0 idxntr 0 | =[0 ddxner 0] =57,
0 —h"t idyn

ie., Bgov=psin C*(A).
This in turn implies that 4[—1] o v[—-1] = B[—1] and

Q(By[=1]) o Qv[-1]) = Q(Bs[-1])-
By 1.6.2, B¢[~1] : D}[~1] — X" and fy4[-1] : D;[~1] — X are isomorphisms in
the homotopic category of complexes. Therefore, they are also quasiisomorphisms.
It follows that Q(B¢[—1]) and Q(B,[—1]) are isomorphisms in C*(A)[S™!]. By the
proof of 1.6.2, we have B;[—1] o ay[—1] = idx- and B4[—1] 0 ay[—1] = idx-. This
implies that
Q(B¢1-1]) 0 Qay[-1]) = idx and Q(By[~1]) 0 Q(arg[~1]) = idx-

and finally

Qlas[~1]) = Q(Bs[-1]) " and Q(ay[-1]) = Q(By[-1])) .

By the above formulas, it follows that

Q(v[=1]) 0 Qas[-1]) = Qlag[~1)).
As in the proof of 1.6.3, we see that the diagram

7(x) T v
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commutes in C*(A). By applying 7-! and changing signs of morphisms, we get
the commutative diagram

X f v
af[—1
il 1J{ /if[u
D;[-1)

in C*(A). Hence, we have the factorization f = —p; [~1] o ay[—1].
Analogously, we have g = —p;_ [—1] o ay[—1].
This implies that

Q(f) = —Q(pi;[=1]) o Q(as[-1])
= —Q(pi, [~1]) 0 Qv[-1]) 0 Qlay[~1]) = —Q(ps, [-1]) © Q(ay[-1]) = Q(9).

Therefore, the natural quotient functor Q : C*(A) — C*(A)[S*~!] factors
through K*(A), i.e., we get the following diagram of functors:

K (A)

Ql~/ l@
CHAST] ——=D*(A) ,

where the square and the left triangle are commutative. Since the top arrow is
identity on objects and surjective on morphisms, the right triangle is also commu-
tative. Moreover, ¢ maps quasiisomorphisms into isomorphisms, so it also factors
through D*(A), i.e., we have the commutative diagram

D*(A) — C*(A)57)

From the universal property we conclude that toy = id. Putting these two diagrams
together we get the commutative diagram:

CT (A = D" (A) — C(A)[S71].

Applying the universal property again, this time to C"(.A)[S~*!], we conclude that
Yo =id. O

3.3. Derived category of the opposite category. Let A°PP be the opposite
category of A. Then we have the isomorphism of categories ¢ : K(A)PP —
K(A°PP). Since HP ot = HP for any p € Z, we see that quasiisomorphisms in
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K (A)°PP correspond to quasiisomorphisms in K (A°PP). Therefore, if we consider
the commutative diagram of functors

K(A)PP — = K (A°PP)

e

D(AP)

we see that § maps quasiisomorphisms into isomorphisms. By 1.6.2, it follows that
there exists a unique exact functor v : K(A)°PP[S™!] — D(A°PP) such that the
diagram

KA — s K (A7)

TR

K (A)[S~!] — D(A"?)

commutes and v is an isomorphism of triangulated categories. On the other hand,
by 1.6.3, the localization K (A)°PP[S~!] is isomorphic to D(.A)°PP. Hence we have
a natural isomorphism of D(A)°PP into D(A°PP), which by abuse of notation, we
denote also by ¢.

3.3.1. THEOREM. The functor v : D(A)°PP — D(A°PP) is an isomorphism of
triangulated categories.

3.4. Truncation functors. Let A be an abelian category. For a complex A’
of A-objects and n € Z we define the complex 7<,(A") as the subcomplex of A’
given by

AP, ifp<n
T<n(A) = (kerd®, ifp=n
0, if p>n.

Let ¢ : 7<n(A") — A" be the canonical inclusion morphism. The following result
follows immediately from the definition.

3.4.1. LEMMA. The morphism HP (i) : HP (1<, (A")) — HP(A’) is an isomor-
phism for p <mn and 0 for p > n.

Let B" be another such complex and f : A — B" a morphism of complexes.
Then d" f* = f*+1d" and therefore f™(ker d®) C ker d". It follows that f  induces a
morphism of complexes 7<,(f) : T<n(A) — 7<n(B’). Therefore, 7<,, : C(A) —
C(A) is an additive functor.

Assume that f : A — B and g : A — B’ are homotopic, i.e., f —g =
dh + hd. Then 7<,(f) and 7<,(g) are also homotopic with the homotopy given by
restriction of h to 7<,,(A°), i.e., <, induces a functor 7<,, : K(A) — K(A).

Clearly, we have

HP(f), ifp<n
0, if p>n.

Hp(TSn(f)) = {

Therefore, in combination with 3.4.1, we see that if f: A~ — B’ is a quasiisomor-
phism, 7<,,(f) is also a quasiisomorphism.
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It follows that 7<,, induces a functor 7<,, : D(A) — D(.A) which is called the
truncation functor T<u.
Consider the complex 7>, (A") defined as a quotient complex of A’

0, ifp<n
Ton(A)P = cokerd™ Y, ifp=n
AP, if p>n.

Let ¢ : A — 7>,(A") be the canonical projection morphism.
The following result follows immediately from the definition.

3.4.2. LEMMA. The morphism HP(q) : HP(A') — HP(1>,(4")) is an isomor-
phism for p > n and 0 for p < n.

Let B" be another such complex and f: A* — B’ a morphism of complexes.
Then d"~!f"~1 = f*d"~! and therefore f"(imd"~!') C imd"~!. It follows that
f induces a morphism of complexes 7>p(f) : T>n(A) — T>n(B"). Therefore,
T>n 1 C(A) — C(A) is an additive functor.

Assume that f : A~ — B and g : A — B’ are homotopic, i.e., f —g =
dh + hd. Then 7>, (f) and 7>,(g) are also homotopic with the homotopy induced
by h to 7>, (A’), i.e., 7>, induces a functor 75, : K(A) — K(A).

Clearly, we have

HP(f), ifp>n
0, if p<n.

Hp(TZn(f)) = {

Therefore, in combination with 3.4.2, we see that if f : A* — B’ is a quasiisomor-
phism, 7>, (f) is also a quasiisomorphism.

It follows that 7>, induces a functor 7>, : D(A) — D(.A) which is called the
truncation functor T>,.

The natural functor K~ (A) — K(A) induces the functor D~ (A) — D(A).
Moreover, the localizing class S~ consists of all morphisms in S which are mor-
phisms in K~ (A). Let X" and Y be two complexes. Assume that X is bounded
from above. Let s : Y° — X be a quasiisomorphism. Since X' is bounded from
above, there exists n € Z such that H?(X ) = 0 for p > n. Since s is a quasiisomor-
phism, we must have H?(Y") = 0 for p > n. Therefore, by 3.4.1, 7 : 7<,(Y") — Y~
is a quasiisomorphism. It follows that soi : 7<,(Y") — X' is a quasiisomorphism.
Hence, 1.4.1 in Ch. 1 implies the following result.

3.4.3. PROPOSITION. The natural functor D~ (A) — D(A) is fully faithful,
i.e., D7(A) is a full subcategory of D(A).

Analogously, the natural functor K (A) — K (A) induces the functor D*(A) —
D(A). Moreover, the localizing class ST consists of all morphisms in S which are
morphisms in K+ (A). Let X* and Y~ be two complexes. Assume that X" is bounded
from below. Let s : X — Y~ be a quasiisomorphism. Since X' is bounded from
below, there exists n € Z such that HP(X ") = 0 for p < n. Since s is a quasiisomor-
phism, we must have H?(Y") = 0 for p < n. Therefore, by 3.4.2,¢: Y — 7>,(Y")
is a quasiisomorphism. It follows that gos : X* — 75,,(Y") is a quasiisomorphism.
Hence, 1.4.2 in Ch. 1 implies the following result.

3.4.4. PROPOSITION. The natural functor DT (A) — D(A) is fully faithful,
i.e., DT (A) is a full subcategory of D(A).
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Finally, the natural functor K*(A) — K*(A) induces the functor D*(A) —
D*(A). Moreover, the localizing class S° consists of all morphisms in S which are
morphisms in K¥(A). Let X" and Y be two complexes. Assume that X" is bounded
and that Y is bounded from below. Let s : Y — X be a quasiisomorphism.
Since X' is bounded, there exists n € Z such that H?(X") = 0 for p > n. Since
s is a quasiisomorphism, we must have HP(Y") = 0 for p > n. Therefore, by
3.4.1, i : 7<p(Y") — Y is a quasiisomorphism. Moreover, 7<, (Y ") is a bounded
complex. It follows that so04: 7<,(Y") — X" is a quasiisomorphism. Hence, 1.4.1
in Ch. 1 implies the that the functor D?(A) — D*(A) is fully faithful. By 3.4.4
we see that the natural functor D*(A) — D(A) is fully faithful, i.e., D’(A) is a
full subcategory of D(A). This finally proves the following result.

3.4.5. PROPOSITION. The natural functor DY(A) — D(A) is fully faithful,
i.e., DY(A) is a full subcategory of D(A) equal to D~ (A) N DT (A).

Let A°PP be the opposite category of A. From the construction of the isomor-
phism ¢ : D(A)°PP — D(A°PP) we see that the following result holds.

3.4.6. THEOREM. The isomorphism v : D(A)°PP —s D(APP) induces iso-
morphisms v : DT (A)PP —s D~ (A°PP), v : D~ (A)°PP — DT (AP) and . :
D®(A)°PP —s DP(A°PP) of triangulated categories.

Clearly, the truncation functors 7<, and 7>, preserve the full subcategories
D*(A), DT (A) and D~ (A) of D(A). Therefore, they induce corresponding trun-
cation functors in these categories which we will denote by the same notation.

We denote by D : A — D*(\A) the natural functor which is the composition
of the functor C': A — K*(.A) and the quotient functor @ : K*(A) — D*(A).

3.4.7. THEOREM. The functor D : A — D(A) is fully faithful.

PrOOF. Let M and N be objects in A. Let F : M — N be a morphism in A.
Then, H°(D(F)) = F and the mapping Hom 4 (M, N') — Homp4)(D(M), D(N))
is injective.

Now, let ¢ : D(M) — D(N). We can represent it by a roof

where s : X° — D(M) is a quasiisomorphism. It follows that H?(X") = 0 for
p # 0. Therefore, by 3.4.1, i : 7<o(X") — X is a quasiisomorphism. If we put
Y = 7<o(X"), the diagram

X

N

D(M) Y D(N)
v

is commutative. This implies that ¢ can be represented by a roof where X satisfies

XP =0 for p> 0.
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Hence, we have the commutative diagram

— X! X0 0
| e
. —— 0 N 0

for a representative F' of the homotopy class f. Clearly, all homotopies from X-
to D(N) are zero. So, this representative is unique. In addition, F° vanishes on
imd~!. Hence F° factors through H°(F) : H(X') — N and H°(F) = H°(f) =
H°(p) o H%(s). Therefore, the diagram

+
Pa
D(M) X D(N)
idkwls Aﬂ

D(M)

is commutative. This implies that ¢ = D(H"(¢)). Hence, the homomorphism
Homu (M, N) — Homp4)(D(M), D(N)) is an surjective. O

Therefore, the full subcategory of D*(A) consisting of all complexes X such
that XP = 0 for p # 0 is isomorphic to A.

3.5. Short exact sequences and distinguished triangles. For an abelian
category A, the category of complexes C*(A) is also abelian.
Let

0 x 1oy 2,2 0
be an exact sequence in C*(.A). We can also consider the standard triangle

Cp
Py if
(1]
f

X —Y

attached to the monomorphism f : X° — Y. Let m : T(X) @Y — Z
be the graded morphism which is the composition of the natural projection ¢ :
TX)Y®Y — Y withg: Y — Z'. Then we have

n+1 n n+1 *d?(—H 0 n+1 fn+1 n+1_jn
m OdCf = [O g ] fn+1 d’r{/ = [g .f g dY]
=[0 dig"] =d}o[0 g"]=djom"
for any n € Z, i.e., m is a morphism of complexes.
Clearly, we have

moiy =g.
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On the other hand, by 1.6.1, to the commutative diagram

X idx X

b
X T> Y

we attach a morphism of complexes w : C}; — C} given by

X

n o__ idxn,+1 0
b ‘{ 0 f“}

This morphism is evidently a monomorphism and
imw" = X" @ im /" = X" @ ker ¢" = kerm”
for any n € Z. Hence,

0 —— Cjyy — Cp —— Z 0

is an exact sequence in C*(A).

By 2.1.2, Cj;, = 0 in K*(A), hence we have HP(C;, ) = 0 for any p € Z.
Therefore, from the long exact sequence of the cohomology attached to the above
short exact sequence, we see that H”(m) : H?(C}) — HP(Z’) is an isomorphism

for all p € Z, i.e., we have the following result.
3.5.1. LEMMA. The morphism m : CJ} — 7' is a quasiisomorphism.

In particular, the homotopy class of m : Cy — Z is an isomorphism in D*(A).
This leads to the following result.

3.5.2. PROPOSITION. Let

0 x Joy 24,z 0
be an exact sequence in C(A). Then it determines a distinguished triangle
7
g
(1]
X — Y
£
in D(A).
Proor. By 3.5.1, the diagram
.1 Y P
X Y — C; —— T(X")

idxl idyl lm lidnx-)

X Y z T(X)
f 9

is an isomorphism of triangles in D*(A4). Since the top triangle is distinguished,
the lower one is also distinguished. [
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‘We shall need later a result dual to 3.5.1. Let

0— s x T vy 9 .7

be an exact sequence in C*(.A). We can also consider the standard triangle

attached to the epimorphism g: Y — Z'. Let k: X — Y @ T-1(2) = C;[-1]

be the graded morphism which is the composition of f : X* — Y~ with the natural
injection i : Y — Y @ T~1(Z"). Then we have

: oo [0 T[] [y
ek = G ] [6] =[5

n+1_gn n+1
P e

for any n € Z, i.e., k is a morphism of complexes.
Clearly, we have

pg[_l] ok=f.
On the other hand, by 1.6.1, to the commutative diagram

Y g VA

e

A——

idy
we attach a morphism of complexes w : C;, — C;, given by
oy
0 iy
This morphism is evidently an epimorphism and
kerw" =ker g""' @0 = im f"! @ 0 = im k"1
for any n € Z. Hence,

vl

uiz

0 X

C: [-1] 1] —— 0

is an exact sequence in C*(A).

By 2.1.2, C;;, = 0 in K*(A), hence we have HP(C;; ) = 0 for any p €
Z. Therefore, from the long exact sequence of the cohomology attached to the
above short exact sequence, we see that HP(k) : HP(X') — HP(C,[-1]) is an
isomorphism for all p € Z, i.e., we have the following result.

3.5.3. LEMMA. The morphism k : X' — C4[—1] is a quasiisomorphism.
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3.6. The distinguished triangle of truncations. Let X  be a complex of
A-objects and n € Z. Consider the exact sequence of complexes

0 —7<n(X')— X —Q —0.

Clearly, we have

0, ifp<n
QP = ( coimd”, ifp=n
XP, if p > n.

Therefore, H?(Q) = 0 for p < n and HP(Q') = H?(X") for p > n. If we consider
the canonical projection @ — T>p41(Q) = T>py1(X'), ie., the commutative
diagram

0 comd® —— X"tl — Xnt2 .
| | | [
0 0 — cokerd® — X"t2 — & |

we see that this morphism is a quasiisomorphism.
By 3.5.2 we have a distinguished triangle

Q
T<n(X") i—>X

in D(A). By the above discussion, " is isomorphic to 7>,41(X") and this leads to
a distinguished triangle

7->71-‘,-1

el N

This finally leads to the existence part of the following result.

3.6.1. PROPOSITION. For any complex X' and n € Z there exists a unique
morphism h : T>p41(X") — 7<,(X)[1] such that

7—>n+1

AN

is a distinguished triangle in D(A).

It remains to prove the uniqueness of h. It is a consequence of 1.4.6 in Ch. 2
and the following lemma.
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3.6.2. LEMMA. Let X' and Y be two complezes such that XP = 0 for p > n
and Y? =0 for p <n. Then Homp4)(X',Y") = 0.

PROOF. Let ¢ be an element of Homp(4)(X",Y"). Assume that it is repre-

sented by a roof
7
AN
X Y

Since HP(X") = 0 for p > n and s is a quasiisomorphism, we see that H?(Z') =0
for all p > n. It follows that ¢ : 7<,—1(Z") — Z" is a quasiisomorphism. Therefore,
if we put U" = 7<,,—1(Z"), we have the following diagram

7
AN

~ ~l
. U
which is commutative. It shows that ¢ can be represented by a roof satisfying
ZP =0 for p > n. In this case, f must be zero. ([

X Y-

U

3.7. Exact sequences and distinguished triangles. Let A be an abelian
category. Let

0 L—tsm—25N 0
be a short exact sequence in A. Then, by 3.5.2, we have a distinguished triangle
D(N)
D(g)
(1]
D(L D(M
() — (M)

in D*(A). In this case, we have a stronger result.
3.7.1. PROPOSITION. There exists a unique morphism h such that

D(N
h
n
D(L) )

)
D(9)
D(M)
is distinguished in D*(A).

D(f

PrOOF. The uniqueness of h follows from 1.4.6 in Ch. 2 and 3.6.2. (]
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3.8. Examples. In this section we discuss several examples which illustrates
some nonobvious properties of derived categories.

First we show that a nontrivial object of a homotopic category of complexes
can become trivial in the corresponding derived category.

Let Ab be the category of abelian groups. Let D(Ab) be its derived category.
Let X~ be the complex

0 —— 2 —1 372 2 572/22 ——0

where f(1) = 2 and g(1) = 1. Then this complex is acyclic, i.e., H?(X") = 0 for
all p € Z. Hence any morphism in Hom g 4p) (X", X') is a quasiisomorphism. This
implies that 0 is an isomorphism in Homp ) (X", X"), i.e., X" is a zero object in
D(Ab). In particular, idx- = 0 in D(AD).

On the other hand, X' is different from 0 in K(Ab). To see this consider
an element G' of Home(4p)(X ", X) which is homotopic to zero. Then we have a
diagram

f g

0 Z Z )27 0
Z Z )27 0
I g

and
hod+doh=G.

Clearly, we must have ho = 0. Hence G = g o ho = 0. Therefore, if G is homotopic
to zero, we must have G5 = 0. This implies that idx is not homotopic to zero.
Now we are going to show that there exists nontrivial morphisms in the derived
category which induce zero maps on all cohomologies.
Let X be a complex

0 7 —2 57 0

where a(1) = 2, and Y a complex

0 Z

7./37. 0

where b(1) = 1 in D(Ab). Clearly, we have HP(X') = 0 for p # 1 and H'(X") =
Z)2Z, and HP(Y") =0 for p # 0 and H°(Y") = 3Z.
Let F be a morphism of X" into Y given by

0 7 —= Z 0
[ | |
0 z —> 7/37 0

where ¢(1) =1 and d(1) = 2. Clearly, HP(F) =0 for all p € Z.

On the other hand, we claim that F' defines a nontrivial morphism in D(.Ab).
Assume the opposite. By 2.1.6 in Ch. 1, there would exist a complex Z  and a
quasiisomorphism s : Z° — X such that F o s is homotopic to zero. Therefore,
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we have the following commutative diagram

Z—l ZO Zl Z2
[ I |
0 7z —= Z 0
| | | |
0 Z —' 7/32 0

and a homotopy k : Z — Y  such that dy ok + kodz = Fos. Since s is a
quasiisomorphism, H'(Z) & HY(X') = Z/2Z. Let z € kerd}, be a representative
of the nontrivial class in H'(Z"). Then s'(z) is representative of the nontrivial class
in H1(X"), i.e., s'(2) is an odd integer.

Moreover, 2z determines 0 in H'(Z"), i.e., 2z € imd%. Therefore, there exists
v € Z° such that 2z = d%(v). This in turn implies that

280(0) = a(s°(v)) = s (% (1)) = 251(2)
in Z, i.e., we have s°(v) = s'(z). On the other hand, we have
s'(v) = ¢(s”(v)) = (F 0 5)°(v) = k' (dz(v)) = 2k (2).

Therefore, s!(z) = 2k'(z) is an even integer, contradicting the above statement.
It follows that the morphism determined by F' is nonzero.

4. Generating classes

4.1. Relative derived categories. Let A be an abelian category and B a
full additive subcategory of A. Assume that for any two abjects M and N in B
and any morphism f : M — N there exist a kernel ker f and a cokernel coker f
of f (as a morphism in A) which are objects in B. Then, there exist an image im f
and coimage coim f which are also in B. Therefore, B is an abelian category. We
say that B is a full abelian subcategory of A.

We say that a full abelian subcategory B of A is a good abelian subcategory if
it satisfies the additional condition:

(GA) if
0— M —M-—M"—0
is a short exact sequence in A with M’ and M" in B, then M is in B.

Clearly, a good abelian subcategory is a strictly full subcategory.

Let A be an abelian category and B a good abelian subcategory. Let Dj(A)
be the full subcategory of the derived category D*(A) of A-complexes consisting of
complexes X such that HP(X ") are in B for all p € Z.

Clearly, Dj(A) is translation invariant. Let

7

(1]
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be a distinguished triangle in D*(A) with X" and Y in Dj;(A). Then, we have the
long exact sequence of cohomology

o HP(X) 22 HP(Y') — HP(Z)) — HPPY(X) 2255 gPHi(y) — .

Since B is a full abelian subcategory and HP(X"), HP(Y"), HP*1(X") and HPT1(Y")
are in B, there exist coker o, and ker oy, 41 which are in B. Hence,

0 — coker vy, — HP(Z') — kerapp1 — 0

is exact, and HP(Z") are in B, since B is good. It follows that Z" is in Dj(A).
Therefore, we proved the following result.

4.1.1. LEMMA. The full subcategory DE(A) of D*(A) is a strictly full triangu-
lated subcategory of D*(A).

We call Dj(A) the relative derived category of A with respect to B.
Clearly, the truncation functors 7<; and 7>s on D*(A) induce functors on

Di(A).

4.2. Generating classes in derived categories. Let A be an abelian cat-
egory and B a good abelian subcategory. Let D%(A) the corresponding relative
bounded derived category.

Let G be a class of objects in B containing the zero object 0. Denote by Gy the
class of all objects in D¥%(A) of the form D(M)[n] with M in G and n € Z. Then we
construct by induction a family of classes G,, of objects in D’(A) in the following
way: X is in G,, if there exists a distinguished triangle in D%(A) with X as one
vertex and other two vertices in G,,_1.

Since G is translation invariant by definition, we see, by induction, that G,,
are translation invariant classes of objects.

4.2.1. LEMMA. For any m > 1, if X is in Gp,_1, then X is in Gp,.

PROOF. The proof is by induction in m. We can consider the distinguished

triangle
0 .
% \

X — =X
Since 0 is in G, the complex 0 is in G;. Therefore, if X is in G;, we conclude that
X is also in Gs. In particular, 0 is in Gs.
Assume that the statement holds for G,, p < m. Then, 0 is also in G,,—1 by
the induction assumption. If X" is in G,,_1, by considering the same distinguished
triangle we conclude that X" is in G,,. O

Let D be the full subcategory of D%(A) with objects equal to Unmen Gm-

4.2.2. LEMMA. The subcategory D is a strictly full triangulated subcategory of
Di(A).
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PROOF. Let X be an object in D’(.A) isomorphic to an object Y in D. We
can assume that Y is in G,, for some m € N. Then, by 1.4.4 in Ch. 2, we have the

distinguished triangle
0
X Y

and X' is in G,,11. Hence, X" is in D and D is strictly full.
Assume that X and Y are in D. Then, there exists m € Z such that X and
Y are in G,,. If we consider the distinguished triangle

AN

X — Y

it follows that Z° is in G,,4+1. Hence, Z is in D and D is a full triangulated
subcategory. O

The class G is called a generating class of D. We say that D is the full trian-
gulated subcategory generated by G.

4.2.3. PROPOSITION. The class Ob(B) is a generating class of D%(A).

The proof is based on the following discussion. Then for any bounded complex
X we can define its homological length

(X)) =Card{p € Z | H?(X") # 0}.
Consider the distinguished triangle

T>s+1(X7)

TSS(X') X

Then the next result follows immediately from 3.4.1 and 3.4.2.
4.2.4. LEMMA. Let X  be a bounded complex. Then, for any s € Z, we have
U (X7) = by (7<s(X7)) + Ln(T2541(X7)).

Now we can prove 4.2.3. It follows immediately from the following remark. Let
G =O0ObB, and
g™ ={X € ObD}(A) | tr(X) <m}.

4.2.5. LEMMA. We have G™ C Ob(D) for all m € N.
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PrOOF. The proof is by induction in m. Let X be a complex in G™. Assume
first that m = 0. Then X is isomorphic to the zero complex 0 in D?(A). Since 0
is in D and D is strictly full, it follows that X is in D.

Assume now that m = 1. Then there exists ng such that H?(X') = 0 for
p # ng. Hence, by 3.4.1, i : 7<,,(X') — X' is a quasiisomorphism. On the
other hand, by 3.4.2, ¢ : T<py (X') — Tono (T<ne (X)) is also a quasiisomorphism.
Clearly, we have 7>, (T<n, (X)) = D(H™ (X"))[—no] and 7>y, (T<ny (X)) is in D.
Since D is strictly full subcategory of D’(A), this implies that X" is in D.

Assume that m > 1. Let s = min{p € Z | H?(X") # 0}. Then, we have
Uy (T<s(X7)) = 1. Moreover, by 4.2.4, we have ¢, (t>5s41(X")) = m — 1. Hence,
T<s(X") is in D by the first part of the proof, and 7>,11(X ") is in D by the induction
assumption. It follows that they are in G, for sufficiently large m € N. This in
turn implies that X" is in G, 11, i.e., X is in D. ([

Let A and B be two abelian categories. Let C and D be two good abelian
subcategories of A and B respectively. Let F' be an exact functor from Dg (A) into
D*(B). Let G C ObC be a generating class of D3 (A).

4.2.6. PROPOSITION. Assume that HP(F(D(M))), p € Z, are in D for any M
in G. Then F(X") is in D(B) for any X in D(A).

PROOF. Let
7

(1

X Y
be a distinguished triangle in D4(A), with X', Y in G, and Z in G,,. Since F
is exact, we have a distinguished triangle

F(Z')

F(X7) F(Y")

in D*(B). If m =2, F(X') and F(Y") are in D}(B), by the assumption of the
proposition. If m > 2, this is the induction assumption. Since, by 4.2.2, D5 (B) is
a strictly full triangulated subcategory of D*(B), it follows that F'(Z") is in D5 (B).
By induction, it follows that F/(X") is in D5 (B) for any X" in G, and m € N. Since
G is a generating class of D%(A), it follows that F(X) is in D}(B) for any X" in
DA (A). O

Therefore, F induces an exact functor F : D%(A) — D5 (C).
Consider now two exact functors F' and G from D3(A) into D*(B). Let w :
F — G be a graded morphism of functors.

4.2.7. PROPOSITION. Assume that wpyy : F(D(M)) — G(D(M)) is an iso-
morphism for any M in G. Then w is an isomorphism of functors.
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PROOF. As in the preceding proof, consider the distinguished triangle
7
(1]

X Y

in Dg(A), with X, Y in G,,_1 and Z" in G,,.
Since F' and G are exact functors, w defines a morphism

FX) —— FY) —— F(Z) —— T(F(X"))
wxl wyl lwz T(wx)
GX) — GY) — G(Z)) —— T(G(X")

of distinguished triangles. If m = 2, wx and wy are are isomorphisms, by the as-
sumption of the proposition. If m > 2, this is the induction assumption. Therefore,
by 1.4.2 in Ch. 2, wy is also an isomorphism. It follows that wx is an isomorphism
for any X in G,, and m € N. Since G is a generating class of D4 (A), we see that wy
is an isomorphism for any X in D%(A). Hence, w is an isomorphism of functors. [

4.3. Exact functors of finite amplitude. Under certain conditions we can
extend the results from the end of the preceding section to unbounded derived
categories.

Let A and B be two abelian categories and C a good abelian subcategory of A.
Let F' an exact functor from D¢ (A) into D(B). We say that the amplitude of F is
S n e Z+, if

(FA1) for any X in D¢ (A) such that HP(X") = 0 for p > pg, we have HP (F (X)) =
0 for p > po + n;

(FA2) for any X in D¢ (A) such that H4(X") = 0 for ¢ < qo, we have HI(F(X")) =
0 for ¢ < gp — n.

4.3.1. LEMMA. Let F': D¢(A) — D(B) be an exzact functor of amplitude < n.

(i) The natural morphism HP(F'(3)) : HP(F(1<4(X"))) — HP(F(X")) is an
isomorphism for p < s —n.

(ii) The natural morphism HP(F(q)) : HP(F(X")) — HP(F(1>5(X"))) is an
isomorphism for p > s +n.

PRrROOF. Let X' be an object in D¢(A) and s € Z. Consider the distinguished
triangle of truncations

T2s+1(X7)
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Since F' is an exact functor, we get the distinguished triangle

F(r>511(X7)

F(r<s(X7)) F(X)

If the amplitude of F' is < n, we have HP(F(7<s(X"))) = 0 for p > s+ n and
HP(F(15541(X"))) = 0 for p < s — n. The assertions follow immediately from the
long exact sequence of cohomology attached to the above distinguished triangle. [

Let F : Dc(A) — D(B) be an exact functor of finite amplitude. Let D be a
good abelian subcategory in B.

4.3.2. LEMMA. Assume that F(X") is in Dp(B) for any bounded complex X
in D¢(A). Then F(X') is in Dp(B) for any X' in Dc(A).

PrOOF. Assume that the amplitude of F'is < n. Let X be a complex bounded
below in D¢ (A). Then 7<4(X ") is a bounded complex in D¢ (.A). By the assumption,
F(1<s(X")) is in Dp(B). By 4.3.1, HP(F'(X")) is in D for p < s —n. Since s is
arbitrary, this implies that X is in Dp(B).

Assume now that X" is arbitrary. Then 7>4(X") is a complex bounded below in
D¢ (A). Hence, by the first part of the proof, we see that F(7>4(X")) is in Dp(B).
By 4.3.1, HP(F(X")) is in D for p > s+ n. Since s is arbitrary, this implies that
X' is in Dp(B). O

Therefore, F' induces a functor F' : D¢(A) — Dp(B).

4.3.3. LEMMA. Let F and G be two exact functors from Dc(A) into D(B) of
finite amplitude and w : F — G a graded morphism of functors. Assume that
wx : F(X') — G(X") is an isomorphism for any bounded complex X in D¢ (A).
Then w is an isomorphism of functors.

PrOOF. Assume that the amplitude of F' and G is < n. Let X be a complex
bounded below. Then 7<,(X") is a bounded complex. Therefore, in the commuta-
tive diagram

F(i)

F(r<s(X)) F(X7)

ngs(X')JV J/‘-UX‘

G(r<s(X)) W G(A)

the first vertical arrow is an isomorphism. Applying the functor H? to this com-
mutative diagram we get the commutative diagram

HP(F(i
HP(F(ry(X7))) O mo(p(x0))
Hp(w@s(x»)l lH”(wx-) ;
HP(G(3))

HP(G(r<s(X7))) —— HP(G(X))
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hence, by 4.3.1, we conclude that HP(wx-) is an isomorphism for p < s — n. Since
s is arbitrary, it follows that HP(wx) is an isomorphism for all p € Z, i.e., wx is
an isomorphism.

Assume now that X is an arbitrary complex. Then we have the commutative
diagram

FX) 29 (X))

| o

G(r<s(X7)) ! G(m>5(X7))

and the second vertical arrow is an isomorphism, since 7>4(X") is a complex
bounded below. Applying the functor H? to this commutative diagram we get
the commutative diagram

HP(F(X)) H"(F(q))
HP(WX‘)l lHP(WTZS(x-)) :

HP(G(X7)) W HP(G(125(X7)))

HP(F(725(X7)))

hence, by 4.3.1, we conclude that HP(wx-) is an isomorphism for p > s + n. Since
s is arbitrary, it follows that HP(wx) is an isomorphism for all p € Z, i.e., wx- is
an isomorphism. ([

4.4. Stupid truncations. We can define another type of truncation functors.
They are called stupid truncations. For a complex X and s € Z, we define the
truncated complex o>4(X") as the subcomplex of X" given by

0, if p<s;
XP ifp>s.

UZS(X.)p = {
We denote the quotient complex by o<,_1(X"). Clearly,

Lt
Then we have an exact sequence in the category C*(.A) of complexes
0—055(X) — X — 0<s_1(X) — 0.
Clearly, we have

0 if p<s;
HP(0>5(X")) = { ker d* if p=s;
HP(X) ifp>s.
Analogously, we have
HP(X') ifp<s—1;
HP(0<s-1(X")) = ¢ cokerd® if p=s—1;
0 ifp>s—1.
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Clearly, if we denote by ¢ : 0>4(X’) — X the canonical monomorphism, we see
that HP(¢) : H?(0>4(X")) — HP(X") is 0 for p < s; the epimorphism ker d® —
H?(X") for p = s; and the identity on H?(X") for p > s.

If we denote by 7 : X' — 0<,_1(X") the canonical epimorphism, we see that
HP(m) : HP(X') — HP(0<s(X")) is the identity on HP(X") for p < s — 1; the
monomorphism H*~1(X") — cokerd*~! for p=s—1; and 0 for p > s — 1.

In addition, we have the morphism of complexes 6 : o<5_1(X") — T(0>5(X"))
given by

— X2 s X 0 —_— ...

Il

ii m— 00— X® ——— X —

Let C; be the cone of ¢. By the results from §3.5, we know that the graded
morphism m which is the composition of the projection of C; to X  with the epi-
morphism 7 : X° — 0<,_1(X") is a morphism of complexes. This morphism is
given by the morphisms

[O W”] : <723(X‘)"'~'1 BX" — o<s1 (X))
for n € Z. On the other hand, we have the morphism of complexes p, : C;, —
T(055(X")) given by
[idg,,(xyntr 0] 1 05s(X)"H @ X" — o5 (X)L
Then § om : C; — T(0>p(X")) is a morphism of complexes given by

L— XP2 s XPoXPl — s XPHlpXP —— .

of o @] I

L 0 Em— XP Em— Xp+1 —_— ...

4.4.1. LEMMA. The morphism —& o m is homotopic to p,.

PrOOF. We define the homotopy A" : 05,(X )"t & X" — T(054(X ")) !
in the following way: h" = 0if n < s; h® : X"t @ X™ — X" is the projection
onto the second summand if n > s.

There are two different cases to consider. First, we have

Pyt om® T = idxe AT =0 idxs] “ax 0

L ZdXs dSX_

s s—1 s—2 s—1
=R odg” +dpg. (x)°h

Second, if n > s — 1, we have

p;l + 6” o m” = I:idxn+1 0:|

. —d¥™t 0 " .
g [0 Zan-%—l} |:’L'an+1 d}:| - dX |:0 lan]
=W oy, i, xy "

Hence, we have
p.+dom=hodc, + dT(GZS(X)) oh

and our statement follows. O
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Therefore, we have a morphism of triangles

05s(X) —E X C, T T(024(X)
idaZs(qu idxl lm lidﬂazs(x-»
025(X) == X' ——— 0<1(X7) ——= T(02p(X))

in K*(A).

Since m is a quasiisomorphism by 3.5.1, the above morphism of triangles is
an isomorphism of triangles in D*(.A). Moreover, since the top triangle is distin-
guished, the bottom one is also distinguished in D*(A).

This establishes the following result.

4.4.2. LEMMA. For any complex X and s € Z we have the distinguished triangle

o<s—1(X7)

in D*(A).
4.5. A technical result. Sometimes we need a stronger version of 4.2.3.

4.5.1. PROPOSITION. Let C be a class of objects in A such that:
(i) C contains 0;
(ii) for every object B in B the complex D(B) is isomorphic in Db(A) to a
bounded complex C" such that C? are in C for allp € Z.

Then C is a generating class in D (A).

To prove this we consider the length of a bounded complex A" in D®(A) defined
by

L(A) = Card{p € Z | A? # 0}.
The following observation is evident.
4.5.2. LEMMA. Let A" be a bounded complex. Then, for any s € Z, we have
UA) = Uos5(A)) + Uo<s 1(A)),

Let D be the triangulated subcategory of D?(A) generated by C. Then it
contains all complexes D(C)[n] for any object C' in C and any n € Z. Let C" be
a complex in DY(A) such that C? is in C for all p € Z. By induction in ¢(C") we
are going to prove that C" is in D. If £(C") = 1, C" = D(C?)[—q] for some q € Z.
Hence, C" is in D. If ¢(C") > 1, there exists s € Z such that {(o>s(C")) > 0 and
l(o<s—1(C")) > 0. Hence, by 4.5.2, we have {(0>5(C")) < £(C") and £(0<s_1(A")) <
¢(C"). By the induction assumption, 0>5(C") and o<s_1(C") are in D. By 4.4.2,
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we have the distinguished triangle
o<s-1(C")

O’ZS(C') C

Since D is a full triangulated category, it follows that C" is in D.

Since D is strictly full, the condition (ii) implies that D(B)[n] are in D for any
object B in B and n € Z. Hence, by 4.2.3, D is equal to D%(A). This completes
the proof of 4.5.1.




CHAPTER 4

Truncations

1. t-structures

1.1. Truncations in derived categories. Let A be an abelian category. Let
D = D*(A). For n € Z, we denote by D=" the full subcategory of D consisting of
all complexes A" such that HP(A") = 0 for p < n. We also denote by D=" the full
subcategory of D consisting of all complexes A" such that H?(A') =0 for p > n.
We have
D=" =T~ "(D=") and D=" =T~ "(D>’).
Also, we have
.cDpslecpstcpsttl o
and
..oDpEl o pn o prtl 5
Clearly, we can view the truncation functor 7<,, as a functor from D into p=n
and the truncation functor 7>, as the functor from D into D2zn,

1.1.1. LEMMA. Letn € Z. Then
(i) T<n : D — D=" is a right adjoint of the inclusion functor DS" — D;
(ii) T>n : D — D=2" is a left adjoint of the inclusion functor D=" —s D.

PRrOOF. (i) Let A" be a complex in D=" and B' in D. Clearly, the map ) —
i o ¢ induces a homomorphism of Homp (A", 7<,(B")) into Homp(A',B). It is
enough to prove that this map is a bijection.

Let ¢ : A — B’ represented by a roof

.
N
A B

where s : C" — A’ is a quasiisomorphism. Therefore, H?(C") = 0 for p > n, i.e.,
C" is in D=". Tt follows that j : 7<,(C") — C" is a quasiisomorphism. Therefore,
the commutative diagram
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establishes the equivalence of the top and bottom roof. Hence, after relabeling ¢ is

represented by the roof
C
AN
A B

with C* such that C? = 0 for p > n. Therefore, the morphism f : C° — B’ of
complexes looks like

L — s — 0 _— ...

o e

. —— B! — B —— Bl |
Clearly, the image of f™ has to be in ker d”, i.e., the image of f is in the subcomplex
T<n(B). Therefore, we can write f =io0g with g : C" — 7<,(B"). It follows that
@ =101, where ¢ : A — 7<,(B") is represented by a roof

.
N
A' TSTL(B

and the above map is surjective.
Assume that ¢ : A — 7<,(B") is such that ¢ = i o4¢ = 0. Then, by the
preceding discussion, ¥ is represented by a roof

SN,

with C" such that CP? = 0 for p > n. Moreover, since the composition of ¢ with ¢
is 0, there exists D" and a quasiisomorphism j: D" — C" such that the diagram

/T\

D

\l/

commutes. Since j is a quasiisomorphism7 HP(D) = 0 for p > n. Hence, £ =
T<n(D") — D’ is a quasiisomorphism, and we can replace the above diagram with

\/

A,
x4
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which also commutes. Therefore, a = i o g o k is homotopic to zero. We have the
commutative diagram

. —— Enl E™ 0
ol
. —— B! B" Bt
and iogok = a = dh + hd. Clearly, h» = h"t! = ... = 0, and the image of

the homotopy h is in the subcomplex 7<,(B’) of B'. Therefore, h = i o h' and
gok =dh' + h'd, i.e., g ok is homotopic to zero . Therefore, 1) = 0.
The proof of (ii) is analogous. O

1.1.2. COROLLARY. Let m < n. Then Homp(A',B) = 0 for any A" in D=™
and B in D2".

Proor. By 1.1.1, we have
HOHID(A',B') = HOmD(A',TSm(B')).
On the other hand, HP(7<,,(B’)) =0 for all p € Z, i.e., 7<;n(B) =0in D. O

Let B =D<N D2 Clearly, the functor D : A — D has the image in B and
the induced functor from A into B is an equivalence of categories by 3.4.7 in Ch. 3.

1.1.3. LEMMA. The functor T<g © T>0 = T>0 © T<q s isomorphic to HY.

1.2. t-structures. The discussion in the last section illustrates the following
definition.

Let D be a triangulated category. A t-structure on D is a pair of strictly full
subcategories (D=, DZ0) satisfying the following conditions:

If we put

D=" = 77(D=") and D=" = T~ "(D="),

for n € Z, we have

(t1) D= c D=L, D=0 5 D21,

(t2) Hom(X,Y) =0 for X in D=Y and Y in D=};

(t3) for any X in D there exists a distinguished triangle

such that A is in D=Y and B is in D=1

The core of the t-structure is D=9 N D=0.
For any m,n € Z, m < n, we put

plmnl — p2m A psn,
Our goal is to to prove the following theorem.

1.2.1. THEOREM. The core A of a t-structure (D=9, D=%) on D is an abelian
category.



150 4. TRUNCATIONS

1.2.2. ExAMPLE. If D = D*(A) and D= and D=? as defined in the last section,
we see from the results proved there that this is a ¢-structure on D*(A). This T-
structure is called the standard t-structure on D*(A). The core of that t-structure
is equivalent to A by 3.4.7 in Ch. 3.

From the definition, we clearly have

.cDpslecpst e psttl cLL.

i.e., the family (D<";n € Z) is increasing. Analogously, we have
oD Dzn—l ») DZW ) DZn+1 oL,
i.e., the family (D=";n € Z) is decreasing.
If X isin D", X = T7"(X') for some X’ in D=0, If Y is in DZ"*! then
Y =T-"(Y") for some Y’ in DZ!. Therefore, we have
Hom(X,Y) = Hom(T~"(X"), T~ "(Y’")) = Hom(X',Y’) = 0.
This immediately implies the following result.

1.2.3. LEMMA. Let n,m € Z, n < m. Let X in D" and Y in D2™. Then
Hom(X,Y) =0.

1.2.4. LEMMA. There exist functors T<, : D — D<" and 7>, : D — D2"
such that

(1) T<n : D —> D=" is a right adjoint to the inclusion functor D" —s D;
(ii) 7>n : D — D2" is a left adjoint to the inclusion functor D=" — D.

The proof of this result is based on the following observation. Let n € Z. By
(t3), for an object X in D there exist a distinguished triangle

T"(B)
T7(A) T(X)

where T"(A) is in D=0 and T"(B) in D=!. By turning this triangle 3n times we

get the distinguished triangle
B
A— > X
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where A is in D=" and B in DZ"*!. Let Y be another object in Dand f: X — Y
a morphism. Assume that
D

C Y

is the corresponding distinguished triangle for Y, i.e., C' is in D=" and D is in
DZ"*1, Then we have the diagram

A X B T(A)
1|
c Y D T(C)

Since A is in D=" and D is in D=1, we have Hom(A, D) = 0 by 1.2.3. Therefore,

the composition of the morphisms A — X L.y = D in the above diagram is 0.
By 1.4.5 in Ch. 2, the above diagram can be completed to a morphism of triangles

A X B T(A)
“”J fl lw lT(w)
c Y D 7(C)

Moreover, since A is in D=" and D[—1] is in D=""2 we have Hom(A, D[-1]) = 0,
and ¢ and ¥ are unique. We can specialize this to the case X =Y and f = idy.
Then we get unique morphisms o : A — C and 8 : B — D such that the diagram

A X B T(A)
al idxl l/} lnoo
c X D T(C)

is a morphism of triangles. Analogously, we have uniquey: C — Aand § : D —
B such that

C X D T(C)
vl idx l lé lT('y)
A X B T(A)
is a morphism of triangles. The composition of these two morphisms of triangles is
A X B T(A)
voal idxl léoﬁ lT(voa)
A X B T(A)

and by the uniqueness we conclude that vyoa =1id4 and § o 8 = idg. Analogously,
aoy=1idc and fod = idp. Hence, a and § are isomorphisms and v and ¢ their
respective inverses.

It follows that A and B are unique up to a (unique) isomorphism. Therefore,
for each X in D, we can pick A and B and denote them by 7<,,(X) and 7>p,41(X).
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If F: X — Y is a morphism, by the above discussion we get a morphism of
triangles

T<n(X) X Tont1(X) —— T(7<n (X))
“"l fl Jw JT(@
T<n(Y) Y Tont1(Y) —— T(1<n(X))

with unique morphisms ¢ and . We denote 7<,,(f) = ¢ and 7>p+1(f) = ¢.

It is easy to check that 7<, and 7>,41 so defined are functors from D into p=n
and D"t respectively.

Let X be in D=". Then, we have the distinguished triangle

0
% \

X—X

which satisfies the above conditions. Therefore, the composition morphism f :
X — Y defines a morphism

x X 0 — T(X)
o| 7| | |7
T<n(Y) Y Ton41(Y) ——— T(1en(Y))

of distinguished triangles. Since ¢ is uniquely determined by f, the map f — ¢
from Hom(X,Y) into Hom(X,7<,(Y)) is a bijection. Therefore, 7<,, is a right
adjoint to the inclusion functor D<" — D.

The proof of adjointness for 7>, is analogous. This completes the proof of
1.2.4.

Clearly, we have adjointness morphisms ¢ : 7<,(X) — X and p : X —
T>n(X). Because of the above example we call 7<,, and 7, the truncation functors
corresponding to the t-structure (DY, D=0).

From the above proof and 1.4.6 in Ch. 2 we also see that the following result
holds.

1.2.5. LEMMA. For any X in D we have the distinguished triangle
Tont1(X)

(1]

Tgn (X) X
where q is uniquely determined.

1.2.6. LEMMA. For any n € Z, we have
(i)

T<p oL 2T oT<pyr;
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(i)

T>n ol = T072n+1~

PROOF. Let A be an object in D=" and X an object in D. Then, T-1(A) is
in D=7t Hence, by 1.2.4, we have

Hom(A, 7<,(T(X))) = Hom(A, T(X)) = Hom(T~!(A), X)
= Hom(T ' (A), 7<n+1(X)) = Hom(A, T(r<n41(X))).
This proves (i). The proof of (ii) is analogous. O
Now we show that the truncation functors determine the t-structure.

1.2.7. LEMMA. Let X be in D. Then:

(a) The following conditions are equivalent:
(i) X is in D"
(ii) 4 : 7<n(X) — X is an isomorphism;
(iil) 7>pq1(X) =0;
(b) The following conditions are equivalent:
(i) X is in D2";
(i) p: X — m>n(X) is an isomorphism;
(iii) 7<p—1(X) =0.

ProOF. (a) Let X be an object in D. By 1.2.5, it determines a distinguished
triangle

T>n+1

(X)

By 1.4.4in Ch. 2, 75>p41(X) = 0if and only if ¢ : 7<,,(X) — X is an isomorphism.
Therefore, (ii) and (iii) are equivalent. Clearly, 7<,(X) is in D=". Since D=" is a
strictly full subcategory of D, if i : 7<,,(X) — X is an isomorphism, X is in D",
On the other hand, if X is in D", i : 7<,(X) — X is an isomorphism. This
proves (a).
The proof of (b) is analogous. O
X

A
% \
be a distinguished triangle in D.

(i) If X and Z are in D", then Y is also in D=".
(ii) If X and Z are in D", then Y is also in D2".

1.2.8. LEMMA. Let

Y




154 4. TRUNCATIONS

PROOF. Let U be an object in D. Then, by 1.4.1 in Ch. 2, we have the long
exact sequence
-+ — Hom(Z,U) — Hom(Y,U) — Hom(X,U) — ...
By 1.2.3,if U is in DZ"*!, we have Hom(X,U) = Hom(Z,U) = 0. Hence, it follows
that Hom(Y,U) = 0. By 1.2.4, we see that
Hom(7>p41(Y),U) = Hom(Y,U) =0

for any U in D="*1. In particular, Hom(7>,41(Y), 75n11(Y)) = 0 and 75,41 (Y) =
0. By 1.2.7, it follows that Y is in D=". This proves (i).
The proof of (ii) is analogous. O

1.2.9. LEMMA. Letn € Z.
(i) The subcategories D™ and D=" are additive subcategories in D.

(ii) The functors T<, : D — D=" and 7>, : D — D=" are additive.

PROOF. Let X and Y be in D=". By 1.4.8 in Ch. 2, we have a distinguished

triangle
Y
% \

X— XY

By 1.2.8, we conclude that X @Y is in D=". Therefore, D" is an additive sub-
category. The proof for DZ" is analogous.

Let f and g be morphisms from X to Y. Then 7<,(f), 7<n(9), T>n+1(f) and
T>n+1(g) are unique morphisms which make

T<n(X) X Tont1(X) — T(7<n(X))
(0| ls [EE R
T<n(Y) Y Ton41(Y) —— T(1<n(Y))
and
T<n(X) X Tont1(X) — T(7<n(X))
rgn(ml Jg lrznmg) JT(rgnm))
7<n(Y) Y Tont1(Y) —— T(7<a(Y))
morphisms of triangles. This implies that
T<n(X) X Tont1(X) ——— T(1<n (X))
"'Sn(f)-‘r"'gn(g)l lm lqnﬂumznﬂ(g) lT(Tgn(f)‘*‘Tgn(g))
T<n(Y) Y Ton41(Y) —— T(r<n(Y))

is a morphism of triangles. Therefore,

T<n(f) +7<n(9) = 7<n(f+9)  and  Tonp1(f) + 72041(9) = 201 (f + 9)

and the functors are additive. O

In particular, this proves that the core A is an additive subcategory of D.
Now we want to study the compositions of truncation functors.
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1.2.10. LEMMA. Let m,n € Z, m <n. Then:
(i)
T<m © T<n = T<n ©T<m = T<m;
(i)
Tom O Ton = Ton 0 Tom = Top.

PROOF. Since m < n, we have D™ C D=". Therefore, T<,,(X) is in D=" and
the adjointness morphisms 7<,(T<m (X)) — 7<m(X) is an isomorphism by 1.2.7.

Since the adjointness morphism is a natural transformation, we have the com-
mutative diagram

(X)) —— X

I I

T<m(T<n(X)) ———= 7<m(X)

Tgm(i)
For any A in DS™ it leads to the commutative diagram

Hom(A,7<,(X)) ——  Hom(A4,X)

l l

Hom(A, 7<m (7<n (X)) —— Hom(A, 7<m (X))
On the other hand, by the adjointness, we have
Hom(A, 7« (X)) = Hom(A, X) = Hom(A, 7<, (X)) = Hom(A4, 7<m (7<n(X))),

ie., T<m(T<n(X)) — T<m(X) is an isomorphism.
The proof of (ii) is analogous. d

1.2.11. LEMMA. Let m,n € Z, m < n. Then:
T<m © T>n = T>p 0 T<m = 0.
ProOOF. By 1.2.5, we have the distinguished triangle

T>m+1 (Tzn(X))

(1]

T<m(T2n (X)) T>n(X)

By 1.2.10, the morphism 75, (X) — T>m+1(7>, (X)) is an isomorphism. By 1.4.4
in Ch. 2, this implies that 7<,, (7>, (X)) = 0.
The proof of the other isomorphism is analogous. ([l

It remains to study 7<p, o 7>y and 7>, © T<y, if m > n.

1.2.12. LEMMA. Let m,n € Z be such that m > n. Let X be in D. Then
Tem(Ton(X)) and 750 (T<m (X)) are in D™,
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PrOOF. Consider the truncation distinguished triangle for 7>, (X)

7'>m+1 7'>n

N

Since m + 1 > n, by 1.2.10 we have 75,41 (75, (X)) = Tom41(X), i€,

7—>m+1

N

is a distinguished triangle. By turning it, we get the distinguished triangle

PN

Clearly, since T>p,41(X) is in D=™F 75,1 (X)[—1] is in D=2, In particular,
Tsm+1(X)[—1] is in D=". On the other hand, 7>, (X) is also in D=". Hence, by
1.2.8, we conclude that 7<,, (7>, (X)) is in D=". This implies that 7<,, (7>, (X)) is
in DZ" ND=™ je., it is in D™,

Analogously, consider the truncation distinguished triangle

7—<m T>n

7-2 m—+ 1

7_>n 7—<'rn

AN

T<n-—1 7_<m

for 7<p,(X). Since n — 1 < m, by 1.2.10, we have 7<,_1(T7<m(X)) = T<n_1(X).
Therefore, we have a distinguished triangle

7'>n T< m

AN

T<n— l
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By turning it, we get the distinguished triangle

T<n-1(X)[1]

(1

T<m(X) Ton(T<m (X))

Clearly 7<,,(X) is in D=™. On the other hand, 7<,_1(X) is in D="~!. Hence,
T<n—1(X)[1] is in D="~2. This in turn implies that 7<,,_1 (X)[1] is also in D=™. By
1.2.8, we conclude that T<,, (7., (X)) is in D=™. Therefore, it is also in D™, O

Let X be an object in D. Then we have the truncation morphisms

Tem(X) —— X —2 s 7, (X).

By 1.2.4, this composition 7<,, (X) — 7>, (X) admits unique factorization through
To>n(T<m (X)), i-e., we have the following commutative diagram:

Tem (X) ——T>n(X)

L

T>n(T<m (X))

where the vertical arrow is the truncation morphism 7<,,(X) — 7>, (7<m(X)). By
1.2.12, 755 (T<m (X)) is in D=". Therefore, by 1.2.4, the morphism 7, (T< (X)) —
T>n(X) factors uniquely through 7<,, (7>, (X)), i.e., we have the commutative di-
agram

T<m(X) T>n(X)
N
Ton(T<m (X)) — T<m (720 (X))
where both vertical arrows are truncation morphisms.

1.2.13. LEMMA. Let m,n € Z be such that m > n. Let X be an object in D.
Then there exists a unique morphism ¢ : Tsn(T<m (X)) — T<m (750 (X)) such that
the diagram

Ton(Tem(X)) —— > e (720 (X))

is commutative. This morphism is an isomorphism.

PROOF. The existence of ¢ and its uniqueness follows from the above discus-
sion. It remains to prove that ¢ is an isomorphism.
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Let b : 7<;,—1(X) — X be the truncation morphism. Then, by 1.2.4, it factors
through 7<,,(X), i.e., we have the commutative diagram

T<n—1(X) LN e

| A

T<m(X)

where g : 7<;,(X) — X is also the truncation morphism. These morphisms
determine the following diagram

Ten1(X) —— 7en(X) —— Ton(rem(X)) —— T(ren_1(X))

id@,ﬁl(ml 9l lidm@Hw»

Tena(X) — X (X)) —— T(ren_1 (X))

/| idx | |

Tem(X) —= X —— Tomp(X) —— T(rzm(X))

where the squares in the first column commute, the first row is the distinguished
triangle from the proof of 1.2.12 and the last two rows are truncation distinguished
triangles. This diagram can be completed to an octahedral diagram

Ten1(X)  —T 7en(X) —— Tou(rem(X)) ——  T(ren_1(X))

idfsn,l(X)l gl l lidTvSn,l(X))

e (X)) — X 5 (X)) —— T(r<n(X))

7| idx | |7

Tem(X)  — X —— mpn(X) —— T(rem(X))

m
| P |

Ton(Tem (X)) — (X)) —— Tom(X)  —— T(mzn(t<m(X)))
From the top square in the middle row we see that the morphism 7>, (T<m (X)) —
T>n(X) is the composition of ¢ and the truncation morphism 7<,,(7>,(X)) —
T>n(X). Therefore, we have a morphism of distinguished triangles

Ton(T<m(X)) —— 720 (X) —— Tom+1(X) —— T(72n(7<m (X))

d{ idgnml lid@nm lT(d))

T<m(T2n (X)) —— >0 (X) —— opp1(X) —— T(r<m(m20(X)))
where the top row is the last row of the octahedral diagram and the last row is
the distinguished triangle from the proof of 1.2.12. Since two of the vertical arrows

are isomorphisms, the third must be too by 1.4.2 in Ch. 2. Therefore, ¢ is an
isomorphism. O

Clearly, the isomorphisms ¢ : 7>, (T<m (X)) — T<m(7>n(X)) define an iso-
morphism of the functor 7>, o T<y, into 7<p, 0 T>p.
Therefore, we proved the following result.
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1.2.14. LEMMA. Let m,n € Z be such that m > n. Then the functors T>, 0T<y,
and T<m © T>p are isomorphic.

We define the functor H° : D — A by
H(X) = 1<0(720(X)) = 7>0(7<0(X)).

By 1.2.9, H? is an additive functor.
Now we want to prove that A is abelian.
First we want to prove that any morphism in A has a kernel and a cokernel.

1.2.15. LEMMA. Let f: X — Y be a morphism of two objects X and Y in A.
Consider the distinguished triangle

Z

where Z is a cone of f. Then Z is in DI=10),

Proor. By turning this triangle we get the distinguished triangle

T(X)
Y 7

Clearly, Y is in D<g. Since X is also in D=°, T(X) is in D="1. Since we have
D<~1 c D=V we conclude that both T(X) and Y are in D=Y. By 1.2.8 it follows
that Z is in D=0,

On the other hand, X and Y are in D=°. Therefore, T(X) is in D=~1. On the
other hand, since D=1 D D20 Y is also in D=~!. It follows that Z is in D=1
Therefore, Z is in D101, O

By 1.2.15, it follows that Z[—1] is in DI%!. Therefore,
K = H°(Z[-1]) = <0(r>0(Z[-1])) = m<0(Z[~1])

is in A. Also,

C = H"(Z) = m>0(r<0(Z)) = m20(Z)
is in A. In addition, we have the natural morphisms

K =71<(Z]-1) — Z[-1] — X
which we denote by k; and
Y —Z—1mZ)=C

which we denote by c.
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By 1.2.5, we have a distinguished triangle
m>1(Z[-1])

T<o(Z[-1]) Z[-1
By definition, K = 7<¢(Z[—1]). On the other hand,
>1(Z[-1]) = 7>0(Z)[-1] = C[-1].
Hence, we have the following statement.

1.2.16. LEMMA. We have a distinguished triangle

Cl-1]
K Z[-1]

where the arrows are given by truncation morphisms.

Analogously, we have a distinguished triangle

T>0

(Z)
(2) z

By definition, C' = 7>¢(Z). On the other hand,
T<-1(Z) = <0 (Z[-1])[1] = K[1].

T<-1

Hence, we have the following statement.

1.2.17. LEMMA. We have a distinguished triangle

C
AN
Kl|—— =7

where the arrows are given by truncation morphisms.

1.2.18. LEMMA. (i) (K,k) is a kernel of f : X — Y
(ii) (C,c) is a cokernel of f: X — Y.
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PROOF. (i) By definition, we have the diagram
K—Z-1]—X—Y

where the composition of the first two arrows is k and the third arrow is f. Since
the composition of two consecutive arrows in a distinguished triangle is 0, this
composition is 0, i.e., fok = 0.

By 1.2.16, we have a distinguished triangle

Cl=1]
K Z[—1]

Clearly, C[—1] is in D=1 and C[-2] is in D=2. Therefore, for any U in D=°
Hom(U, C[—1]) = Hom(U,C[-2]) =0

by 1.2.3. From the long exact sequence 1.4.1 in Ch. 2, we see that
0 = Hom(U, C[-2]) — Hom(U, K) — Hom(U, Z[—1]) — Hom(U, C[-1]) = 0.

Therefore, the natural morphism induced by composition with the truncation mor-
phism K — Z[—1] induces an isomorphism Hom(U, K) — Hom(U, Z[-1]).
If we consider now the distinguished triangle

AN

X—Y

the corresponding long exact sequence 1.4.1 in Ch. 2 is
-+ = Hom(U, Y[~1]) — Hom(U, Z[~1]) — Hom(U, X) L% Hom(U, V) — ...

Since U is in D=Y and Y[—1] is in D=1, by 1.2.3, we see that Hom(U, Y [-1]) = 0.
Moreover, by the above remark we get the following exact sequence

0 — Hom(U, K) % Hom(U, X) £ Hom(U, Y).

Assume that A isin A and j : A — X is such that foj = 0. Then, f.(j) =0
and from the exactness of the above sequence we see that j = k. (i) = ko4 for some
i: A — K. Therefore, the pair (K, k) is a kernel of f.

(ii) By definition, we have the diagram

X —Y —7—C

where the first arrow is f and the composition of the last two arrows is c¢. Since
the composition of two consecutive arrows in a distinguished triangle is 0, this
composition is 0, i.e., co f = 0.
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By 1.2.17, we have a distinguished triangle
C

K1 Z

Clearly, K[1] is in D=71 and K|[2] is in D<~2. Therefore, for any U in D=°
Hom(K([1],U) = Hom(K[2],U) =0
by 1.2.3. From the long exact sequence 1.4.1 in Ch. 2, we see that
0 = Hom(K[2],U) — Hom(C,U) — Hom(Z,U) — Hom(K|[1],U) = 0.

Therefore, the natural morphism induced by composition with the truncation mor-
phism Z — C induces an isomorphism Hom(C,U) — Hom(Z,U).
If we consider now the distinguished triangle

AN\

the corresponding long exact sequence is

Y

-+ = Hom(X[1],U) — Hom(Z, U) — Hom(Y, U) < Hom(X,U) — ...

Since U is in DZ° and X[1] is in D=7!, by 1.2.3, we see that Hom(X[1],U) = 0.
Moreover, by the above remark we get the following exact sequence

0 — Hom(C, U) < Hom(Y, U) L Hom(X, U).

Assume that A isin A and p: Y — A is such that po f = 0. Then, f*(p) = 0 and
from the exactness of the above sequence we see that p = ¢*(q) = ¢ o ¢ for some
q: C — A. Therefore, the pair (C,¢) is a cokernel of f. O

It remains to construct the canonical decomposition of the morphism f : X —
Y.
Let J be a cone of the cokernel ¢ : Y — C. Then we have the distinguished

triangle
J
% \
Y ————C

and, by 1.2.15, J € DI=10. In particular, J is in D=2~ = T(D=2°). Hence, there
exists I in D=0 such that J = T(I).
Consider the natural morphisms

h

Y z 15 ¢,
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their composition is ¢. Then this leads to the octahedral diagram

h T(X) -T(f)

lfT(u) lT(idy)

— ) 2 7y

Y Z T(Y)
| |

Y C

T I B 1
Z C (K) 9 7(2)
| |

idﬂ(x)l lT(h)
—T(u)

T(X) —= T(I) —— T?*(K) —2— T?*(X)

|

Here, the first row is the turned distinguished triangle corresponding to f. The sec-

ond row is the distinguished triangle considered above. The third row is the turned

distinguished triangle from 1.2.17, with the truncation morphism ¢ : K[1] — Z.
This implies that the last arrow in the fourth distinguished triangle is

w=—T(h)oT(i) = —T(hoi) = —T?(k).

By turning the distinguished triangle in the last row three times we get the distin-
guished triangle

Since X and K are in A, X is in D=Y and T(K) is in D=~! € D=0. Therefore, by
1.2.8, I is in D=0, Since we already established that I is in D=°, we conclude that
Iisin A.

By turning this distinguished triangle we get

I
[1] \
X.
—k

Consider the isomorphism of triangles

K

K—fyx 571 "5 T(K)

_idKJ, idXJ, J/id[ J/_idT(K) 3

K —— X I T(K)
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AN

K4>X

it implies that

is a distinguished triangle, i.e., I is a cone of k. By 1.2.18, we see that (I,u) is a
cokernel of k.
Analogously, the distinguished triangle

T(I)
(1]
Y C

implies that (I, p) is the kernel of c.

Moreover, from the commutativity of the last square in the first row of the
octahedral diagram, we conclude that f = powu.

Therefore, coim f = im f and f = p o u is the canonical decomposition of the
morphism f. This proves that A is abelian. This completes the proof of 1.2.1.

1.2.19. THEOREM. The functor H® : D — A is a cohomological functor.

ProOF. Clearly, it is enough to show that for any distinguished triangle

A
h g
(1]
X Y,
f

0
H"(g)

the sequence
HO H(), 70
(X) ——= H°(Y)
is exact. We prove this in a number of steps.
(a) First we assume that X, Y and Z are in D=°. Let U be in A. Then, by

1.4.1 in Ch. 2, we have the exact sequence

Hom(U, Z|~1]) —— Hom(U, X) —L— Hom(U,Y) —%— Hom(U, Z)

Since U is in D=0 and Z[—1] in D=1, we see that Hom(U, Z[—1]) = 0. Therefore,
we get the exact sequence

HO(Z)

0 —— Hom(U,X) —— Hom(U,Y) —%— Hom(U, Z)
On the other hand, by 1.2.4, we have
Hom 4 (U, H°(X)) = Homp(U, H’(X)) = Homp (U, 7<0(X)) = Homp (U, X);
since HY(X) = 7<o(1>0(X)) = 7<0(X) by 1.2.7. Analogously, we have

Hom (U, H°(Y)) = Homp(U,Y) and Hom4 (U, H°(Z)) = Homp (U, Z).
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Hence, we see that

0 HY(f)- 0 H°(g)« 0
0 —— Hom(U, H*(X)) ——= Hom(U, H’(Y)) ——= Hom(U, H°(Z))

is exact. This clearly implies that

HO(

0 f) 0 H(g) 0
0 —— HOX) — mo(y) —% HO(2)

is exact.
(b) Now we assume that X, Y and Z are in D=°. Let U be in A. Then, by
1.4.1 in Ch. 2, we have the exact sequence

Hom(Z,U) —*— Hom(Y,U) —— Hom(X,U) —— Hom(Z[1],U)

Since U is in D=0 and Z[1] in D="1, we see that Hom(Z[1],U) = 0. Therefore, we
get the exact sequence

Hom(Z,U) —“— Hom(Y,U) —— Hom(X,U) — 0
On the other hand, by 1.2.4, we have

Hom 4 (H°(X),U) = Homp(H®(X),U) = Homp(750(X),U) = Homp (X, U);
since HY(X) = 750(1<0(X)) = 7>0(X) by 1.2.7. Analogously, we have
Hom4(H°(Y),U) = Homp(Y,U) and Hom4(H®(Z),U) = Homp(Z,U).

Hence, we see that

Hom( EO H(g)" 0 H ()" 0
om(H*(2),U) ——% Hom(H'(Y),U) L% Hom(H*(X),U) — 0

is exact. This clearly implies that

0 HO(f) 0 0
HY(X) —5 H (YY) —=
is exact.
(c) Consider now only that Z is in D=9, Let W be in D=~1. Then Hom(W, Z) =
Hom(W, Z[—1]) = 0 since Z[—1] is in D=!. Therefore, by 1.4.1 in Ch. 2, we get the
exact sequence

0 = Hom(W, Z[~1]) —— Hom(W, X) —— Hom(W,Y) —— Hom(W, Z) = 0,

ie., f« : Hom(W, X) — Hom(W,Y) is an isomorphism. Consider now the com-
mutative diagram

rea(x) =0 ()
which leads to the commutative diagram
Hom(W, 7<—1(X)) =% Hom (W, <1 (v))

! l

Hom (W, X) f—> Hom(W,Y)

*
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By 1.2.4, the vertical arrows are isomorphisms. Hence, we conclude that all arrows
are isomorphisms. Since W is arbitrary, it follows that 7<_1(f) : 7<_1(X) —
T<—1(Y) is an isomorphism.

Consider now the morphisms

e (X)) 4/ x Ly
and their composition c¢. This leads to an octahedral diagram

Teo1(X) —— X —— m(X) —— T(r<—1(X))

1
idrg,1<x>l fl l lidﬂ@,l(x))

— T O(Y) s T(Tgfl(Y))

lT(i)

Here the first row is the truncation triangle corresponding to X, and the second row
is the truncation triangle corresponding to Y with 7<_1(Y") replaced with 7<_1(X)
using the above isomorphism. The third row is the distinguished triangle attached
to f.

The distinguished triangle in the last row has the property that all of its vertices
are in D20, Therefore, the case (a) applies to this situation. By applying the
functor H? to the last two rows in the octahedral diagram, we get the following
commutative diagram

0 0
HO(X) ECIN HO(Y) 9, go(z)

l 1 Jie

0 —— H%7m>0(X)) ——— HY(7m>o(Y)) —— HY(Z
(m20(X)) HO(7>0(f)) (20(Y) HO(7>0(9)) -

where the first two vertical arrows are induced by the truncation morphisms. Since
H® = 79 0 70, these arrows are obviously isomorphisms. Hence, we see that

0 0
H°(f) H"(g)

0 — HO(X) HOY) H(Z)

is exact.

(d) Consider now only that X isin D=°. Let W be in D=!. Then Hom (X, W) =
Hom(X[1], W) = 0 since X[1] is in D=~!. Therefore, by 1.4.1 in Ch. 2, we get the
exact sequence

0 = Hom(X[1], W) — Hom(Z, W) —%— Hom(Y,W) — Hom(X, W) = 0,
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ie., g* : Hom(Z, W) — Hom(Y, W) is an isomorphism. Consider now the com-
mutative diagram

9

A
1Y) —— 7>1(2)
7<1(9)

which leads to the commutative diagram

7'21(9)*
e

HOII](TZl(Z), W) HOHl(TZl(Y),W)

| l

Hom(Z, W) — Hom(Y, W)
p

By 1.2.4, the vertical arrows are isomorphisms. Hence, we conclude that all arrows
are isomorphisms. Since W is arbitrary, it follows that 7>1(g) : 7>1(Y) — m>1(2)
is an isomorphism.

Consider now the morphisms

Yy 2= 72 1 10(2)

and their composition d. This leads to an octahedral diagram

’LdyJ/ ql lT(u) lidT(y)
—T(7
Y s () —— Ta=oY) /% 1(y)

gl idle(Z)l lT(v) lT(Q)

Z —1 i (2) —— T(reo(2)) —2Y9 1(2)

hJ/ l idTgo(z)l J{T(h)

T(X) —— T(r<0(Y)) ——— T(1<0(2)) ——— T*(X)
T (u) T(v) T (w)

Here the first row is the turned distinguished triangle corresponding to f. The sec-
ond row is the turned truncation triangle corresponding to Y with 7>1(Y") replaced
with 7<_1(Z) using the above isomorphism. The third row is turned truncation
triangle attached to Z. The morphisms ¢ : 7<o(Y) — Y and j : 7<¢(Z) — Z are
the canonical truncation morphisms.

By turning the distinguished triangle in the last row three times we get the
distinguished triangle
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which has the property that all of its vertices are in D=Y. Therefore, the case (b)
applies to this situation.
Consider the diagram

X 5 7o0(Y) — 7<0(2) —= T(X)

a | [z

where the top row is the above distinguished triangle and the bottom row is the
distinguished triangle corresponding to f. From the octahedral diagram we see that
this diagram is a morphism of triangles.

By applying the functor H° to this diagram, we get the following commutative
diagram

HY(X) —— H%7m>o(Y)) —— H%1>0(Z2)) —— 0

- | |
Y

H H°
BO(x) LDy goyy L@ oy
where the last two vertical arrows are induced by the truncation morphisms. Since
HO = T>0 © T<o, these arrows are obviously isomorphisms. Hence, we see that

HO(f) H°(g)

HO(X) HO(Y) HO(Z) — 0
is exact.

(e) Now we consider the general case. Consider the morphisms

f

Too(X) —— X Y

and denote by ¢ their composition. Then we have the corresponding octahedral
diagram

Too(X) —— X 750(X) —— T(r<0(X))

idr_q(x) fl lidwrsoo{))

(&

T< O(X E— T(TS()(Y))

|
lv lT(i) ;
zdzl

f h

— TX)

l

TZl(X) w A _— T(TZI(X»

where the first row is the truncation triangle for X, the second row is the dis-
tinguished triangle attached to ¢ and the third row is the distinguished triangle
attached to f.

By (d), from the distinguished triangle in the second row we get the exact
sequence

L -l
L

0
HO(r0(X)) 21 mogyy 220, gowy — g
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Moreover, ¢ = foi, and H°(i) : H’(7<o(X)) — H°(X) is an isomorphism.
Therefore, we have the exact sequence

0 0 u
Ho(x) LY goyy M, gowy 5 g

In particular, H°(u) is an epimorphism. On the other hand, by turning the distin-
guished triangle in the last row, we get the distinguished triangle

IKTZl

(X))
w Z

where T(7>1(X)) is in D=0, By (c), we see that

HO(v)
E—

0 —— HO(W) HY(Z) —— H°(T(r>1(X)))

is exact. In particular, H%(u) is a monomorphism. Since from the square in the
middle of the octahedral diagram we see that g = v o u, we conclude that H%(g) =
H°(v) o H%(u) and ker H°(g) = ker H°(u). Hence
0 0
HO(x) Dy goyy LY oz

is exact. O
1.2.20. LEMMA. Let
0 x Jtoyv 4.7 0

be an exact sequence in A. Then a cone of f : X — Y is equal to Z, and we have
the distinguished triangle

attached to f. Since f is a monomorphism, ker f is 0 and from the arguments in the
proof of 1.2.18 we see that H~1(C') = 0. Therefore, by 1.2.15, C is in .A. Moreover,
the pair (C, h) is a cokernel of f. On the other hand, since the above sequence is
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exact, (Z,¢g) is a cokernel of f. Therefore, there exists an isomorphism j : Z — C
such that h = j o g. It follows that we have the commutative diagram

Xx Loy 2,7 M,px
lidx iidy jl lidT()ﬂ
X Y c T(X)

f h k

where all vertical arrows are isomorphisms. Since the bottom row is a distinguished
triangle, the top row is also a distinguished triangle. (I

1.2.21. LEMMA. Let X be an object of D andn € Z. Let i : 7<,(X) — X and
q: X — >n(X) be the truncation morphisms. Then:

(1) HP(i) : HP(1<pn(X)) — HP(X) is an isomorphism for all p < n and
HP(1<n(X)) = 0 for p > n;
(ii) HP(q) : HP(X) — HP(m>n(X)) is an isomorphism for all p > n and
HP(15,(X)) =0 for p < n.

PROOF. First, if p > n, HP (1<, (X)) = 7<p(75p(7<n(X)))[p] = 0 by 1.2.11.
Analogously, if p < n, H?(75,(X)) = T>p(7<p(7>n(X)))[p] = 0 by 1.2.11.

On the other hand, if p < n, 7<,(7<, (X)) % T<p(X) is an isomorphism
by 1.2.10. Therefore,

H(7<n (X)) = 72p(7<p(T<n (X)) [p] — 72p(7<p (X)) [p] = HP(X)

is an isomorphism.

Analogously, if p > n, 7>,(X) M) T>p(T>n (X)) is an isomorphism by 1.2.10.
Therefore,

HP(X) = 7<p(2p(X))[p] — T<p(T2p(72n (X)) [p] = HP (720 (X))

is an isomorphism. O

1.2.22. COROLLARY. Letn € Z.

(i) Let X be an object in D<". Then, HP(X) =0 for p > n.
(ii) Let X be an object in D=". Then, HP(X) =0 for p < n.

PrROOF. If X is an object in D=", i : 7<,(X) — X is an isomorphism.
Therefore, HP(i) : HP (1<, (X)) — HP(X) is an isomorphism for all p € Z. On
the other hand, by 1.2.21, H? (1<, (X)) = 0 for p > n.

If X is an object in D=", q : X — 7>,(X) is an isomorphism. Therefore,
HP(q) : H?(X) — HP(1>,(X)) is an isomorphism for all p € Z. On the other
hand, by 1.2.21, HP(7>,(X)) =0 for p < n. O

1.2.23. LEMMA. Letn € Z. Let X be an object of D such that H?(X) = 0 for
allp e Z. Then:
(i) if X is in D", X is in D=P for all p € Z;
(ii) if X is in DZ", X is in DZP for all p € 7Z.
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PROOF. Assume first that X is in D=<". If X is also in D=P for p < n, we can
consider the distinguished triangle

7>p(X)
/ \
(X) X

of truncations. Since X is in D=P, by 1.2.7, we know that 7<,(X) — X is an
isomorphism. Therefore,

T<p-1

HP(X)[p] = m5p(7<p(X)) — 7>p(X)

is an isomorphism. Hence, we have the distinguished triangle

HP(X)[p]
(X) X

Since HP(X) = 0, we see that 7<,_1(X) — X is an isomorphism and X is in
D=rP~1 By downward induction in p we conclude that X is in D=P for all p € Z.

Assume now that X is in DZ". If X is also in DZP for some p > n, the
distinguished triangle of truncations

T<p-1

T>p+1 (X)
/ \
(X) X

T<p(X) — T<p(72p(X)) = HP(X)[p]

T<p

and the isomorphism

imply that

T>p+1

(X)
/ \
HP(X)[p] X

is a distinguished triangle. Since H?(X) = 0, we see that X — 7>,41(X) is an
isomorphism and X is in DZP*!. By induction in p we conclude that X is in DZP
for all p € Z. [
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1.3. Nondegenerate and bounded t-structures.

1.3.1. LEMMA. Let D be a triangulated category. Let (D=9 D=°) be a t-structure
on D. Then the following conditions are equivalent:
(i)
[ ObD=" = {0} and () ObD=" = {0}.
ne”Z nez
(ii) For any X in D, HP(X) =0, for all p € Z, implies X = 0.

PROOF. (i)=-(ii) Assume that (i) holds and X is an object of D with H?(X) =0
for all p € Z. Consider the distinguished triangle of truncations

T>1

(X)
T<0(X) X

By 1.2.21, we see that HP(7<o(X)) = HP(7>1(X)) = 0 for all p € Z. Hence, by
1.2.23 , 7<o(X) is in D=P and 751(X) = 0 is in D=P for all p € Z. By (i), we see
that 7<o(X) = 7>1(X) = 0. By turning the triangle, we see that X is isomorphic
to a cone of the zero morphism 0 — 0. By (TR1b), this implies that X = 0.

(ii)=(i) Let X be an object of D=P for all p € Z. Then, by 1.2.7, we have
T>p+1(X) = 0 for all p € Z. This implies that HPTH(X) = 7<p1(m5p+1(X))[p+1] =
0 for all p € Z. Hence, X = 0 by our assumption. This proves that [, ., Ob D =
{0}

Let X be an object of D=P for all p € Z. Then, by 1.2.7, we have 7<,_1(X) = 0
for all p € Z. This implies that HP~}(X) = 7>p-1(7<p—1(X))[p — 1] = 0 for all
p € Z. Hence, X = 0 by our assumption. This proves that () ., ObD=" = {0}. O

nez

A t-structure (D=°, D2%) on D satisfying the equivalent conditions of the above
lemma is called nondegenerate.

1.3.2. EXaAMPLE. Clearly, the standard t-structures on the derived category
D*(A) of an abelian category A are nondegenerate.

Let D be a triangulated category. Then ({0}, D) is a t-structure on D. Clearly
D=" = {0} and D=" = D for all n € Z. Therefore, 7<,, = 0 and 7>,, = id for all
n € Z. Moreover, HP = 0 for all p € Z.

Analogously, (D, {0}) is a t-structure on D. Clearly D=" = D and D=" = {0}
for all n € Z. Therefore, 7<,, = id and 7>, = 0 for all n € Z. Moreover, H? =0
for all p € Z.

The last two t-structures are not nondegenerate.

The relevance of nondegeneracy of a t-structure is visible from the next result.

1.3.3. THEOREM. Let D be a triangulated category. Let (D<°, D=%) be a non-
degenerate t-structure on D.
(i) A morphism f : X — Y in D is an isomorphism if and only if all
H"(f): H"(X) — H™(Y) are isomorphisms in A.
(ii) For any n € Z, D=" is the full subcategory of D consisting of all objects
X such that H?(X) =0 for p > n.
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(iii) For any n € Z, D= is the full subcategory of D consisting of all objects
X such that HP(X) =0 for p < n.

PROOF. (i) Clearly, if f is an isomorphism, all H?(f) are isomorphisms.
Assume now that HP(f) : HP(X) — HP(Y') are isomorphisms for all p € Z.
Consider the distinguished triangle

A
%\
X—Y
f

Its long exact sequence of cohomology is

7 1
o HPX) 2D, ey 5 HP(2) = a0 D, gy
hence our assumption implies that H?(Z) = 0 for all p € Z. Since the t-structure
is nondegenerate, we have Z = 0. By 1.4.4 in Ch. 2, this implies that f is an
isomorphism.

(ii) By 1.2.22, if X is in D<", HP(X) =0 for p > n.

Conversely, assume that HP(X) = 0 for p > n. Then, by 1.2.21, H?(q) :
H?(X) — HP?(T>n+1(X)) are isomorphisms for p > n. In particular, H? (T>p41(X)) =
0 for p > n. On the other hand, by 1.2.21, HP(7>,41(X)) = 0 for p < n. Hence, we
have H?(7>p41(X)) = 0 for all p € Z. From the first part of the proof we conclude
that 7>,41(X) = 0. From the truncation distinguished triangle

T>n+1

(X)
/ \
(X) X

and 1.4.4 in Ch. 2 we conclude that 7<,(X) — X is an isomorphism. Hence, X
is in D=".
(ili) The argument is analogous to the proof of (ii). O

T<n

1.3.4. LEMMA. Let D be a triangulated category. Let (D=9, D=°) be a t-structure
on D. Then the following conditions are equivalent:

(i)
|J ObD="=0ObD and | J ObD>" = ObD.
ne”Z neZ
(ii) The t-structure is nondegenerate and for any X in D, HP(X) are nonzero
for finitely many p € Z.

PRrROOF. (i)=-(ii) Let X be an object in D such that H?(X) = 0 for all p € Z.
By our assumption, there exist n,m € Z such that X is in D" and DZ™. By
1.2.23, it follows that X is in D<" and D2" for all n € Z. In particular, X is
in D<7! and D2°. Hence, Hom(X,X) = 0 and X = 0. This proves that the
t-structure is nondegenerate.
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Let X be an arbitrary object in D. Then X is in D<" and D2™ for some
n,m € Z. By 1.2.22, HP(X) = 0 for p > n and p < m. Therefore, HP(X) # 0 for
finitely many p € Z.

(ii)=(i) Let X be an object in D. By our assumption, there exist n € Z, such
that H?(X) = 0 for all |p| > n. By 1.2.21, this implies that H?(7<_, (X)) =0 an
HP(7>,(X)) =0 for all p € Z. Since the t-structure is nondegenerate, 7<_,(X) =
T>n(X) =0. By 1.2.7, X is in D=1 and D=1, O

A t-structure (D=°, D=%) on D satisfying the equivalent conditions of the above
lemma is called bounded.

1.3.5. EXAMPLE. Let A be an abelian category. Then the standard ¢-structure
on the bounded derived category D’(A) is bounded. The standard t-structures on
Dt (A), D~ (A) and D(A) are not bounded.

Let D be a triangulated category with a nondegenerate t-structure(D<?, D=0).
Let D? be the full subcategory consisting of all X in D such that HP(X) # 0 for
finitely many p € Z. Clearly, D? is strictly full subcategory. Assume that

AN

is a distinguished triangle in D and that two of its vertices are in D°. Then,
from the long exact sequence of cohomology we see that the third vertex is also
in D’. Therefore, D is a triangulated subcategory. Let X be an object in DP.
Then, by 1.2.21, 7<,(X) and 75, (X) are also in D° for all n € Z. This implies that
(DPND=Y, D’ ND=20) is a t-structure on D°. Clearly, the truncation functors and the
cohomology functor H for this t-structure are the restrictions of the corresponding
functors on D. Also, from the above result we see that this ¢-structure on D is
bounded. We call D’ the subcategory of cohomologically bounded objects in D.

X Y

1.4. Left and right t-exact functors. Let C and D be two triangulated
categories with ¢t-structures (C=%,C=%) and (D=<%, D=%). An exact functor F : C —»
Dis

(i) left t-evact if F(C=°) c D=9
(ii) right t-ezact if F(C=Y) C D=0;
(iii) t-exact if it is both left and right t-exact.

1.4.1. EXAMPLE. Let A and B be two abelian categories. Let F : A — B
be an exact functor. By abuse of notation, let F' : D*(A) — D*(B) denote also
the corresponding exact functor between derived categories. Then F' is t-exact for
standard t-structures on D*(.A) and D*(B).

Assume that A has enough injectives and that F' : A — B is left exact. Then,
the right derived functor RF : DT (A) — D™ (B) is exact. Moreover, it is left
t-exact for the standard ¢-structures on Dt (A) and DT (B).

Assume that A has enough projectives and that F' : A — B is right exact.
Then, the left derived functor LF : D~ (A) — D~ (B) is exact. Moreover, it is
right t-exact for the standard t-structures on D~ (A) and D~ (B).
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Let A and B be the cores of C and D. Then we can define the functor
PF=HF:A— B.
Clearly, PF' : A — B is an additive functor. Let

0 — s X T v 9,7 4o

be a short exact sequence in A. Then, by 1.2.20, we have a distinguished triangle

AN

X4>Y

Since F is exact, this leads to a distinguished triangle

A

F(f)

in D. Since HY is a cohomological functor, it follows that

0 0
H™(F(F)) H™(F(g))

. —— HYF(X)) HO(F(Y)) HF(Z)) —— ...
is exact. In particular, the sequence

PE(f) PF(g)

PR(X) PR(Y) PF(Z)

is exact.

1.4.2. PROPOSITION. Let F': C — D be an exact functor between triangulated
categories C and D with t-structures (C=°,C2°) and (D=°, D=0).

(i) If F is left t-exact, the functor PF : A — B is left exact. Moreover,
H(F(X)) =PF(H°(X))

for any X in C=9.
(ii) If F is right t-ezxact, the functor PF : A — B is right exact. Moreover,

H°(F(X)) ="F(H*(X))

for any X in C=0.
(iii) If F is t-exact, PF : A — B is exact. Moreover,

PF(X) = F(X)
for all X in A. In addition,
F(H"(X)) = H"(F(X))
forallm € Z and X inC.
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PROOF. Let

0 — X 1 sy 9,7 49

be a short exact sequence in A. If F is left t-exact, F(Z) is in D= Hence,
H=Y(F(Z)) =0 by 1.2.22. By the above long exact sequence we see that

F(f) Flo),

0 —— PF(X)

is exact. This implies that PF is left exact.
On the other hand, for any X in CZ° we have the truncation distinguished
triangle

PEY) F(2)

7>1(X)
(X) X

where 7<0(X) = 7<o(m>0(X)) = H°(X). By applying F to it, we get the distin-

guished triangle
F(r>1(X))
H°(X)) F(X)

in D. Since F is left t-exact, F(CZ') C DZ!. Therefore, by 1.2.22, from the long
exact sequence of cohomology we get that

0 —— HY(F(H°(X))) —— HY(F(X)) —— HY(F(m>1(X))) =0

T<0

7'21

F(

is exact; i.e.,
PF(H(X)) = H°(F(H*(X)) = H(F(X)).
If F is right t-exact, F(Z) is in D=°. Hence, H'(F(X)) = 0 by 1.2.22. By the
above long exact sequence we see that

PE(f) PF(g)

PF(X) PEY)

is exact. This implies that PF is right exact.
On the other hand, for any X in C=° we have the truncation distinguished

triangle
7>0(X)
% \
(X) X

where 750(X) = 750(17<0(X)) = H°(X). By applying F to it, we get the distin-

guished triangle
F(H"(X))
/ \
(X)) F(X)

PF(Z) —— 0

T<-1

F(Tg_l
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in D. Since F is right t-exact, F(C<~1) C D=~!. Therefore, by 1.2.22, from the
long exact sequence of cohomology we get that

0=HF(r<-1(X))) —— H°(F(X)) —— H°(F(H(X)) —— 0
is exact; i.e.,

PR(H(X)) = H°(F(H°(X)) = H*(F(X)).

If F is t-exact, F(A) C B and PF(X) = F(X) for X in A. Moreover, by the
above arguments P F' is exact.

On the other hand, the distinguished triangle

7>1(X)
RN
(X) X

leads to the distinguished triangle

F(r21(X))
% \
(X)) F(X)

and F(7<o(X)) is in D=0 and F(7>1(X)) is in D=1. Therefore, by uniqueness of
truncations, we have
T<o(F(X)) = F(1<0(X)) and 751 (F(X)) = F(1>1(X))

Since F' commutes with translations, it follows that it commutes with all truncation
functors. Therefore,

H"(F(X)) = T<n(m2n(F(X)))[n] = F(7<n(m2n(X))[n]) = F(H"(X)).

T<0

F(TSO

O

1.4.3. LEMMA. Let C, D and & be three triangulated categories with t-structures
(€=0,¢=29), (D=0, D2%) and (£<°,£29). Let F :C — D and G : D — & be two
ezact functors.

(i) If F and G are left t-exact, GoF is also left t-exact andP(GoF) = PGoPF.
(ii) If F and G are right t-exact, G o F is also right t-exact and P(G o F) =
PGoPF.

PROOF. (i) assume that ' and G are left t-exact. Then F(CZ°) C D20 and
G(D=%) C £2°. Therefore,
(GoF)(C=) = G(F(C=")) C G(D=") c £=°

and G o F is left t-exact.
Moreover, by 1.4.2, we have

PF(H(X)) = HY(F(X)), PGH°(Y))=H"(F(Y))
for any X in CZ° and Y in D2, Therefore, it follows that
PG(PF(X)) = PG(H(F(X))) = H(G(F(X))) = H°((G o F)(X))

for any X in the core of C. By applying 1.4.2 again, we see that PG(PF (X)) =
P(Go F)(X) for any X in the core of C, i.e., PGoPF =P(Go F).
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(ii) The proof is analogous. O

1.4.4. LEMMA. Let C and D be two triangulated categories with t-structures
(€=9,¢2% and (D=°,D2%). Let F : C — D and G : D — C be two exact
functors. Assume that F is a left adjoint of G. Then the following conditions are
equivalent:

(i) F is right t-ezact;
(ii) G is left t-exact.
If these conditions are satisfied, PF' is a left adjoint of PG.

PROOF. Assume that F is right t-exact. Then we have F(CS~!) c D=~1 It
follows that Homp(F(X),Y) = 0 for any X in C=~! and Y in D2°. By adjointness,
this implies that Home(X,G(Y)) = 0 for all X in CS~! and Y in D=°. By 1.2.4,
it follows that Home (X, 7<—1(G(Y))) = 0 for all X in C=~! and Y in D=0, This
yields 7<_1(G(Y)) = 0 for any Y in D=°. By 1.2.7, G(Y) is in D=Y for any Y in
D=9 ie., G is left t-exact.

Conversely, assume that G is left t-exact. Then we have G(D=!) C C2L. Tt
follows that Home (X, G(Y)) = 0 for any X in C=Y and Y in DZ!. By adjointness,
this implies that Homp (F(X),Y) =0 for all X in C=? and Y in D=!. By 1.2.4, it
follows that Home (751 (F(X)),Y) = 0 for all X in C=? and Y in D=1, This yields
7>1(F(X)) =0 for any X in C=0. By 1.2.7, F(X) is in D= for any X in C=%; i.e.,
F is right t-exact.

Let A and B be the cores of C and D respectively. Then, by 1.4.2, we have

PF(X) = H(F(X)) = m0(F(X))
for X in A. Analogously, for Y in B, we have

PG(Y) = HY(G(Y)) = 7<o(G(Y)).
Therefore, for any X in A and Y in B, we have

Homp(PF(X),Y) = Homp(7>9(F(X)),Y) = Homp(F(X),Y)
= Hom¢ (X, G(Y)) = Home (X, 7<0(G(Y))) = Hom4(X,PG(Y)).
Therefore, PF' is a left adjoint of PG. O

1.5. Induced t-structures. Let D be a triangulated category with t-structure
(D=Y,D=%). Let C be a full triangulated subcategory of D. Clearly, the inclusion
functor from C to D is exact.

Put

= =cnD=’ and ¢=° =CND".
1.5.1. LEMMA. Let D be a triangulated category with t-structure (D=9 D=0).

Let C be a full triangulated subcategory of D. Then, the following conditions are
equivalent:

(i) (€=°,C=20) is a t-structure on C.
(ii) There exists a truncation functor <o on D such that T<o(C) C C.
(iii) There exists a truncation functor T>9 on D such that 7>0(C) C C.

ProoOF. Clearly, since C is translation invariant, we have

Czl =720 =CcnT (D) =¢NDZ c cND0 =20



1. t-STRUCTURES 179

and
CSt=171C= =cnT 1 (D) =CcnDs 5 CcnD=0 ==Y,
Hence, (t1) is satisfied.
The condition (t2) is obviously satisfied.
To establish (t3) we have to show that for any X in C there exists a distinguished

triangle
B
A \

A—m— X

with 4 in C=0 and B in C=1. If 7<((X) is in C, we can put A = 7<(X). Since C
is triangulated subcategory, there exists B in C such that

B
% \
TSO(X) X

is a distinguished. Clearly, 7<o(X) is in C N D=? = €= and B is isomorphic to
7>1(X) which is in D=1, Therefore, B is in C N D=t = C=1.

Analogously, if 75o(T(X)) is in C, its translation T~ (7>0(T(X))) is in C. We
can put B = T~ (75o(T(X)). Clearly, by 1.2.6, T~ (7>0(T(X)) is isomorphic to

7>1(X) in D. Hence,
B
% \
(X)— X

is a distinguished triangle in D. Since C is a triangulated subcategory, there exists

A in C such that
B
ZERN
A X

is a distinguished triangle in C. Clearly, A is isomorphic to 7<o(X). Hence, it is in
CN D=0 ==Y On the other hand, B is isomorphic to 7>1(X) which is in D=1,
Therefore, B is in CN D2 = C=1.

It follows that (ii) and (iii) imply (i). On the other hand, if (C=°,C=%) is a
t-structure, by the construction of the truncation functors on D, we can construct
them so that they leave C invariant. (]

T<0

If (C=9,C=2%) is a t-structure on C, it is called the induced t-structure on C.
Clearly, if C is equipped with the induced ¢-structure, the inclusion functor from C
into D is t-exact.

1.5.2. LEMMA. Let D be a triangulated category with t-structure (D<°,D=9).
Let C be a full triangulated subcategory of D with t-structure (C<°,C=%). Then the
following conditions are equivalent:
(i) The t-structure (C=°,C=%) on C is induced.
(ii) The inclusion functor from C into D is t-exact.
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PROOF. We already stated that (i) implies (ii).
Assume that the inclusion functor is t-exact. This implies that C=0 ¢ D=0 and
C29 ¢ D20, Therefore we have

CS0 ccnD=Y and C2° c C N D20,

Let 7<,, and 7>, be the truncation functors for C. Let X be an object in C and

T>1(X)

(1] \

T<0(X) X

the truncation distinguished triangle in C. Since the inclusion is t-exact, T<o(X)
is in D=0 and 7>1(X) is in D=1, Therefore, 7<o(X) is isomorphic to T7<¢(X) and
7>1(X) is isomorphic to 7>1(X).

Assume that X is in D=0, Then 751(X) = 0. Hence, 7>1(X) =0 and X is in
C=° by 1.2.7. Therefore, CN D=0 = C=0.

Analogously, if X is in D=%, T=}(X) is in D=!. Therefore, 7<o(T (X)) = 0.
Hence, 7<o(T71(X)) = 0 and T-*(X) is in C=! by 1.2.7. Therefore, X is in C=°.
Hence, it follows that C N D20 = €=, O

If the t-structure on C is induced, its core B is a full subcategory of the core A of
D. Moreover, the truncation functors and the cohomology functors are isomorphic
to the restrictions of the corresponding functors for D.

2. Extensions

2.1. Extensions in the core. Let D be a triangulated category with ¢-
structure (D<=, D2%). Let C be the core of D. Then, by 1.2.1, C is an abelian
category.

By definition, for any two objects X and Y in C we have Hom¢(X,Y) =
Homp (X,Y).

If

0—Y —27—X—0
is a short exact sequence in C, we say that Z is an extension of Y by X. Two

extensions Z and Z’ of Y by X are equivalent, if there exists a morphism o : Z —
Z' such that the diagram

0 Y A X 0
0 Y A X 0

is commutative. By the five lemma, o must be an isomorphism. Therefore, equiva-
lence of extensions is an equivalence relation on the set of all extensions. We denote
by Exte(X,Y) the set of all equivalence classes of extensions of Y by X.

Let

0 — Y —"“ 72 x .90
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be a short exact sequence in C. Then, by 1.2.20, it defines a distinguished triangle

R

Y—>Z

in D. Clearly, Y is in D=V and X is in D=Y. Hence, X[—1] is in D=!. It follows that
Hom(Y, X[—1]) = 0. By 1.4.6 in Ch. 2, the morphism ¢ in the above distinguished
triangle is unique. Let Z’ be an equivalent extension of Y by X and a: Z — 7’
the corresponding isomorphism. Then we get the distinguished triangle

N

Y—>Z’

and a diagram

Yy — 5 7 2 X 2, 7(Y)

idyl aJV JridT(Y)

Y 7' X T(Y)
o’

where the first square commutes. This diagram can be completed to a morphism
of distinguished triangles

Y — 5 7z 2 x 25 7(Y)

ider Oél B J/idT(Y) ,

Y 7z X T(Y)

il p/ 99/

and we have the commutative diagram

0 y ——» 7 2 Xx 0
wl el
0 Y —— 7 X 0
i’ p'

in C. This in turn implies that

Bop=p oa=p.
Since p is an epimorphism, S = idx. This immediately implies that ¢’ =
Therefore, ¢ depends only on the equivalence class of the extension of Y by X.

follows that this defines a map from Ext¢(X,Y) into Homp (X, Y[1]).
We claim that this map is a bijection. First assume that

©.
I

0 y — sz 2 . x 0

and
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are two extensions determining the same ¢ : X — Y[1]. Then the corresponding
distinguished triangles are

and

7N

Y—>Z’

and we have the diagram

Y — 5 7 25 X 24 7(Y)
Y —— 7 X T(Y)
v/ p’ %]

where the last square is commutative. Therefore, it can be completed to a morphism
of distinguished triangles

L T(Y)

: X
idyJ/ al lidx lidT(Y) .
- X

Y A T(Y)
,L/ p/ Sa
It follows that a: Z — Z’ is such that
0 Y A X 0
0 Y zZ' X 0

is commutative, i.e., the extensions are equivalent.
Finally, let ¢ : X — Y[1] be a morphism in D. Then, there exists a distin-

guished triangle

-] —
*so[ 1]

where U is a cone of . By turning this triangle, we get the distinguished triangle

X
S N\
[1]
Yy —— U
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for some U in D. By 1.2.8, U isin C. By 1.2.17, the morphism f is a monomorphism
and g : U — X is its cokernel. Therefore,

0——y L s u_—92 . x 4o

is exact and U is an extension of Y by X. Clearly, this extension determines the
morphism ¢ : X — Y[1]. It follows that the map from equivalence classes of
extensions of Y by X into Homp (X, Y[1]) is a bijection.

2.1.1. PROPOSITION. The map from Exte(X,Y) into Homp(X,Y[1]) is a bi-
jection.

Let X and Y be two objects in C. Let i : Y — X @Y be the natural inclusion
and p: X®Y — X the natural projection. Then we have the short exact sequence

0 Y —— XeYy 25 X 0.
We say that X @Y is the trivial extension of Y by X. By 1.4.8, to the equivalence
class of this extension corresponds the zero morphism of X into Y1].

Since Homp (X, Y[1]) has a natural structure of an abelian group with respect
to the addition of morphisms, the above discussion implies that there is a natural
structure of an abelian group on the set of all equivalence classes of extensions of
Y by X and that the class of the trivial extension corresponds to the zero element.
The binary operation on Exte(X,Y) defined in this way is called the Baer sum.

2.2. Cohomological length. Let D be a triangulated category with a bounded
t-structure (D=9, D=°). Then, for any object X in D we put

U(X) =Card{p € Z | H?(X) # 0}
and call it the (cohomological) length of X. Clearly, since the t-structure is nonde-
generate, £(X) = 0 implies that X = 0 by 1.3.1.

Assume that ¢£(X) > 0. Then there exists n € Z such that H"*(X) # 0 and
HP(X) =0 for all p > n+ 1. Then, by 1.2.21, H?(q) : H?(X) — HP(7>p4+1(X))
are isomorphisms for p > n, and HP(7>,41(X)) = 0 for p < n. In particular, we
have

0 for p #n + 1;
HP (1541(X)) = ’
(2n41(X)) {H”“(X) forp=mn-+1;
and {(T>p11(X)) = 1. If we put ¥ = 75,,41(X)[n + 1], we see that
HP(Y) = HP" " (12041 (X)) = 0
for p # 0 and Y is in the core C of D. On the other hand, by 1.2.21, the morphism
HP(3) : HP(1<p (X)) — HP(X) is an isomorphism for p < n, and H?(7<,(X)) =0
for p > n. Therefore, H? (1<, (X)) # 0 implies that p <n and HP(X) # 0. Hence,
U1<n (X)) = £(X) — 1. This proves the following result.

2.2.1. LEMMA. Let X be an object with length ¢(X) > 0. Then there exists
p € Z such that in the truncation distinguished triangle

T>p+1(X)

T<p(X) X
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we have {(1<p(X)) = 4(X) — 1 and £(T>p41(X)) = 1.

2.3. A splitting result. Let D be a triangulated category with a ¢-structure
(D=0, D=%). Let C be its core.

Let X and Y be objects in C. Then X is in D=9 and Y[-n] is in D! for
any n € N. Therefore, by (t2), we have Homp(X,Y[—n]) = 0 for n € N. Clearly,
Homyp(X,Y) = Home(X,Y), and Homp(X,Y[1]) = Exte(X,Y). In this section
we shall study the structure of D under the additional assumption that

(i) the t-structure on D is bounded;
(ii) for any two objects X and Y in C, we have Homp(X,Y[n]) = 0 for all
n > 1.

2.3.1. PROPOSITION. Let X be an object in D. Then

X =P H"(X)[-p]
PEZ

PROOF. The proof is by induction in the length of the object X. If the length
of the object is either 0 or 1 the statement is obvious.

Assume that the length of the object X is n+ 1. Then, by 2.2.1, there exists p
such that 7<,(X) is of length n and 7>,41(X) is of length 1. It follows that there
exists Y in the core C of D such that 7>p,41(X) = Y [—p— 1]. This implies that the
morphism A : 7>p41(X) — 7<p(X)[1] determines the morphism hlp +1] : ¥ —
T<p(X)[p + 2]. On the other hand,

H(r<p(X)[p+2]) = HTP*2 (1<, (X)) # 0

implies that ¢ +p + 2 < p, i.e., ¢ < —2. By the induction assumption, we have

Top(X)p+ 2] = @ HIPP(X)[~q] = P HTTX)[a):

q<—2 q>2

Therefore,

Homop (Y, 7<,,(X)[p + 2]) = € Homp (Y, H~7+2(X)[q]) = 0.

q>2

It follows that h = 0, and by 1.4.9 in Ch. 2, we have

X =Z7<p(X) @ mopr1(X) = @Hq(X)[_Q]'
qE€Z

3. Grothendieck Groups

3.1. Grothendieck group of an abelian category. Let A be an abelian
category. Let G(A) be the free abelian group generated by objects in A. Let N be
the subgroup of G(A) generated by the elements Y — X — Z for any short exact
sequence

0 —X—=Y —27—0

in A. Then the quotient G(A)/N is called the Grothendieck group of the abelian
category A and denoted by K(.A).
For any object X in A, we denote by [X] the corresponding element in K (A).
First, the short exact sequence

0—0—>0—0—70
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implies that 0 —0 — 0 = —0 is in NV, i.e., [0] =0 in K(A).

Assume that X and Y are two isomorphic objects in A. Then we have the

exact sequence
0—X—Y —0—70
in A. Hence, it follows that [X] = [Y] in K(A).

Let G be an abelian group. Let ¢ : Ob. A — G be a map such that for any

short exact sequence

0 —X—>Y —27—0
we have p(Y) = (X)) + ¢(Z). Since G(A) is generated by by the objects of A, ¢
extends to a group homomorphism of G(.A) into G. Clearly, by the above condition,
this homomorphism vanishes on A. Therefore, it induces a unique homomorphism
of K(A) into G, which we denote by the same letter. In the following we are going
to use freely this observation.

For example, if A and B are two abelian categories and F' : A — B an exact
functor. Then we have a natural map ¢(X) = [F(X)] from Ob A into K(B). It
extends to a unique group homomorphism of G(A) into K(B). Since for any short
exact sequence

0 —X—Y —27—0
in A, we have
0— F(X) — F{Y)—F(Z)—0
and
[F(Y)] = [F(X)]+ [F(2)],
it follows that (V) = p(X) + ¢(Y). Hence, ¢ vanishes on A/ and defines a group
homomorphism from K(.A) into K(B).

3.1.1. LEMMA. Let A and B be two abelian categories and F : A — B an exact
functor. Then F induces a group morphism K(F) : K(A) — K(B) defined by

K(F)([X]) = [F(X)]
for any object X in A.

3.2. Euler’s principle. Assume that A is an abelian category. Then we have
the following fundamental observation.

3.2.1. LEMMA (Euler’s principle). Let A be an abelian category and
=0 — X' X — 5 X0 — ...
be a bounded complex in A. Then

D (CLPIXT =) (~L)PIHP (X))

PEZL pEZ
in K(A).

PROOF. Clearly, the statement is true if n = 0.
Now we consider the induction step. Let X  be the complex

= 00— X' X S X0 — .
Then the stupid truncation o<,_1(X") is the complex

= 00— X X XM 00—
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As we explained in Sec. 4.4 in Ch. 3, we have HP(0<,—1(X")) = HP(X") for p #
n—1,n; and H" *(0<,-1(X")) = cokerd"~2 and H"(0<,,—1(X")) = 0.
By the induction assumption, we have

i(*l)p[Xp] =Y (Wloca—1(X V] =Y (~1)P[H (020-1(X))]
p=0 pEZL pPEZ
n—2
= Z(—l)p[Hp(X')] + (=1)" ![coker d" 2.
p=0

On the other hand, we have exact sequences

0 — imd" 2 — X" ! — cokerd" 2 — 0,
0 — imd"? — kerd" ! — H" 1(X") — 0,

0—kerd" ' — X" S imd"' —0
and
0 — imd" ! — X" — H"(X') — 0.

This implies that

[coker d" %] = [X"71] — [imd" %] = [X" 1] — [kerd" ] + [H" (X))
= ™ + [H1(X0)] = [X7) + [H(X0)] — [H (X))

This implies that

S C1PXT) = 3 (1P 4 (1) X
PEZ p=0
(C1PHP(X)] + (~1)"eoker &2 + (~1)"[X"]

3
|

i}
Il
=)

In particular, we have the following consequence
3.2.2. COROLLARY. Let A be an abelian category and
0— X' —>X!' —... 5 X"—0

an ezxact sequence in A. Then

Y (F1)PXP =0

PEZL

in K(A).
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3.3. An example. Let A be an abelian category such that each object X
in A has finite length ¢(X). Let Z(.A) be the family of all isomorphism classes of
irreducible objects in \A. Denote by I(A) the free abelian group with basis Z(.A).
Let X be an object in A and F X an increasing Jordan-Holder filtration of X. Then
we call Gr X a semisimplification of X. Semisimplifications are determined up to
isomorphisms. Therefore, each object X determines a function m : Z(A) — Z4
with finite support such that for any Y in Z(A), the integer my is the cardinality
of{peZ|F,X/F,_1X isin Y}. The number my is called the multiplicity of ¥
in X. The elements Y of Z(A) such that my > 0 are called the composition factors
of X. We can interpret the sum

(X)) = myY
as an element of I(.A). Then we have the following result.
3.3.1. LEMMA. Let
0—X—=Y —=272—0
be a short exact sequence in A. Then
oY) =d(X)+ P(2)
in I(A).

ProOOF. Let F X be an increasing Jordan-Hoélder filtration of X. Assume that
F,X =0 for p < po, F X = X for p > go and F,, X are nontrivial subobjects of
X for pg > p < qo. Denote by F,Y the image of F,, X in Y for all p < go. We can
complete this sequence of subobjects to an increasing Jordan-Holder filtration F Y
of Y. Then, the images of F,, Y in Z form an increasing Jordan-Holder filtration of
7. By the construction, the filtrations of X and Z are induced by the filtration of
Y. Hence,

0—GrX —GrY —GrZ —0

is an exact sequence. Therefore
0—Grp, X — Gr,Y — Gr, Z — 0

is exact for all p € Z. If Gr, Y = 0, we have Gr, X = Gr, Z = 0. If Gr, Y is
irreducible, either it is isomorphic to Gr, X and Gr, Z = 0, or Gr, X = 0 and
Gr,, Z is isomorphic to Gr, Y. This immediately implies that the multiplicity of
any irreducible object in Y is the sum of multiplicities in X and Z. O

Therefore, ® extends to a unique group homomorphism of K(A) into I(A).
Since ® is the identity on elements in Z(A), we see that the subgroup of K(A)
generated by Z(A) is a free abelian group with basis Z(.A). On the other hand, by
induction in the length, we see that

X1 =Y my (Y]

in K(A). Therefore, the homomorphism @ is an isomorphism, and K (.A) is the free
abelian group with basis Z(A).

3.3.2. PROPOSITION. Let A be an abelian category such that each object in A
has finite length. Then the Grothendieck group K(A) of A is the free abelian group
with basis of isomorphism classes of all irreducible objects in A.
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3.4. Grothendieck group of a triangulated category. Let C be a trian-
gulated category. Let G(C) be the free abelian group generated by objects in C.
Let M be the subgroup of G(C) generated by the elements ¥ — X — Z for any

distinguished triangle
Z
% \

X—Y

Then the quotient G(C)/M is called the Grothendieck group of the triangulated
category C and denoted by K(C).
For an object X in C, we denote by [X] the corresponding element of K (C).
First, from the distinguished triangle

0

0 0

we see that 0 —0 — 0= —0is in M, i.e., [0] =0 in K(C).
Let f : X — Y be an isomorphism. Then, by 1.4.4 in Ch. 2, we have the
corresponding distinguished triangle

Hence, Y —X —0isin M and [X] = [Y] in K(C). Therefore, the Grothendieck group
is generated by the classes representing the isomorphism classes [X] of objects X
in the category.

Analogously, for any two objects X and Y in C, by 1.4.8 in Ch. 2, we have the

distinguished triangle
Y .

X XoY

Hence, XY — X —Yisin M and [X®Y] = [X]+[Y] in K(C).

Let C and D are two triangulated categories and F': C — D an exact functor.
Then we have a natural map ¢(X) = [F(X)] from ObC into K(D). It extends
to a unique group homomorphism of G(C) into K (D). Since for any distinguished
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AN

X—Y

triangle

in C, we have the distinguished triangle

F(2)
F(X) F(

in D, we see that [F(Y)] = [F(X)] + [F(Z)]. It follows that ¢(Y) = ¢(X) + ¢(Y).
Hence, ¢ vanishes on M and defines a group homomorphism from K (C) into K (D).
Hence, we have the following result.

Y)

3.4.1. LEMMA. Let C and D be two triangulated categories and F : C — D an
exact functor. Then F induces a group morphism K(F) : K(C) — K(D) defined
by

for any object X in C.
The translation functors also induce actions on the K-groups.

3.4.2. LEMMA. Let C a triangulated category. Let X be an object in C. Then
[T7(X)] = (-1)P[X] for any p € Z.

PROOF. By the definition,

(1
X

X

idx

is a distinguished triangle in C. Therefore, by turning this triangle, we get the
distinguished triangle

T(X)

idT(X)

(1
X 0
Therefore, [X] + [T(X)] is 0 in K(C) and we have [T'(X)] = —[X]. O
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3.5. Grothendieck groups for triangulated categories with bounded
t-structures. Now we restrict our attention to triangulated categories with a t-
structure. Let C be a triangulated category with a t-structure and A its core.

Let ¢ : A — C be the natural imbedding functor. Clearly, it induces a map
from Ob A into K(C) given by X —— [¢(X)] for any X € Ob.A. This map in turn
induces a homomorphism of G(A) into K(C).

Let

0 —X—=Y —272—0

be a short exact sequence in A. By 1.2.20, we have the distinguished triangle

W 2)
/ \
X) u(Y)

in C. Therefore, the above homomorphism induces a homomorphism ¢ of K(.A)
into K(C) given by ¢([X]) = [¢(X)] for any X in A.

3.5.1. LEMMA. Let X be a cohomologically bounded object in C. Then

[X] =Y (~)PL(H?(X))]

pEZ

in K(C).

PROOF. The proof is by cohomological length of X. If the cohomological length
of X is equal to 1, X is isomorphic to ¢(H?(X))[—p] for some p € Z. Therefore, by
3.4.2, we have

[X] = L(HP (X)) [pl] = (=) P[(HP(X)] = D (~1)[(HI(X))]
qE€Z

in K(C). This proves the statement in this case.
Assume that X is arbitrary. Then we have the distinguished triangle of trun-
cations given by

TZerl(X)

T<p(X) X
Hence, it follows that
[X] = [r<p(X)] + [m2p4+1(X)]
for any p € Z. Clearly, we can select p such that the cohomological lengths of
T<p(X) and 7>p41(X) are strictly less than the cohomological length of X. By

the induction assumption, we can assume that the statement holds for 7<,(X) and
T>p+1(X). Hence, we have

[X] =D (D) e(H (r<p(X)))] + D (D) [e(H (rp41(X)))].

qEZ qEZ



3. GROTHENDIECK GROUPS 191
By 1.2.21, we have

D (DU H (r<p (X)) = D (=1 [(HI(X))]

q€Z q<p

and

D CDRH (pa (X)) = D (—DR(HY(X))].

q€EL q>p

This immediately implies that

[X] =Y (~)(H(X))]

q€L

in K(C). This establishes the induction step. O

Assume now that C is a triangulated category with a bounded t-structure. Let

AN

be a distinguished triangle in C. Then we have the long exact sequence of cohomol-
ogy groups

o= HPYZ) - HP(X) — HP(Y) — HP(Z) — HTH(X) — ...

X Y

which we can interpret as an exact sequence in A. Since the t-structure is bounded,
only finitely many cohomology groups in this sequence are nonzero. By applying
3.2.2, we see that

D (CVPHP(Y)] =) (DPIHP(X)] + ) (-1)°[H"(2)]

pEL pEL pEL
in K(A). Therefore, the map X +— 37 _,(=1)P[HP(X)] from ObC into K(A)
induces a homomorphism ¢ of K(C) into K(A).

3.5.2. THEOREM. The natural homomorphism ¢ : [X] — [1(X)] of K(A) into
K(C) is a group isomorphism.
Its inverse map is ¢ : [ X] — >, (—=1)P[HP(X)].

ProoF. Clearly, ¥ o ¢ = idg(a)-
On the other hand, by 3.5.1, we have

(o) ([X]) = Y (~1)P[(HP(X))] = [X]
PEZ

for any X in C. O

In this way, we can identify the Grothendieck groups of triangulated categories
with bounded t-structures and their cores.

Let C and D be two triangulated categories with bounded t-structures. Let
F : C — D be an exact functor. Then F induces a homomorphism K (F') :
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K(C) — K(D) of Grothendieck groups. Let X be an object in K(C). Then, we
have

K(F)([X]) = Y (~1)E(F)([H (X))
=Y (CDIFHYX)] = Y (“DPHHP(F(HY(X)))].

3.5.3. PROPOSITION. Let C and D be two triangulated categories with bounded
t-structures. Let F' : C — D be an exact functor. Then, for any X in C, we have

K(F)([X]) = Y (~LPHI[HP(F(HY(X)))].

DP,qEZL



CHAPTER 5

Derived Functors

1. Derived functors

1.1. Lifting of additive functors to homotopic category of complexes.
Let A and B be two additive categories, and F : A — B an additive functor. Let
C*(A) and C*(B) be the corresponding categories of complexes. We define, for an
object X in C*(A), the graded object

C(F) (X)) =F(X?), forany pe Z

with the differential dg, py ) = F(d%) : F(X?) — F(XP*!) for any p € Z. It is
clearly a complex in C*(B). Moreover, for any morphism f: X' — Y~ in C*(A),
we define a graded morphism C(F)(f") : C(F)(X') — C(F)(Y") by

C(F)(f )P = F(f?) for any p € Z.

It is clear that C(F')(f") is a morphism of complexes in C*(B). Moreover, C(F') is
an additive functor from C*(A) into C*(B). We call it the lift of F' to the category
of complexes.
Let fr: X' — Y and ¢ : X' — Y~ be two homotopic morphisms with
homotopy h. Then
F(f?) = F(g") = d% gy © F(RP) + F(hP1) 0 d2,

C(F)(Y) (F)(X")

for any p € Z; i.e., F(hP), p € Z, define a homotopy of C(F)(f") and C(F)(g). It
follows that C'(F") induces a homomorphism of the abelian group Hom g+ (4) (X", Y")
into the abelian group Hom g ) (C(F)(X"), C(F)(Y")). If we denote this homo-
morphism by K(F), and put K(F)(X") = C(F)(X") for all complexes X, we see
that K (F') is an additive functor from K*(A) into K*(B). We call it the lift of F'
to the homotopic category of complexes.

Clearly,

K(F)oT =T o K(F),

i.e.,, K(F) is a graded functor.

Moreover, let f*: X' — Y be a morphism of complexes. Then, C(F)(f") :
C*(X') — C*(Y") is a morphism of complexes. In addition, we have

CP

Ly = CUX )P o C(F)(Y)P = F(XPH) @ F(YP)

=F(X"" o YP) = C(F)(C})P
for any p € Z. In addition,

_ gp+1 +1
&= | oo 0 [‘F W) 0| = P
EYD TN CE) P iy F(frth)  F(dy.) !

193
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for any p € Z. Therefore, it follows that
C(F)(C}) = Corypy-
This implies that C(F') maps standard triangles into standard triangles.

Let
7

(1l

X ! v

be a distinguished triangle in K*(A). Let @ : X' — Y~ be a morphism of com-
plexes representing f. Then, by 2.1.3 in Ch. 3, we have an isomorphism of triangles

x Ly z T(X")
| | | |
XY c; T(X")

where the bottom triangle is the image of the standard triangle in K*(A). By
applying functor K (F') to this diagram, we get the isomorphism of triangles

K(F)(Xx) 2D g (F)(y) —— K(F)(Z) —— T(K(F)(X))

l | !

K(F)(Y') —— K(F)(C,) —— T(K(F)(X))

a

K(EBE) K(F)(f)

where, by the above discussion, the bottom triangle is the image in K*(B) of the
standard triangle attached to the morphism C(F')(a’) : C(F)(X') — C(F)(Y").
Therefore, the top triangle is a distinguished triangle in K*(B). It follows that
K(F): K*(A) — K*(B) is an exact functor.

1.1.1. PROPOSITION. Let F' : A — B be an additive functor between additive
categories A and B. Then the lift K(F) : K*(A) — K*(B) is an exact functor
between triangulated categories K*(A) and K*(B).

Let A, B and C be three additive categories and F': A — Band G : B — C
two additive functors. Then they induce exact functors K(F) : K*(A) — K*(B)
and K(G) : K*(B) — K*(C). Moreover, GoF : A — C is an additive functor and
we have the corresponding lift K(GoF) : K*(A) — K*(C). From its construction,
it is clear that

K(GoF)=K(G)o K(F).

Let A and B be two additive categories and F' : A — Band G : B — A
two additive functors. Assume that F is a left adjoint of G, i.e., that for any two
objects X in A and Y in B there exists an isomorphism

axy : Homg(F(X),Y) — Homu(X,G(Y))
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of abelian groups which is natural in X and Y’ i.e., such that for a morphism
f: X — X' the diagram

Homp(F(X"),Y) 2% Homyu (X', G(Y))

—oF(f)l l—Of

Homp(F(X),Y) —— Homu(X,G(Y))

ax,y

is commutative, and for a morphism ¢ : Y — Y” the diagram

Homp(F(X),Y) —XY Homyu(X,G(Y))

go—l JG(g)o—

Homp(F(X),Y') —— Homu(X,G(Y"))

ax,y’
is commutative.
Let X" be a complex in C*(A) and Y a complex in C*(B). Let f : C(F)(X') —
Y be a morphism of complexes. Then fP : F/(XP) — YP are morphisms in B for
all p € Z. Let g = axr y»(fP). Then gP : XP — G(Y?) are morphisms in A for
all p € Z. Moreover, if we consider the commutative diagram

Fxry 2y

P | |

F(XPH) — 5 yp+l
Jias

we see that
P ody = axeiryrii (fPT) o db = axre yen (fPT o F(d%))
using the naturality in the first variable. Moreover, we see that
G(dy)og” = G(dY) o axryr(fP) = axe yrri(dy o fP)
using the naturality in the second variable. Hence, we have
gm‘1 o dg( = G(d};,) ogP
for all p € Z. It follows that the graded morphism g : X — C(G)(Y") is a mor-

phism of complexes. Therefore, we have the map vxy : Home- ) (C(F)(X"),Y") —
Home(4) (X", C(G)(Y")) defined by

’VX,Y(f)p = Oéxp,w(fp)

for all p € Z. Since the ax» y», p € Z, are morphisms of abelian groups, vx,y is
also a morphism of abelian groups.

If Bxy : Homa(X,G(Y)) — Homp(F(X),Y) denotes the inverse of ax,y,
for any g : X' — C(G)(Y") we can define fP = Bx» y»(g*), p € Z. By dualizing
the above argument, we can check that these morphisms define a morphism f :
C(F)(X') — Y. Moreover, the morphism dx y : Home«(4) (X", C(G)(Y")) —
Home- ) (C(F)(X"),Y") defined by

dx,y(9) = Bxr,yr(g")

for all p € Z, is the inverse of vyxy. Hence, yvxy : Home- (5 (C(F)(X),Y") —
Homg-(4) (X", C(G)(Y")) is an isomorphism of abelian groups.
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Now we want to check that it is natural in both variables.
Let ¢ : U" — V" be a morphism in C*(A), and Y an object in C*(B). Then,
for any morphism f: C(F)(V') — Y~ we have
(W (f) o @)’ = aveye(f7) 0 9" = aus v (¥ 0 (")) = v (f o C(F) ()"

for all p € Z. Hence, the diagram
Home- () (C(F)(V'),Y") —“" Home.(a)(V',C(G)(Y"))

—eC(R)e) | | o
Homp(C(F)(U"),Y") —— Home-()(U, C(G)(Y"))

YU,y
is commutative, and -« is natural in the first variable. If X" is in C*(A) and
¥ Y — Z' is a morphism in C*(B), for any morphism g : C(F)(X') — Y~ we
have

(C(G)(W) orx,v(9))" = G(WP) 0 axr yr(g¥) = axr zr (VP 0 ") = Vx,2(¢Y 0 )P
for all p € Z. Hence, the diagram

Homg- () (C(F)(X),Y") —2% Homg-(4)(X,C(G)(Y"))
wo—l lC(wa)o—
Homp(C(F)(X),Z) —— Homc*(A)(X',C(G)(Z'))

X,z
is commutative, and -y is natural in the second variable.
This proves the following result.
1.1.2. LEMMA. The functor C(F) : C*(A) — C*(B) is a left adjoint to C(G) :
C*(B) — C*(A).
Now we discsuss the analogue of this result for homotopic categories of com-
plexes.

Let X' and Y be two complexes in C*(A). Let f be a morphism of C'(F)(X")
into Y homotopic to zero. Assume that h is the corresponding homotopy, i.e.,
f=dyoh+hoC(F)(dx).
Then we have
Yxy ()P = axeyr(f7) = axe yo(d " 0 BP) + axe yo (WH 0 F(d)).
Moreover, by naturality of a, we get
vx,y (f)P = G(d% ) o axp yr1(BP) + axpir y» (hPT) o d%

for any p € Z. Therefore, (ax» yr—1(hP);p € Z) defines a homotopy k between X
and C(G)(Y") which satisfies

’}/X,y(f) = G(dy) ok + ko dx.
i.e., vx,v(f) is homotopic to zero. This implies that vx y induces a morphism of
Hom g (4)(C(F)(X"),Y") into Homg- ) (X", C(G)(Y")). By dualizing the argu-
ment, we see that this morphism is an isomorphism of abelian groups. Moreover,

its naturality for the category of complexes implies its naturality for the category
of homotopic complexes. Hence we have the following consequence.
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1.1.3. PROPOSITION. The functor K(F) : K*(A) — K*(B) is a left adjoint
to K(G) : K*(B) — K*(A).

1.2. Lifting of exact functors to derived categories. Let A and B be
two abelian categories and F' : A — B an additive functor. Then, as we have seen
in the preceding section, K(F) : K*(A) — K*(B) is an exact functor between
triangulated categories. Therefore, the composition of K (F') with the exact functor
Qp : K*(B) — D*(B) is an exact functor from the category K*(.A) into D*(B).

In general, the exact functor Qg o K(F') cannot be factored through D*(A),
since for a quasiisomorphism s : X* — Y, the morphism K (F)(s) : K(F)(X') —
K(F)(Y") doesn’t have to be a quasiisomorphism.

1.2.1. LEMMA. Let F : A — B be an exact functor between abelian categories
A and B. Then for any quasiisomorphism s : X' — Y™ in K*(A), the morphism
K(F)(s): K(F)(X') — K(F)(Y") is a quasiisomorphism.

A\

X ——Y

PROOF. Let

be a distinguished triangle based on s. By 3.1.1 in Ch. 3, the complex Z" is acyclic.
Since F' is an exact functor, this implies that the complex K(Z) is also acyclic.
Since K (F') is an exact functor between triangulated categories,

K(F)(Z)
K(F)(X) sl K(F)(Y")

is a distinguished triangle. Applying again 3.1.1 in Ch. 3, we see that K(F)(s) is a
quasiisomorphism. O

By 1.6.2 in Ch. 2, in this situation, there exists a unique functor D(F) :
D*(A) — D*(B) such that the diagram of functors

K (A) =5 K7(B)

o Js

D*(A) o D*(B)

comimutes.
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Moreover, for any X in D*(A), we have D(F)(X') = K(F)(X") = C(F)(X");
and if ¢ : X* — Y is a morphism in D*(.A) represented by a left roof

7
/ \
X Y

the morphism D(F)(¢) : D(X') — D(Y") is represented by the left roof

K(F)(Z)
K(F)(X) K(F))

1.2.2. THEOREM. Let F': A — B be an exact functor between abelian cate-
gories A and B. Then there exists a unique ezact functor D(F) : D*(A) — D*(B)
between triangulated categories D*(A) and D*(B) such that the diagram

K*(.A) K(F) K*(B)

o] Je

D~ (A) o D*(B)

commutes. It satisfies

ToD(F)=D(F)oT.

We say that D(F) is the lift of F' to derived categories.

1.3. Derived functors. Let C and D be two triangulated categories and
F : C — D an exact functor. Let S be a localizing class in C compatible with
triangulation.

If F(s) is an isomorphism in D for any s € S, by 1.6.2 in Ch. 2, there exists an
exact functor F : C[S™1] — D such that F = F o Q.

In general, since F' doesn’t have to map morphisms in S into isomorphisms,
F doesn’t define an exact functor F' : C[S™1] — D such that F = F o Q. Still,
then we can consider functors which satisfy the following weaker property. They
are useful and exist in wide variety of situations.

A right derived functor of F is a pair consisting of an exact functor RF' :
C[S7!] — D and a graded morphism of functors ex : F — RF o ) with the
following universal property:

(RD1) Let G : C[S™!] — D be an exact functor and € : F — G o Q a graded
morphism of functors. Then there exists a unique graded morphism of
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functors n : RF — G such that the diagram

RF o Q)

comimutes.

Analogously, we have the notion of a left derived functor.

A left derived functor of F is a pair consisting of an exact functor LF :
C[S™!] — D and a graded morphism of functors er : LF o Q — F with the
following universal property:

(LD1) Let G : C[S™!] — D be an exact functor and € : Go Q — F a graded
morphism of functors. Then there exists a unique graded morphism of
functors n : G — LF such that the diagram

GoQ

commutes.

Clearly, if right (or left) derived functors exist they are unique up to a graded
isomorphism of functors.

The notions of right and left derived functors are dual to each other. Let
F : C — D be an exact functor. Then F' can be also viewed as an additive functor
from C°PP into D°PP. Since F' is a graded functor, we have T o FF = F o T and
T~ 1oF = FoT~!. Since the translation functors on C°? and D°PP are the inverses
of the translation functors on C and D respectively, we see that F' : C°PP — DOPP
is also a graded functor.

Let
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be a distinguished triangle in C°PP. Then

T% \
Z—>Y

is a distinguished triangle in C. Hence, since F' is exact,

N

F(g)

is a distinguished triangle in D, and

V\(Q)

F(f)

is distinguished triangle in D°PP. Therefore, F' : C°PP — D°PP is also an exact
functor.

By 1.6.3 in Ch. 2, we have C°PP[S~!] = C[S~!]°PP. Since the arrows in opposite
categories switch directions, the right derived functor RF : C[S™!] — D, which
can be viewed as an exact functor from C°PP[S~1] into D°PP, is a left derived functor
of F': CoPP — DOoPP,

Therefore, in our discussion, it is enough to consider right derived functors.

1.3.1. EXAMPLE. Assume that F' : C — D has the property that F(s) is an
isomorphism for any s € S. Then, as we already remarked, there exists functor
F:C[S7!] — D such that F = F o Q. We claim that F' is a right derived functor
of F and ep : F — F o Q) is the identity morphism of functors.

Let G : C[S7!] — D be an exact functor and € : F — G o Q a graded
morphism of functors. Then ¢ is a graded morphism of F o Q into G o Q. We claim
that e induces a graded morphism of F' into G. Let X and Y be two objects in C
and ¢ : X — Y a morphism in C[S™!]. Then ¢ is represented by a left roof

L
SN
X Y
Clearly, o = Q(f) o Q(s)~! and

and
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On the other hand, since € is a morphism of functors we have the commutative
diagrams

G(Q(s))
and
F) Y% ey
eLl €y
(L) ——— G(Y)
G(Q(f))
Hence,

Gp)oex = G(Q(f) 0 G(Q(s)) " oex = G(Q(f)) oer o F(s)™"
=ey o F(f)oF(s)™" = ey o F(yp),
i.e., the diagram

F(x) 29 piy)

Exl €y

GX) —— GY)
G(¥)
is commutative. Hence, the family of morphisms ex, X € Ob(C[S™!]), defines a
morphism of functors n : F — G, such that no@ = e. We claim that 7 is a graded
morphism of functors. Let wr be the isomorphism of F o T into T o F' and wg the
isomorphism of T o G into G o T. Then for any X in C, the diagram

(F(X))
T(ex)

F,X T
G(T(X)) WG—X> T(G(X))

is commutative, since € is a graded morphism of functors. On the other hand, this
also implies that 7 is graded.

Dually, we also see that F' is also a left derived functor of F with ez : FoQ — F
equal to the identity morphism.

This shows that derived functors are a generalization of the quotient functor
construction.

Now we are going to discuss a sufficient condition for the existence of derived
functors. We formulate it for right derived functors.
A full triangulated subcategory &€ of C is called right adapted for F, if
(RA1) Sg = SN Mor(€) is a localizing class in &;
(RA2) for any X in C there exist M in £ and s : X — M in S;
(RA3) for any s in Sg, the morphism F'(s) is an isomorphism in D.
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1.3.2. THEOREM. Let C and D be two triangulated categories. Let S be a lo-
calizing class compatible with triangulation in C. Let F' : C — D be an exact
functor.

Assume that there exists a right adapted subcategory € of C for F. Then there
exist a right derived functor (RF,er) of F from C[S™!] into D.

By (RA1), Sg is a localizing class in €. By 1.7.2 in Ch. 2, it is compatible
with triangulation. By the same result and (RA2), £[S;'] is a full triangulated
subcategory of C[S™!]. Moreover, by (RA2), the inclusion functor ¥ : £[S;'] —
C[S™1] is essentially onto, i.e., it is an equivalence of categories. Let ® : C[S™1] —
E[Sz '] be a quasiinverse of ¥. Then ® is an additive functor. Moreover, we can
pick ® such that ® restricted to £[Sz'] is the identity functor, i.e., ® o ¥ = id.
This implies that

PoT ZPoToVWodP=PoVoTodP=To0d,

i.e., ® is a graded functor.

Let X be an object in C[S™!]. The isomorphism of functors 3 : id — ¥ o ®
induces an isomorphism By : X — ¥(®(X)) = ®(X) in C[S~!]. From the above
calculation, we see that the family of morphisms kx = ®(T'(8x)) : ®(T(X)) —
O(T(P(X)) =T (P(X)) defines the isomorphism of ® o T into T o ®, i.e., it defines
a grading of ®.

On the other hand, since ® is the identity on £[S; '], we see that By = idy for
any Y in £[Sg !]. Therefore, since /3 is a morphism of the identity functor into ®,
we have the following commutative diagram

Tx) T T@(x))
Br(x) lidw@(xw ,
S(T(X) —— T(P(X
(1(X)) e T(2(X))
i.e., RXx OBT(X) = T(Bx)
Let
A
(1]
X Y

be a distinguished triangle in C[S™!].
Then we have the commutative diagram

X —'Y — Z —— T(X)

ﬁxl ﬁyl lﬁz Br(x) .

(X)) —— YY) —— P(Z) —— (T (X))
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By the above discussion, the diagram

idT(X)

T(X) T(X)

5T<X>l lT(Bx)

B(T(X)) —— T((X)

is commutative. Therefore, adding it to the above diagram and collapsing the last
two squares into one, we get an isomorphism of triangles

X —s Y —s Z —— T(X)

N — [ 70

(X)) —— DY) —— P(Z) —— T(P(X))

It follows that the bottom triangle is distinguished in C[S™!]. Since £[S; '] is a full
triangulated subcategory, it is also distinguished in it. Hence, ® is an exact functor
from C[S™!] into €[Sz '].

By (RA3) and 1.6.2 in Ch. 2, F induces an exact functor F from £[Sg'] into
D, such that the restriction of F to &£ agrees with F' o ). We define RF = F o ®.
Let wp be the isomorphism of F' o T into T o F' which is the grading of F'. Then
we have the isomorphisms wrp x : RF(T(X)) — T(RF(X)) given by

F(kx) WF,(X)
—

RE(T(X)) = F(®(T(X))) F(T(2(X))) T(F(®(X))) = T(RF(X))

which define the isomorphism RF o T into T o RF which is the grading of RF.
Clearly, RF is an exact functor from C[S™!] into D.

Now we want to construct the morphism of functors e : F' —> RF o (). Let
X be an object in C. The isomorphism Sx : X — ®(X) is represented by a right

roof
K
N
X (X

where K is in C and s € S. By (AR2) there exists a morphism v : K — M in S
such that M is in €. Therefore, we can consider the commutative diagram

/j;\
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which implies that we can represent Sx by the lower right roof. Hence, after
relabeling, we can assume that Sx is represented by

K
RN
X d(X)

where K is in €. Since s is now in Sg, F(s) is an isomorphism. Therefore, to this
roof we can attach the morphism F(s)~to F(f) : F(X) — F(®(X)). We claim
that this morphism is independent of the choice of the right roof.

Assume that
L
X (X
is another right roof representing fx such that L is in £&. Then we have the
commutative diagram
K
M

with M in C and such that uos =towv € S. By (AR2), there exists w: M — N
in S such that N is in £. Therefore the above diagram implies that the diagram

K
I
X N d(X)

is commutative. Hence, after relabeling, we can assume that in the preceding
diagram the object M is in £. This implies that uos and towv are in Sg. Therefore,
F(uos) = F(u)o F(s) is an isomorphism in D. Since F'(s) is an isomorphism, this
implies that F(u) is an isomorphism. Analogously, F'(v) is an isomorphism.

This implies that

F(s)"to F(f)=F(s)" o F(u)"! o F(u) o F(f)
= (F(u)o F(s)) o F(u)o F(f) = F(uos) ' o F(uo f)
=Fwot) toF(vog) = (F(v)oF(t)) ' o F(v)o F(g)
()"t o F(v)™t o F(v) o F(g) = F(t)"' o F(g),

as we claimed before. Therefore, F(s)™! o F(f) : F(X) — F(®(X)) doesn’t
depend on the representation of Sx and we can denote it by px.
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Let ¢ : X — Y be a morphism in C. We want to prove that the diagram

Fx) 2 Ry
F(®(X)) —— F(2(Y)
(®())

is commutative.
The isomorphism of functors 8 implies that the diagram

X 25 v

| [

(X) W oY)

is commutative in C[S™!]. Assume that Bx : X — ®(X) is represented by the

right roof
K
N
X d(X)

and By : Y — ®(Y) is represented by the right roof

L
N
Y B(Y)

where K and L are in €. In addition, ®(y) is a morphism in €[Sz '] and it can be
represented by the right roof

U
2N
o(X) o(Y)
with U in €. Therefore, the composition Sy o ¢ is represented by the diagram
L
/X
Y L
X Y (YY)
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Analogously, the composition ®(¢) o Sx is represented by a diagram

K U
N TN
X d(X) (Y

which can be completed using (LC3). Using (AR2), as before, we can replace V'
with an object in €. Therefore, after relabeling we can assume that V is in £.
Since the above diagram is commutative, there exists NV in C and the morphisms
u:V — N and v : L — N such that the diagram

L
VAN
X N (Y

is commutative and uopor =wvot is in S. Using (AR2) again, we can replace
N with an object in £&. Hence, uopor = votisin Se. This implies that
Fuopor) = F(u) o F(p) o F(r) is an isomorphism in D. Since p and r are
in Sg, F(p) and F(r) are isomorphisms in D. This implies that F(u) is also an
isomorphism in D. Analogously, F(v) is an isomorphism in D.
Now we can prove our statement. By definition, we have
py o F(p) = F(t)™" o F(g) o F(yp)
and
F(®(p)) o px = F(r)" o F(h) o F(s)"' o F(f).
Moreover, we have

F(t)™ o F(g)o F(p) = F(t)™' o F(v)~" o F(v) o F(g) o F()
= (F(v)oF(t)) 'oF(vogoy)=F(vot)” 10F(v©go<p)

=F(uopor)™oF(uoao f)=(F(u)oF(p)oF(r))~" o F(u)o F(a)o F(f)
=F(r) " oF(p) oF(u) o F(u)oF(a)oF(f) = F(r)~ oF(p) YoF(a)o F(f).
Also, since poh = a o s, we have F'(p) o F'(h) = F(a) o F(s). Since s and p are in
Se, F(p) and F(s) are isomorphisms in D. Therefore, it follows that

F(p)~' o F(a) = F(h)o F(s)™"

This finally gives
F(t)~ oF(g)oF(p) = F(r)"'oF(p)~'oF(a)oF(f) = F(r)" o F (h)oF(s) "o F(f),
what establishes our claim.

It follows that the family of morphisms px, for X € Ob(C), determines a
morphism of functors ep : F' — RF o Q.
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Now we want to show that this morphism of functors is graded. Let X be an

object in C. Assume that Sx : X — ®(X) is represented by the right roof

K
N
X d(X)

with K in £. Then we have the commutative diagram

WF, X

F(T(X)) —— T(F(X))
(| | e
F(T(K)) —— T(F(K))
Analogously, we have the commutative diagram
F(T(2(X))) —5 T(F(2(X)))
PO | [
FT(K)  —— TEK)
which implies that
T(F(s)) " cwrpk = wrax) o F(T(s) ™"

Hence, we have

T(px)owrx =T(F(s)" o F(f)) owpx =T(F(s)) " o T(F(f))owrx

=T(F(s)) "' owrx o F(T(f)) = wrax) o F(T(s) ™" o F(T(f)).

Since § is a morphism of functor i¢d into ®, we have the commutative diagram

ﬂT(X)JV lid ,

o(T(X)) m T(K)

ie.,
2(QT(f))) ° Brx) = QIT(f))-
Assume that the right roof

/M \
T(X) O(T(X)

with M in &, represents Br(x). Let

N
27N
d(T(X)) T(K)

)

)
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with N in &, be a right roof which represents ®(Q(T'(f))). Then, ¢t : ®(T(X)) —
M isin Sg and h : ®(T(X)) — N is a morphism in £. Since Sg is a localizing
class, there exists P in & and morphisms k: M — P in £ and ¢ : N — P in Sg,
such that the diagram

L .
T(X) (T(X)) T(K)

commutes, and the roof

P
N
T(X) T(K)

represents the composition of B7(xy and ®(T'(f)), i.e., it represents Q(T'(f)). There-
fore, there exists U in &, such that the diagram

P
kog “l qop
T(X) U T(K)

commutes, and aoqop =bis in Sg. It follows that F(a) o F(q) o F(p) = F(b) is
an isomorphism in D. This in turn implies that F(a) is an isomorphism in D. In
addition, from the above diagram we see that

F(a)o F(k) o F(g) = F(b) o F(T(f)) = F(a) o F(q) o F(p) o F(T(f)),
i.e., we have
F(k) o F(g) = F(q) o F(p) o F(T(f))-
On the other hand, k ot = g o h implies that F'(k) o F(t) = F(q) o F'(h) and
F(q) toF(k)=F(h)o F(t)~"

It follows that we have
F(T(f))=F(p)~t o F(q)~" o F(k) o F(g)
=F(p) "t o F(h) o F(t)! 0 F(g) = F(®(Q(T(f)))) © pr(x)-
Combining this with a previous formula, we get

T(px)owrx = wrax) © F(T(s))™" o F(R(Q(T(£)))) © pr(x)-
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On the other hand, we have
rx = S(T(Bx)) = ®(Q(T(s)) " 0 Q(T(f))) = Q(T(s)) "' 0 ®(Q(T(f)))

and

It follows that

T(px)owpx =wra(x) © F(kx) o pr(x) = WrFX © P1(X),

i.e., €p is a graded morphism of functors.

Therefore, we constructed the pair (RF, ep). It remains to establish its univer-
sal property.

Let G : C[S™!] — D be an exact functor and € : F — G o @ a morphism of
functors. Let X be an object in C. Consider the morphism Sx : X — ®(X) and
represent it again with a right roof

with K in £. Since € is a morphism of functors, we have the following commutative
diagrams

Fx) 29 k)

exl lEK
G — G(K
and

€q>(x)l léx

GO(X)) o G(K)

Since t is in Sg, F(s) and G(Q(t)) are isomorphisms. Hence, from the above
commutative diagram we get

G(Q(s)) " oex = €eqxy o F(s) ™.
Since G(Bx) = G(Q(5)) Lo G(Q(f)) and px = F(s)~ o F(f), we have
G(Bx)oex = G(Q() T 0 G(Q(f)) o ex = G(Q(s)) ' o ex 0 F(f)
= ea(x) © F(s) 7! 0 F(f) = ea(x) © px,

i.e., the diagram
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is commutative in D. Since Bx is an isomorphism in C[S™!], G(Bx) is an isomor-
phism in D. Hence, we can define nx = G(8x) ' o€eg(x). Then, nx : F(®(X)) —
G(X) is a morphism in D which satisfies

nx o px = G(Bx) ' oep(x) 0 px = €x.

It remains to show that 7 is a morphism of functors.

First, if we restrict the functors F and G o Q to £, the morphism of functors €
can be viewed as a morphism of the functor F oQ into Go Q. Let U and V be two
objects in £ and « : U — V a morphism in 5[5‘9_1}. Then « can be represented

by a right roof

U v

where K is in £. Since € is a morphism of functors, we have the commutative
diagrams

F) 29 Fex)

w| I

GU) —— G(K)
G(Q(a))

and

GV) —— G(K)
G(Qw))

Since u is in Sg, F(u) and G(u) are isomorphisms, so the last diagram implies that
G(u)toex = ey o F(u)™t.
Therefore, we have
evoF(a)=eyoF(u) ™t oF(a)=G(Q(u)) ' oex o F(a)
= G(Q(u)) ™' 0 G(Q(a)) o ev = G(a) o ev;

i.e., the diagram

is commutative. Hence, the family ey, V € Ob(E), defines a morphism of functor
F:€[S;' — Dinto G: £[S;'] — D.
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Let X and Y be two objects in C[S™!] and ¢ : X — Y a morphism in C[S™1].
Then we have the commutative diagram

X 5 v

| [

o(X) W o(Y)

By applying G to this diagram we get the commutative diagram

ax) 29 g
G(Bx) lG(BY) .
G(@(X)) ——— G(2(Y))

G(2(¥))

since Bx and By are isomorphisms in C[S™!], G(Bx) and G(By) are isomorphisms
in D. Hence, we see that

G(By) ™ o G(2(1)) = G(v) o G(Bx) ™"
On the other hand, since ®(X) and ®(Y) are in £, the above remark implies that

F(e(y) F(a(Y))

EQ(X)J/ J/Cé(Y)

G(®(X)) m G(2(Y))

is commutative. Hence, we have

ny o RE(1)) = G(By) ™' o eqryy o F(®(¥)) = G(By) " 0 G(®(¢)) o €a(x)
=G(¥) 0o G(Bx) " oenx) = G¥) onx

i.e., the diagram

RF(Xx) Y RE(Y)
nx ny
GX) —— GY
() —— G

is commutative. This implies that n is a morphism of the functor RF into the
functor G.

It remains to show that 7 is a graded morphism of functors, i.e., that the
diagram

WRF,X

RE(T(X)) T(RF(X))

nT(X)l lT(nx)

G(T(X)) —— T(G(X))

wa,x
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commutes for any X in C. By the definition, we have

T(nx)owrrx = T(G(Bx)*l o e(b(X)) O Wpa(x) O F(kx)
=T(G(Bx)) " o T(ea(x)) © wra(x) © Frx).

Since € is a graded morphism of functors, we have the commutative diagram
F(T(2(X))) T(F(®(X)))
5T<<I><X>>l lT(eq)(xﬂ
G(T(B(X))) ——— T(F(B(X))

WG, d(X)

WF &(X)

and
T(nx)owrrx = T(G(Bx)) " owe,a(x) © er@(x)) © F(rx).
Since wg is an isomorphism of functors, we have the commutative diagram

wa,x

G(rX) —— TGEX))
G(T(ﬁx))l lT(G(Bx)),
G(T(2(X))) P—— T(G(2(X)))

Since Bx is an isomorphism in C[S™1], T(G(Bx)) and G(T(Bx)) are isomorphisms
in D. Hence, we have

wa,x 0 G(T(Bx)) ™! = T(G(Bx)) ™" 0w a(x)
and -

T(nx) o wrr,x = Wa,x © G(T(ﬂx))fl 0 € (P (X)) © F(kx).

Consider now the isomorphism ®(T(Bx)) : ®(T(X)) — T(¢(X)) in E[ST!]. As
we established before, it induces a cummutative diagram

Fo(r(x))) Z2TED, por@(x))

eé(T(X))J/ leT@(x)) .

G(@(T(X))) D, G(1(®(X))
This implies that
era(x)) © F(rx) = G(®(T(Bx))) 0 €a((x))
and
T(nx)owrr,x =wa,x ©G(T(Bx)) " o G(®(T(Bx))) © €x(r(x))-
Since ®(T'(Bx)) o Br(x) = T(Bx), we see that
G(®(T(Bx))) o G(Br(x)) = G(T(Bx))
and
G(T(Bx)) " o G(®(T(Bx))) = G(Brx)) "
This implies that
T(nx)owrr,x = wa,x © G(Br(x)) " © €a(r(x)) = Wa,x ©Nr(x),

what establishes our claim.
Finally, we have to show that n : RFF — G is unique. Let ( : RF — G be
another graded morphism of functors such that (oep =e.
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Assume first that X is in €. Then fx : X — ®(X) is the identity. Then
px : F(X) — F(X) is also the identity. Hence, nx o px = ex = (x o px implies
that nx = Cx.

Let X in C be arbitrary. Then, by (AR2), there exists Y in £ and s : X — Y
in S, i.e., Q(s) is an isomorphism. This implies that in the commutative diagrams

RE(X) OO, ppy)

nx lﬂy

GX) —— G()
G(Q(s))

and

RE(X) CY), pRy)

(x le
GX) —— G(Y)
G(Q(s)
the horizontal arrows are isomorphisms. Moreover, as we already remarked, we

have (y = ny. This implies that

(x =G(Q() ™" oGy 0 RF(Q(5)) = G(Q(5)) ™" omy o RF(Q(5)) = 1x-
Hence, 1 is unique. This completes the proof of 1.3.2.

1.4. Existence of derived functors. As we have seen in the last section,
the derived functors do not have to exist in general. In this section we discuss a
conidition on the triangulated category C and the localizing class S which garantees
the existence of derived functors.

Let C be a triangulated category and S a localizing class in C compatible with
translation. We say that C has enough S-injective objects if for any object X in C,
there exists an S-injective object I and a morphism s: X — I in S.

Analogously, we say that C has enough S-projective objects if for any object X
in C, there exists an S-projective object P and a morphism s: P — X in S.

Clearly, the category C has enough S-injective objects if and only if the opposite
category C°PP has enough S-projective objects. This allows again to restrict our
discussion to S-injective objects.

Assume that the category C has enough of S-injective objects. First, by the
discussion in Sect. 1.8 in Ch. 2, it follows that the natural inclusion of Z into
C[S~!] is an equivalence of categories. Moreover, the full triangulated category Z
of all S-injective objects satisfies the condition (RA1) by 1.8.3 in Ch. 2, (RA2) is
automatic, and (RA3) follows from 1.8.2 in Ch. 2. Hence, 7 is right adapted for
any exact functor F'. Therefore we have the following result.

1.4.1. THEOREM. Let C and D be two triangulated categories. Let S be a localiz-
ing class compatible with triangulation in C. Assume that C has enough S-injective
objects.

Let F: C — D be an exact functor. Then there exist a right derived functor
(RF,er) of F from C[S™1] into D.

An analogous result holds for left derived functors.
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1.4.2. THEOREM. Let C and D be two triangulated categories. Let S be a localiz-
ing class compatible with triangulation in C. Assume that C has enough S-projective
objects.

Let F: C — D be an exact functor. Then there exist a left derived functor
(LF,er) of F from C[S™!] into D.

1.5. Derived functors between derived categories. Now we specialize
the results from the preceding section to exact functors between homotopic cate-
gories of complexes. Let A and B be two abelian categories and K*(A) and K*(B)
the corresponding homotopic categories of complexes.

Let F': A — B be an additive functor. Then, as explained in 1.1, F' induces
an exact functor K(F) : K*(A) — K*(B). We can consider the corresponding
derived categories D*(A) and D*(B) and the quotient functors Q4 : K*(A) —
D*(A) and Qp : K*(B) — D*(B).

A right derived functor of F is a right derived functor of Qo K (F) : K*(A) —
D*(B) in the sense of preceding section, i.e., it is a pair consisting of an exact functor
RF : D*(A) — D*(B) and a graded morphism of functors er : Qg o K(F) —
RF o Q4 with the following universal property:

(RD1) Let G : D*(A) — D*(B) be an exact functor and € : Qp o K(F) —
GoQ 4 a graded morphism of functors. Then there exists a unique graded
morphism of functors n : RF — G such that the diagram

RFOQ_A

QRpo K(F) noQ.A

GoQua

commutes.

Analogously, we have the notion of a left derived functor.

A left derived functor of F is a pair consisting of an exact functor LF :
D*(A) — D*(B) and a graded morphism of functors ep : LFoQ 4 — Qo K(F)
with the following universal property:

(LD1) Let G : D*(A) — D*(B) be an exact functor and ¢ : Go Qq —
Qp o K(F) a graded morphism of functors. Then there exists a unique
graded morphism of functors n : G — LF such that the diagram

GoQa

noQ A QBOK(F)

LFOQA

comimutes.

Clearly, if right (or left) derived functors exist they are unique up to an iso-
morphism of of functors.
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As we discussed in Ch. 3, the opposite category of K (A) (resp. KT(A), K~ (A)
and K°(A)) is K(A°P) (resp. K~ (A°PP), KT (A°P), and K°(A°PP)). Moreover,
we have the analogous isomorphisms for derived categories. Therefore, from the
discussion in the preceding section, we see that the right derived functor RF :
D(A) — D(B) (resp. RF : DY(A) — D™ (B), RF : D~ (A) — D~ (B) and RF :
D*(A) — D®(B)) of F : A — B is the left derived functor LF : D(A°P) —
D(B°PP) (resp. LF : D™ (A°PP) — D~ (B°PP), LF : DV (A°P) — DT (B°PP) and
LF : DY(A%P) — D¥(BPP)) of F : A°PP — BOPP.

Therefore, it is enough to discuss right derived functors.

1.5.1. EXAMPLE. Let F' : A — B be an exact functor between abelian cate-
gories. Consider the corresponding exact functor D(F') : D*(A) — D*(B) between
derived categories constructed in 1.2.2. Then, as we explained in 1.3.1, the functor
D(F) is a right derived and the left derived functor of F.

Now we can specialize the sufficient condition for the existence of derived func-
tors from 1.3.2 in this setting.

Let D be a full triangulated subcategory in K*(A) and S the localizing class
of all quasiisomorphisms in K*(.A). Then we have the following result.

1.5.2. LEMMA. The class Sp = SN Mor(D) of all quasiisomorphisms in D is a
localizing class compatible with triangulation.

PROOF. By inspection of the proof of 3.1.2 in Ch. 3, we see that it applies
without any changes in this situation. O

Therefore, we can specialize the definition from the preceding section.
A full triangulated subcategory D of K*(.A) is called right adapted for F', if

(R1) for any X in K*(A) there exist M in D and a quasiisomorphism s :
X — M
(R2) for any acyclic complex M in D, the complex K(F)(M") is acyclic in
K*(B).
Since K (F) is an exact functor, by 3.1.1 in Ch. 3, it follows that the second
condition implies that for any quasiisomorphism s in D, the morphism K (F)(s) is
also a quasiisomorphism. Hence, by 1.3.2, we see that the following result holds.

1.5.3. THEOREM. Let A and B be two abelian categories. Let F : A — B be
an additive functor.

Assume that there exists a right adapted subcategory of K*(A) for F. Then
there exist a right derived functor (RF,ep) of F from D*(A) into D*(B).

1.6. Composition of derived functors. Let A, B and C be three abelian
categories. Let F': A — B and G : B — C be two additive functors. Then
their composition G o F' : A — B is an additive functor. Moreover, we have
K(GoF)=K(G)o K(F).

Assume that these three functors have right derived functors RF' : D*(A) —
D*(B), RG : D*(B) — D*(C) and R(Go F) : D*(A) — D*(C). This implies
that we have the graded morphisms of functors er : Qp o K(F) — RF o Q4 and
€¢ : Qc o K(G) — RGoQp. By composing the second one with K(F), we get the
graded morphism of functors ego K (F) : QcoK(G)oK(F) — RGoQpoK(F). On
the other hand, by composing the first one with RG, we get the graded morphism
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of functors RGoep : RGoQpoK(F) — RGoRF o(Q 4. The composition of these
two morphisms of functors is a graded morphism

k:QecoK(GoF)— RGoRFoQ4.

By the universal property of R(G o F') there exists a graded morphism of functors
n: R(GoF) — RG o RF such that the diagram of functors

R(GoF)oQ4

y

QcoK(GoF) noQA

T

RGoRFoQ4

commutes.

The morphism of functors 7 is not an isomorphism in general. On the other
hand, under certain restrictive assumptions, it is an isomorphism.

Assume that K*(.A) contains a full triangulated subcategory D which is right
adapted for F. Also, assume that that K*(B) contains a full triangulated sub-
category £ which is right adapted for GG. Then, by 1.5.3, the derived functors
RF : D*(A) — D*(B) and RG : D*(B) — D*(C) exist.

1.6.1. THEOREM. Assume that
(GS) for any complex M in D, the complex K(F)(M) is in E.
Then:

(i) The full triangulated subcategory D of K*(A) is right adapted for G o F,
and the right derived functor R(Go F) : D*(A) — D*(C) of Go F exists.
(ii) The morphism of functors

n:R(GoF)— RGoRF
18 an tsomorphism.

PROOF. (i) Let M be an acyclic complex in D. Then, since D is right adapted
for F, the complex K (F)(M") is acyclic. Moreover, by (GS), it is in £. Therefore,
since £ is right adapted for G, the complex K(G o F)(M") = K(G)(K(F)(M")) is
also acyclic. This implies that D is right adapted for G o F'. By 1.5.3, the right
derived functor of G o F' exists.

(ii) Since the derived functors are unique up to an isomorphism, we can assume
that they are the ones constructed in 1.3.2. Let M be in D. Then, by the con-
struction of the functor RF', the morphism ep pr- @ K(F)(M') — RF(M") is an
isomorphism in D*(B). Therefore, RG(ep ) : RG(K(F)(M')) — RG(RF(M"))
is an isomorphism in D*(C). Analogously, since K (F)(M) is in £, the morphism
e,k (Fym) - K(G)(K(F)(M')) — RG(K(F)(M)) is an isomorphism in D*(C).
By the construction, this implies that s : K(G)(K(F)(M')) — RG(RF(M"))
is an isomorphism in D*(C). Since egopm- @ K(Go F)(M') — R(Go F)(M') is
an isomorphism in D*(C), it follows that 7 : R(G o F)(M') — RG(RF(M")) is
also an isomorphism in D*(C).



1. DERIVED FUNCTORS 217

Assume now that X  in K'(A) is an arbitrary complex. Then there exists M~
in D and a quasiisomorphism s : X° — M. This leads to a commutative diagram

R(GoF)(x) D@D p@or)r)

| s

RGoRF) (X)) ——— — (RGo RF) (M-

( )X (RGoRF)(Qa(s)) ( )
where the horizontal arrows are isomorphisms, since @ 4(s) is an isomorphism.
Since 7y is an isomorphism by the first part of the proof, it follows that nx- is
also an isomorphism. Therefore, 1 is an isomorphism of functors. [

1.7. Adjointness of derived functors. Let A and B be two abelian cate-
gories, and F' : A — B and G : B — A two additive functors. Assume that
F is a left adjoint of G. Then, F is a right exact functor and G is a left exact
functor. Moreover, by 1.1.3, the functor K(F') : K*(A) — K*(B) is a left adjoint
of K(G): K*(B) — K*(A).

Assume that C is a full triangulated subcategory of K*(.A) which is left adapted
for F' and that D is a full triangulated subcategory of K*(B) right adapted sub-
category for G. Then, by 1.5.3, the derived functors LF' : D*(A) — D*(B) and
RG : D*(B) — D*(A) exist.

1.7.1. THEOREM. The functor LF : D*(A) — D*(B) is a left adjoint of the
functor RG : D*(B) — D*(A).

PRrROOF. Since the derived functors are unique up to an isomorphism, we can
assume that they are the ones constructed in 1.3.2.

Let X' and Y be two complexes in D*(A) and D*(B) respectively. We have
to establish a natural isomorphism

nx,y - HOHID*(B) (LF(X)7Y) — HOHID*(_A) (X7 RG(Y))

We assume first that X isin C and Y is in D. In this case, by our construction
of derived functors, we have LF'(X") = K(F)(X") and RG(Y") = K(G)(Y").
Let ¢ : K(F)(X') — Y~ be a morphism in D*(B). Then it is represented by

a right roof
U
7N
K(F)(X) Y

where f: K(F)(X') — U’ is a morphism and s is a quasiisomorphism in K*(B).
By the assumption, we can find a complex V' in D and a quasiisomorphism w :
U — V. This leads to a commutative diagram

A

K(F) (X' 1%
idv
f

N
Sl A
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where wo s is a quasiisomorphism. It follows that the above right roof is equivalent

to the right roof
vV .
V ws
K(F)(X) Y

Therefore, we can assume from the beginning that U" is in D.

Now, by the adjointness of K(F') and K(G), f: K(F)(X') — U’ determines
a morphism a = yx v (f) : X' — K(G)(U") in K*(A). In addition, since Y~ and
U are in D and s is a quasiisomorphism, we see that K(G)(s) : K(G)(Y') —
K(G)(U") is also a quasiisomorphism in K*(A). Therefore, we have a right roof

K(G)(U)
X K(G)(Y).

We claim that the equivalence class of this roof doesn’t depend on the choice of the

representative of ¢.

Let
K(F)(X") Y

be another right roof representing ¢ with V" in D. Then there exists a complex W*
in K*(B) and morphisms ¢ : U — W and r : V' — W such that the diagram

U
f q s
K(F)(X) w Y
g " ) t
14

commutes, and g o s = r ot is a quasiisomorphism. Arguing like before, we can in
addition assume that W is in D. Moreover, since
HP(q) 0 H"(s) = H" (g0 s) = HP(r ot) = H(r) o H" (1)

are isomorphisms for all p € Z, ¢ and r have to be quasiisomorphisms. Let b =
vx,v(g) : X' — K(G)(V"). Then, by the naturality of v in the second variable,
we see that

Yx.wl(go f) = K(G)(q) e vx,v(f) = K(G)(g)oa
and

x,w(rog) =K(G)(r)oyxv(g) = K(G)(r)ob.
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Hence, the diagram

K(G) (V)

commutes, and K(G)(q) o K(G)(s) = K(G)(r) o K(G)(t) is a quasiisomorphism.
This implies that the right roof attached to the second representative of ¢ is equiv-
alent to the first right roof. Hence, we constructed a well-defined map nxy :
Hom p+ 4y (K (F)(X"),Y") — Homp- ) (X", K(G)(Y"))

Now we show that the mapping 7x y is additive. Let ¢ and ¢ be two elements
in Homp- ) (K(F)(X"),Y"). By 1.3.5 in Ch. 1, we can represent them by right
roofs

U and U .
PN PN
' ' K(F)(X) Y

Moreover, as above, we can assume that U’ is in D. Then the sum ¢ + ¢ is
represented by the right roof

U .
27N
K(F)(X") Y

Hence, if we put ¢ = vx,v(f) and b = vx v (g), we see that nx,y(¢) and nx v (¥)

are represented by the right roofs
K(@G)(U) d K(G)(U)
N e
X K(G)(Y X K(G)(Y

and their sum is represented by

K (G)(U'\)\
V K(G)(s)
X K(G)(Y")

This implies that nx v (¢ + ¢) = nx,y (¢) + nx,v (¥), i.e., nxy is additive.

an

) )
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Now we show that nxy is injective. Assume that nxy(¢) = 0 and ¢ is
represented by the right roof

with U in D. Then, if a = vx,y(f), the morphism nx y(¢) is represented by the

right roof
K(@)(U)
X K(G)(Y)

which has to represent the zero morphism. By 2.1.4 in Ch. 1, it follows that there
exists a quasiisomorphism ¢ : V' — X' such that aot = 0 in K*(A). Moreover,
since C is left adapted, we can assume that V" is in C. Therefore, by using the
naturality of v in the first variable we get

O=aot=9xu(f)ot="vu(foK(F)()).

This in turn implies that f o K(F)(t) = 0. Since K(F')(t) is a quasiisomorphism,
by 2.1.4 in Ch. 1, the morphism ¢ is zero.

Now we prove that 7x,y is surjective. Let ¢ : X* — K(G)(Y") be a morphism
in D*(A). Then it is represented by a left roof

/ ) \
X K(G)(Y")

Since C is left adapted, we can assume that V' is in C. Let a = dyy(g) :
K(F)(V') — Y. Since quasiisomorphisms are a localizing class, we can construct
the commutative diagram

W <2 K(F)(X)

TTN ~TK(F)(t)

Y ﬁK(F)(V)

where r is a quasiisomorphism; and since D is right adapted, we can also assume
that W is in D. Let ¢ : K(F)(X') — Y~ be the morphism in D*(B) represented

by the right roof
w: .
2N
(F)(X7) v

K
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Then, nx,y () is represented by the right roof

K (G)(W')\
/ K(G)(r)
X K(G)(Y")

where f = vx w(b). By naturality, we have

f ot = '7X7W(b) ot = 'YV,W(b 9] K(F)(t))
=vw(roa) = K(G)(r)oyvy(a) = K(G)(r)og.
This implies that

nx,y (9) = QUE(G)(1) ™ o Q(f) = Qg) o Q)" =,

and nx,y is surjective. It follows that nx y is an isomorphism.

Now we have to define the map 7x y for arbitrary X and Y. By the construc-
tion of the derived functors, we have natural isomorphisms S4 x : PA(X') — X
and By : Y — ®p(Y") such that LF(X') = K(F)(®4(X")) and RG(Y") =
K(G)(®5(Y")). Therefore, we have a natural isomorphisms

BB, yo—

Hom p-(3)(LF(X"),Y") ——— Homp-g) (K (F)(®4(X")),®5(Y"))

and

Homp-(4) (X", RG(Y")) —oPax, Hom p-(4)(®4(X"), K(G)(®5(Y")))-

Hence, we define

nx.y (9) = N4 (x),05(v) BBy © ) 0 B'x

for any ¢ in Hom p«(3)(LF(X"),Y"). Clearly, it is an isomorphism of abelian groups.
It remains to check that such 7 is natural. Let o : U" — X  be a morphism
in D*(A). Assume first that U and X are in C and Y~ in D.
First, let « = Q4(a) for a morphism a in K*(A). Then, for a morphism
p: K(F)(X') — Y represented by a right roof

we have, by the naturality of v that

Y (foK(F)(a) =yxv(f)ea.
Therefore, it follows that

nx,y () o a = Qa(K(G)(s)) ™! 0 Qalyxv(f)) o Qala)
1

(s )o
= Qu(K(G)(s))"" 0 Qulyov(f o K(F)(a))) = nuy (o Qs(K(F)(a)))
= oy (¢ o K(F)(Qa(a))) = nuy (¢ o K(F)(a)).
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Assume that a = Q 4(s) for a quasiisomorphism s. Then « is an isomorphism,

K(F)(a) = Qp(K(F)(s)) is an isomorphism and K(F)(a)™t = K(F)(a™!). By
replacing ¢ by ¥ o K(F)(a)™t, we get

oy (o K(F)(a)™") = nxy () oa™.

Now we consider an arbitrary morphism « : U — X' in D*(A). Since the
full category of D*(.A) with objects Ob(C) is the localization of C with respect to
quasiisomorphisms, a = Q4(g) o @ 4(t)~! for some morphism g : W° — X" and
quasiisomorphism ¢ : W — U" in C. From the above relations we immediately see
that

nxy(p)oa=nxy(p)oQalg) o Qa(t) ™" =nwy(po K(F)(Qa(g))) o Qa(t)™"
=nuy (o K(F)(Qal(g) e K(F)(Qa(t)™") = nuy (¢ o K(F)(a)).

Assume now that U, X  and Y~ are arbitrary. The morphism of functors 54
leads to commutative diagram

(I)A(U') Ba,u U

QA(O‘)JV la

Ba,x

du(X) 25 X
It implies that
Balx oa=da(a)o By
Hence, we have
nxy(p)oa= Nd 4 (X),®5(Y) BBy o) o ﬂj}x o«
= N, (x),05(v) BBy © ) 0 Pale) o B
= 1o, (), 05(v) (BB,y 0 9 o K(F)(®a())) o B3
= 1o 4 (U),05(v) BBy © (P o LF(@))) 0 B4 = nuy (¢ o LF(a))

i.e.,  is natural in the first variable.

Now, let 6 : Y — Z' be a morphism in D*(B). Assume first that X is in C
and Y™ and Z" in D.

First, let § = Qp(d) for some morphism d in K*(B). Consider a morphism
¢: K(F)(X') — Y represented by a right roof

Vv .
27X
K(F)(X) Y

Since quasiisomorphisms are a localizing class and D is right adapted, we can
construct a commutative diagram

Vv g -W"
K(F)(X) e T>Z
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where W is in D. Then the composition ¢ o ¢ is represented by the right roof
W
(X) Z

gos=tod

Moreover, we have

and
K(G)(g) o K(G)(s) = K(G)(t) o K(G)(d).
Since s and t are quasiisomorphisms between objects in D, it follows that K(G)(s)
and K (G)(t) are quasiisomorphisms in K*(A) and
QA(E(G)()™! 0 Qa(K(G)(9)) = Qu(K(G)(d)) 0 Qa(K(G)(s)) ™.

Hence, by naturality of «, we have

nx,z(80¢) = Qa(K(G)(1)  oyxw(go f)
= Qu(K(G )( )" o Qa(K(G)(9)) o vx,v(f)
= QA(K(G)(d)) 0 Qa(K(G)(5) ! oyx,v(f) = K(G)(3) o nxv ().

Assume that § = Q4(r) for a quasiisomorphism 7. Then § is an isomorphism,
K(F)(0) = Qp(K(F)(r)) is an isomorphism and K(F)(§)~!' = K(F)(6~'). By
replacing ¢ by §7! 0, we get

nx,y (87 o) = K(G)(8) ! onx z(1).

Now we consider an arbitrary morphism § : Y° — Z" in D. Since the full
category of D*(B) with objects Ob(D) is the localization of D with respect to
quasiisomorphisms, 6§ = Qz(h) o Qz(r)~! for some morphism h : T — Z° and
quasiisomorphism ¢ : 7" — Y in D. From the above relations we immediately see
that

nx,z(8 0 ¢) = 1x,2(Qs(h) 0 Qp(r) ™! 0 ) = K(G)(Q5(h)) o nx,r(Qs(r) ™" o )
= K(G)(@Qs(h)) o K(G)(Qa(r)) " onx,y(p) = K(G)(9) onx.y (¢)-

Assume now that X', Y and Z° are arbitrary. The morphism of functors Sz
leads to commutative diagram

BB,y

LA YL

6l ltbg(é).

BB,z

z EZ, op(7)
Hence, we have
nx,z(00p) = Ne 4 (X),®5(2) (58,2 odogp)o 5;1,1)(
= 10, (x),05(2)(P5(8) 0 Bey 0 ) 0 By
= K(G)(®5(6)) 0 o, (x),05(v) By ©©) © By
= RG(5) onx,y (v),

and 7 is natural in the second variable too. (]
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2. Resolutions
2.1. Resolutions of complexes.

2.1.1. THEOREM. Let A be an abelian category and B its full subcategory which
contains 0 and such that for any X in A there exist M in B and a monomorphism
i: X — M.

Let X be a complex in CT(A) such that X™ = 0 for n < 0. Then there exist
a complex M™ in Ct(B) such that M™ = 0 for n < 0 and a quasiisomorphism
s: X — M.

PROOF. O

2.2. Complexes of injective objects. Let A be an abelian category. Denote
by Z the full subcategory of A consisting of all injective objects in A. Since the
sum of two injective objects is injective, Z is a full additive subcategory of A. Let
K*(A) be the homotopic category of A-complexes bounded from below. Let KT (Z)
the homotopic category of Z-complexes. We can view it as a full subcategory of
KT (A). Since the direct sum of injective objects is injective, for any two complexes
I and J in K*(Z), the cone of a morphism f : I' — J in C*(A) is in K+ (Z).
This implies that KT (Z) is a full triangulated subcategory of K1 (A).

2.2.1. LEMMA. Let I' be a complex in K+¥(Z) and X a complex in KT (A). Let
s: I' — X be a quasiisomorphism. Then there exists a morphism t : X —> I’
in KY(A) such that t o s =idy, i.e., t o s is homotopic to identity on I".

This result is a consequence of the following lemma.

2.2.2. LEMMA. Let I' be a complex in K™ (Z) and X' a complex in K*(A).
Assume that X is acyclic. Then any morphism f : X' — I is homotopic to zero.

PROOF. Since both complexes are bounded from below, after translation if
necessary, we can consider the commutative diagram

0 XO Xl XZ
o o o
0 1° I I?

where we want to construct the morphisms A? : X? — IP~! which define a
graded morphism of degree —1 such that hodx +dyoh = f. Clearly, h? = 0
for p < 0. We proceed inductively. Clearly, by the definition of injective objects,
there exists h' : X1 — I such that h' o d% = fY. Therefore, since h° = 0, we
have d;* o h® + h' o d% = fO.

Assume that we constructed h?, i < n. Then we have the commutative diagram

Xn72 . anl > X7 . Xn+1

l hnfl fnil i R fnl hn+1 fn+1 i
&

In—2 In—l In In+1

Consider the morphism ¢ = f™ — d?’l oh™: X™ — I". Then, we have

(pod}_l _ fnoan—l 7d?_10hn0d}_1 _ d?_lo(fn71 7hnod}—1 7d?_20hn71) =0
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and ¢ factors through coker d’% '. Since X" is acyclic, coker d% ' = coim d%. There-
fore, there exists a morphism v : coimd’y — I™ such that the diagram

X7l A I’n

| <
coim d’y

commutes. The differential d% induces a monomorphism coimd% — X" ™1 and
since I" is injective, we get a morphism A" : X"+ — I™ such that the diagram

X?’L

|

0 — coimd% — X"*!
#}i %
I’I’L
commutes. Therefore, we have ¢ = h"T1 o d%, i.e.,
fr=di T o h™ = h" o dy.
This establishes the induction step. O

Now we can prove 2.2.1. For the purpose of the proof we consider s as a
morphism of complexes in C*(A). Consider the standard triangle

C

P
(1]
X

S

I

in K(A). Since s is a quasiisomorphism, C;, is acyclic by 3.1.1 in Ch. 3. Therefore,
p: C, — I' is homotopic to zero by 2.2.2. Let h be the corresponding homotopy.
Then h" : C" — T(I)"! = I" is a morphism in A for any n € Z. Since
C? = [ @ X", for any n € Z, the morphism A" is represented by a matrix

hn — [kn+1 tn] ,

where k"t1: "t — " and t" : X™ — I™ are morphisms in A.
For any n € Z, the equality p = hodc, + dp(;-) o h implies that

. — n—+2 n+1 _d?+1 0 _Jn n+1 n
lidpnes 0] =p" = [k el R S AL t"]
X

= [k odft —dp o k"t 4Tl osn Tl o dy — df o] .

Hence, we have

t"Hody =df ot"
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for any n € Z. This implies that t : X° — I' is a morphism of complexes.
Moreover, k™, n € Z, define a graded morphism of degree —1 of graded module I",
which satisfies

kodr+dyok=tos—idy,

i.e., t o s is homotopic to the identity. This proves 2.2.1.

2.2.3. PROPOSITION. Let I' and J  be two complexes in K (Z). Lets: I — J
be a quasiisomorphism. Then s is an isomorphism in K+ (T).

PRrROOF. By 2.2.1, there exists a morphism ¢ : J° — I such that ¢ o s = id;.
This in turn implies that HP(t) o HP(s) = HP(id;) = idyr(ry for any p € Z.
Since HP(s) are isomorphisms by our assumption, it follows that HP(t), p € Z,
are isomorphisms. Hence, t is also a quasiisomorphism. By 2.2.1, there exists
u:I" — J such that uot = id;. Therefore, u = uotos = s and s has an inverse.
Hence, s is an isomorphism in K1 (A). O

This result implies that the class of quasiisomorphisms in K+ (Z) is identical
with the class of all isomorphisms. Let @ : K*(A) — D' (A) be the quotient
functor. Then, by restricting to K (Z) it defines an exact functor K*(Z) —
DT(A).

2.2.4. THEOREM. The natural functor K+(Z) — DT (A) is fully faithful.

PROOF. Let S be the class of all quasiisomorphisms in K+ (A). Then, by 2.2.3,
S N Mor(K™(Z)) consists of isomorphisms in K (Z). Therefore, it is a localizing
class in K (Z).

Let s : I' — X be a quasiisomorphism with /" in K7 (Z) and X" in K*(A).
Then, by 2.2.1, there exists t : X° — I" such that tos = id; in KT (A). Therefore,
the conditions of 1.4.2 in Ch.1 are satisfied and K*(Z) — D% (A) is fully faithful.

]

Let A be an abelian category and Z the subcategory of all injective objects. We
say that A has enough injectives if for any object M in A there exists an injective
object I and a monomorphism s: M — I.

2.2.5. COROLLARY. Let A be an abelian category which has enough injectives.
Then the natural morphism K+(Z) — DT (A) is an equivalence of categories.

PROOF. By 2.2.4, the functor is fully faithful. By 2.1.1, for any complex X" in
K*(A) there exists a complex I' in K*(Z) and a quasiisomorphism s : X' — I".
Therefore, Q(s) is an isomorphism in D¥(A) and the functor is essentially onto.
Hence, it is an equivalence of categories. ([

3. Derived functors revisited

3.1. Existence of derived functors. Let A and B be two abelian categories
and F' : A — B an additive functor.
A full subcategory R of A is right adapted for F if it satisfies the following
properties:
(AR1) the zero object 0 is in R;
(AR2) if M and N are in R then M @ N is in R;
(AR3) for any object M in A there exists R in R and a monomorphism i : M —
R;
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(AR4) if R is an acyclic complex in K+(R), then K(F)(R’) is also acyclic.

Clearly, the first two conditions imply that R is a full additive subcategory of
A. Moreover, we can view KT (R) as a full subcategory of K (A). By (AR2), for
any morphism of complexes f: R — " for R" and S" in K (R), the cone C} is
in KT(R). Therefore, K*(R) is a full triangulated subcategory of K+ (A).

The next result is a slight variation of 1.5.3.

3.1.1. THEOREM. Let F': A — B be an additive functor. Assume that there
exists a subcategory R of A which is right adapted for F'. Then there ezists a derived
functor RE : DT (A) — D+ (B) of F.

PROOF. By 2.1.1, for any X" in K*(A) there exist R in KT(R) and a quasi-
isomorphism s : X° — R'. Hence, KT (R) satisfies the condition (R1) from 1.5.
Hence, the statement follows from 1.5.3. O

Let Z be the full subcategory consisting of all injective objects in A. Then it
obviously satisfies (AR1) and (AR2). The next lemma states that it also satisfies
(ARA4).

3.1.2. LEMMA. Let I' be an acyclic complex in KT (Z). Then K(F)(I') is
acyclic.

PROOF. By 2.2.2, the identity morphism id; : I' — I' is homotopic to zero.
Therefore, there exists a homotopy A such that d; o h + hod; = id;. Hence, I’
is isomorphic to 0 in K*(A). This implies that K(F)(I") is isomorphic to zero in
K*(B). O

Assume that the category A has enough injectives. Then it also satisfies (AR3).
Hence, by 3.1.1, we have the following result.

3.1.3. THEOREM. Let A be an abelian category which has enough injectives.
Then any additive functor F : A — B has a right derived functor RF : DT (A) —
DT (B).

3.2. Basic properties of derived functors. Let A and B be two abelian
categories and F' : A — B an additive functor. Let R be a right adapted sub-
category for F. For any n € Z, we define the additive functors R"F : A — B
by

R"F = H"oRF oD for any n € Z.

Since €r is a morphism of functors, we have a natural morphism er pr) :
K(F)(D(M)) — RF(D(M)). Taking HY of this morphism we get a natural
transformation H®(ep) : F — ROF.

The functors R™F have the following properties.

3.2.1. LEMMA. (i) R"F =0 forn < 0.
(i) ROF is a left exact functor.
(iii) the natural transformation H°(ep) : F — ROF is an isomorphism of
functors if and only if F is left exact.
(iv) Let

0 L M —2 5 N 0
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be an exact sequence in A. Then we have an exact sequence

0 0
HED), popry BE9s ROF(N) - RIF(L) — ...

R™F(f)

0— RF(L)

.= R"F(N) = R"F(L) LRAON

R"F(M)
R"F(N) — R"M'F(L) — ...
(v) Let M be an object in A and
0—M-—R"—R'— R> — ...
an exact sequence with R™ in R for alln € Z. Let R be the complex
o —0—R — R'— R — ...
Then
(R"F)(M)= H"(C(F)(R)) for alln € Z.
PROOF. Let

0 — L -1 s m -2 N 30

be a short exact sequence in A. Then, by 3.7.1 in Ch. 3, we have the distinguished
triangle

D(N)
D(g)
(1]
D(M) ———5———= D(N)

in DT (A). Since RF is an exact functor, this implies that the triangle

RF(D(N))
RF(D(g))
(1]
RF(D(M RF(D(N
(D) ——— (D(V))
is distinguished. Since HY is a cohomological functor, this leads to a long exact
sequence

5 RLE(NY) - ReE(L) Y repu) B9 ReR(N) < RPPIF(L) s
To establish (v), observe that we have an obvious quasiisomorphism D (M)
R'. Therefore, RF(D(M)) = RF(R’). On the other hand, we have RF(R') =
K(F)(F) = K(F)(R).
(i) follows immediately from (v). Also, (i) and the above long exact sequence
imply (iv). (iv) in turn implies that (ii).
Assume that F is left exact. Then we have eppny @ K(F)(D(M)) —
RF(D(M)) = K(F)(R'). Then the exactness of

0—M-—R"—R!
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implies that

0 — F(M)— F(R°) — F(RY)
is exact. Hence, we have H'(ep p(ar)) : F(M) — ROF(M) = HY(K(F)(R)) =
F(M) is an isomorphism, and (ii) follows. |

3.3. F-acyclic objects. Assume now that F': A — B is a left exact functor.
Let R be a right adapted subcategory for F. An object M in A is F-acyclic if
R"F(M) = 0 for n > 0. Clearly, from 3.2.1.(v), it follows that any object R in R
is F-acyclic. Let Z be the full subcategory of all F-acyclic objects in .A. Then, we
have R C Z.

3.3.1. PROPOSITION. (i) The subcategory Z is right adapted for F.

(ii) The subcategory Z is the largest right adapted subcategory for F.

(iii) All injective objects in A are in Z.

PROOF. Clearly, 0 is in £ and (AR1) holds. Moreover, if M and N are in Z,

R'"F(M®N)=R'F(M)®R"F(N)=0

for all n > 0. Hence, M@ N is in Z and (AR2) holds. Therefore, Z is a full additive
subcategory of A. Since R C Z, (AR3) also holds.

Let Z' be an acyclic complex in K¥(Z). By translation, we can assume that
7" is equal to

= 00— 20—zt —
This implies that
0— 2" — 7' —imd’ —0

is a short exact sequence. Since F is left exact, by 3.2.1 we have R'F = F.

Moreover, since Z° is in Z, we have R"F(Z°) = 0 for n > 0. Therefore, from the
long exact sequence in 3.2.1 we conclude that

0— F(Z°% — F(Z') — F(imd®) — 0
is exact and R"F(Z') 2 R"F(im d°) for all n > 0. Since Z! is also in Z, it follows
that R"F(imd°) = 0 for n > 0 and im d° is in Z. Since Z" is acyclic, ker d* = im d°
and ker d! is also in Z.

Now we prove that imd"~! = kerd” are in Z by induction in n. We already
established this for n = 1. Clearly, for any n, we have the short exact sequence

0 — kerd” — Z" — imd"” — 0
Since Z™ are in Z, this implies that RP™!F(imd") = RPF(kerd™) for p > 1.
Assume that imd™ is in Z. Then, by acyclicity, ker d**! is in Z, and the above
relation implies that im d”*! is in Z. Hence, our statement follows by induction.

It follows that, by applying F' to the above short exact sequences, we get the
following short exact sequences:

0— F(Z°% — F(Z') — F(imd®) — 0
and
0 — F(kerd") — F(Z") — F(imd") — 0
for all n € N. Let d" : 2" 2= imd" 2% Z"*+! be the factorization of d” in a
composition of an epimorphism and a monomorphism. Then, F(d") = F(8,) o

F(ay,) and, by the above short exact sequences, F(ay,) is an epimorphism and
F(pB,) is a monomorphism. Therefore, ker F'(d") = ker F(ov,) = F(kerd™) and
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im F(d") = im F(B,) = F(imd"). Hence, im F(d") = ker F(d"*!) for all n € Z,
and C(F')(Z") is acyclic and (AR4) holds.

(ii) follows immediately from (i).

(iii) Let I be an injective object in 4. Then there exist an object R in R and
a monomorphism ¢ : I — R. Since [ is injective, we see that R = I & M for some
M in A. Hence, by 3.2.1, we have

0=R"F(R)=R"F(I)® R"F(M)
for n > 0, and R"F(I) =0 for n > 0. It follows that [ is in Z. O

3.4. Functors of finite cohomological dimension. Let A and B be two
abelian categories and F' : A — B a left exact functor. Let R be a right adapted
subcategory for F. Therefore, the right derived functor RF : DT (A) — DT (B)
exists.

If the set {n € Z; | R"F # 0} is unbounded, we say that the right cohomological
dimension of F' is infinite. Otherwise, we say that the right cohomological dimension
of F is finite. More precisely, if d € Z,, we say that the right cohomological
dimension of F'is < d if R"F = 0 for n > d.

Let Z be the full subcategory of A consisting of F-acyclic objects. Then, by
3.3.1, Z is a full additive subcategory of A. Consider K*(Z) as a full subcategory
of K*(A). Then, K*(Z) is a full triangulated subcategory of K*(A).

3.4.1. LEMMA. Let F : A — B be a left exact functor of finite right cohomo-
logical dimension. Then, for any compler X in K*(A), there exist a complex Z'
in K*(Z) and a quasiisomorphism s : X' — 7.

PrROOF. For each n € Z, either X" = 0 or X™ # 0. In the first case, we put
R™ = 0. In the second case, by our assumption, there exists a monomorphism f™ :
X" — R™ with R™ in R. This gives a graded object R". We put M"™ = R"®R"*1,
and define d™ : M™ — M"™! by

n __ 0 'L.dR'rH»l
=l )

Then d? = 0 and M~ is a complex in K*(R). By 3.3.1, M is in K*(Z). Moreover,
for n € Z, we define t" : X" — M™ by

" = |:f”+{0d}:|

Then we have

w o [0 i fn _[fttody
M 0 0 |[ftloan 0

fn+1

= [fn+2 o d}+1:| [d&] = tn-i-l o d?(

Hence, t : X° — M is a morphism of complexes. Moreover, it is a monomorphism
in C*(A). Therefore, we can consider the exact sequence

0— X —y a1

Q — 0.
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Consider the cone C} of f. Then, C} = M""' @ Q" for any n € Z. If we define
the graded morphism v : X* — Cy¢[—1] by

" = {to] for all n € Z,

then v : X* — Cy[—1] is a morphism of complexes and a quasisomorphism by
3.5.3 in Ch. 3.
Since, for any n € Z,
00— X" —M"—Q" —0
is exact, we have the long exact sequence
o= RPF(M™) — RPF(Q") — RFT'F(X™) — RPIIF(M™) — ...
Since R™ are F-acyclic, M™ are also F-acyclic and RPF(M™) = 0 for p > 0.
Therefore, RPF(Q™) = RPFIF(X™) for p > 1 and all n € Z. Since F has finite
right cohomological dimension, the number
d(X)=min{p € Z+ | RF(X") =0 for all ¢ > p and n € Z}

exists. Moreover, if d(X) > 0, we see that d(Q) = d(X) — 1.

Now we can prove our statement by induction in d(X). If d(X) = 0, all X",
n € Z, are F-acyclic, and therefore X is in K*(Z). Hence, the identity morphism
X~ — X satisfies our condition.

If d(X) > 0, then v : X° — Cf[—1] is a quasiisomorphism and d(Cf[—1]) =
d(Q) = d(X) — 1. By the induction assumption, there exists a complex Z' in
K*(Z) and a quasiisomorphism w : C¢[—1] — Z'. Hence, wov: X' — Z is a
quasiisomorphism. O

3.4.2. LEMMA. Let F : A — B be a left exact functor of finite right cohomo-
logical dimension. Let Z' be an acyclic complex in K*(Z). Then K(F)(Z") is also
acyclic.

PRrROOF. Put M = coker d§2. Then we have an exact sequence
0—M-—2°—27"— ...
Let U be the complex
i 00— 20— 2t —

Then, by 3.2.1, RPF(M) = HP(C(F)(U")) for all p € Z. Since the right cohomo-
logical dimension of F' is finite, there exists d € Z, such that RPF(M) = 0 for
p > d. This in turn implies that

F(UP™Y) — F(UP) — F(UP™)
is exact, i.e.,

F(ZP7') — F(ZP) — F(ZP1)
is exact for p > d. It follows that HP((C(F)(Z")) =0 for p > d.

Since K*(Z) is invariant under the translation functor, by applying the above
argument to T9(Z"), we see that

0=HP(C(F)(T(Z"))) = H""*(C(F)(Z))
for any p > d and any g € Z. This clearly implies that Z" is acyclic. [
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Therefore, if the functor F' is of finite right cohomological dimension, the full
triangulated subcategory K*(Z) of K*(.A) satisfies the conditions (R1) and (R2)
from Sec. 1.5. Hence, K*(Z) is right adapted subcategory in K*(A) for F. By
1.5.3, we have the following result.

3.4.3. THEOREM. Let F: A — B be a left exact functor of finite right coho-
mological dimension. Then the right derived functors RF : D*(A) — D*(B) exist
for x =0,+,—,b.

Now we want to show that RF is of amplitude < n. First we need a slight
strenghtening of 3.4.1.

3.4.4. LEMMA. Let X be a complex in K(A) such that X? = 0 for p > po.
Then there exists a complex Z' in K(Z) such that ZP = 0 for p > po +n and a
quasiisomorphism s : X' — Z".

PROOF. By 3.4.1, we know that there exists a complex Z' of in K(Z) and a
quasiisomorphism s : X' — Z'. Since X? = 0 for ¢ > pg, we have 7<,(X") = X
for p > po. Therefore, for p > pg, we have the quasiisomorphism 7<,(s) : X' —
T<p(Z"). To establish our claim, it is enough to show that 7<;, 4»(Z") is in K(Z).
Hence, we have to show that ker dPo* is in Z. To prove this, we first remark that,
by 3.4.2 in Ch. 3, 7>,41(Z") is an acyclic complex for any ¢ > po. Hence, we have
the exact sequence

q+2

. —30 —> cokerd? — 29t 5 7 — ...

This in turn implies that the sequence
o — 0 —imd?T — 29—z
is exact. Let U™ be the complex
e 00— 29— Z0T

with Z¢ in degree 0. By 3.2.1, we see that R°F(imd? ') = H*(K(F)(U")) for
all s € Z4. Since the right cohomological dimension of F' is < n, by applying
this formula to imdP°~! we conclude that HY(K(F)(Z)) = 0 for ¢ > po + n.
Moreover, by applying this to the same formula for im d?°T”~! we conclude that
RIF(imdPotn=1) =0 for ¢ > 1, i.e., imdPoT"~! is in Z. Since HPT"(Z") = 0, we
have im dP°T"~! = ker dP°*t™. This establishes our claim. O

3.4.5. PROPOSITION. Let F' : A — B be a left exact functor of finite right
cohomological dimension. Then the following conditions are equivalent:

(i) the right cohomological dimension of F is < n;
(i) the amplitude of the right derived functor RF : D(A) — D(B) is < n.

PROOF. Clearly, (ii) implies (i).

Assume that (i) holds. Let X be a complex such that H?(X ") = 0 for p < po.
Then, by 3.4.2 in Ch. 3, by truncation we can construct a complex Y isomorphic
to X such that YP = 0 for p < pg. Therefore, by 2.1.1, there exists a complex
R in K*(R) and a quasiisomorphism s : Y — R’ such that R = 0 for p < po.
Now RF(X') 2 RF(Y') @ RF(R) = K(F)(R'), what yields H?(RF(X")) =
HP(F(R)) =0 for p < po.

On the other hand, if X be a complex such that HP(X') = 0 for p > pg, by
3.4.1 in Ch. 3, we can construct a complex Y isomorphic to X such that Y? =0
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for p > pg. By 3.4.4, there exists a complex Z' in K(Z) such that Z? = 0 for
p > po +n and a quasiisomorphism s : Y — Z°. It follows that X = Z and
RF(X') 2 RF(Z') = K(F)(Z'), what yields HP(RF(X")) = HP(K(F)(Z')) =0
for p > pp + n. This implies that the amplitude of RF is < n. O

Now we want to compare the derived functors RF : D*(A) — D*(B) for
x = b,+,—,0, for a left exact functor F' : A — B of finite right cohomological
dimension. For the purpose of this discussion, we denote by R* F' the derived functor
between D*(A) and D*(B).

Consider first the diagram

By our assumptions, K*(Z) is a right adapted subcategory for the functor ¥ :
K*(A) — D(B) which is the composition of the inclusion K*(A) — K(A),
K(F): K(A) — K(B) and the quotient functor @ : K(B) — D(B). Therefore,
by 1.3.2, there exists a right derived functor RV : D*(A) — D(B) of ¥. Since RF
is a derived functor, we have a graded morphism of functors QoK (F) — RFoQ 4.
From the above diagram, we see that it leads to a graded morphism of functors
Qpo K(F)oi— RF oD(i)oQ%. Hence, by the universal property of R® we see
that there is a graded morphism of functors y : R® — RF o D(4) which induces
this morphism. On the other hand, for any Z' in K*(Z) we have

R®(Z)=0(Z) = K(F)(Z)=RF(Z)

and pz- is an isomorphism. Let X be an arbitrary object in D*(A). Then there
exists Z' in K*(Z) and a quasiisomorphism s : X' — Z'. Hence we have the
commutative diagram

Ro(x) QA pgzy

o | |z

RF(X) ———— RF(Z))
RF(Q(s))

and we see that pux is an isomorphism. Therefore, u is a graded isomorphism of
functors. Analogously, we can consider the diagram

K*(A) —— K*(B) —— K(B)

x| | [

Qs

K(F

U‘Q

Clearly, the composition of K*(F), j and Qg is equal to ¥. Hence, as in the above
argument, we see that there exists a graded morphism of functors QgojoK*(F) —
D(j) o R*F o Q%. Hence, by the universal property of R® we see that there is a
graded morphism of functors v : R® — D(j) o R*F which induces this morphism.
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As above, then we show that v is a graded isomorphism of functors. This implies
that the diagram of functors

D*(4) 5 pe(B)
D(i)l lD(J’)
commutes up to a graded isomorphism.

3.4.6. THEOREM. Let F': A — B be a left exact functor of finite cohomological
dimension. Then the diagram of exact functors

D*(A) £, pB)

D(A) —— D(B)
RF
commutes up to a graded isomorphism.

Hence, the functor R*F : D*(A) — D*(B) can be viewed as a restriction of
the functor RF : D(A) — D(B).



