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Abstract

These notes for Mathematics computing courses describe the impact of
memory and architecture on numerical performance on modern comput-
ers.

The memory hierarchy of registers, cache, main memory, and virtual
memory is first described, and an excursion is made into RISC/CISC instruc-
tion set issues.

Performance bottlenecks arising at each of these memory levels are dis-
cussed and illustrated with numerical programming examples.

The text is augmented with numerous drawings and tables relevant to
recent computers, from desktop microcomputers to the most advanced su-
percomputers.
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1 Introduction

Ideally one would desire an indefinitely large memory capacity such that any par-
ticular . . . word would be immediately available. . . . We are . . . forced to recognize
the possibility of constructing a hierarchy of memories, each of which has greater
capacity than the preceding but which is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann
1946 [73, p. 402]

For several decades, high-performance computer systems have incor-
porated a memory hierarchy [73]. Because central processing unit (CPU)
performance has risen much more rapidly than memory performance since
the late 1970s, modern computer systems have an increasingly severe per-
formance gap between CPU and memory. Figure 1 illustrates this trend,
and Figure 2 shows that performance increases are happening at both the
high and low ends of the market. Computer architects have attempted to
compensate for this performance gap by designing increasingly complex
memory hierarchies.

Clock increases in speed do not exceed a factor of two every five years (about 14%).
C. Gorden Bell

1992 [12, p. 35]

. . . a quadrupling of performance each three years still appears to be possible for
the next few years. . . . The quadrupling has its basis in Moore’s law stating that
semiconductor density would quadruple every three years.

C. Gorden Bell
1992 [12, p. 40]

. . . (Others) suggest that the days of the traditional computer are numbered. . . .
Today it is improving in performance faster than at any time in its history, and the
improvement in cost and performance since 1950 has been five orders of magni-
tude. Had the transportation industry kept pace with these advances, we could
travel from San Francisco to New York in one minute for one dollar!

John L. Hennessy and David A. Patterson
1990 [73, p. 571]
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Figure 1: CPU and memory performance. This drawing uses 1980 as a baseline.
Memory speed (dynamic random-access memory, DRAM) is plotted with an annual
7% increase. The slow CPU line grows at 19% annually until 1985, and at 50% an-
nually since then. The fast CPU line rises at 26% annually until 1985, and at 100%
annually since then. The data is taken from [73, Fig. 8.18, p. 427], but extended
beyond 1992.

The existence of a memory hierarchy means that a few well-behaved
programs will perform almost optimally on a particular system, but alas,
most will not. Because the performance difference between the extremes of
good and bad behavior can be several orders of magnitude, it is important
for programmers to understand the impact of memory access patterns on
performance.

Fortunately, once the issues are thoroughly understood, it is usually pos-
sible to control memory access in high-level languages, so it is seldom nec-
essary to resort to assembly-language programming, or to delve into details
of electronic circuits.

The purpose of these notes is to give the reader a description of the
computer memory hierarchy, and then to demonstrate how a programmer
working in a high-level language can exploit the hierarchy to achieve near-
optimal performance.
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Figure 2: Rising clock rates of supercomputers and microcomputers. In
microcomputers, each CPU model is generally available in a range of clock rates;
the figures shown here are the fastest at the time of introduction.
Chips are fabricated on silicon disks, or wafers, about 15 cm in diameter, with up
to several hundred chips per wafer. When they are subsequently cut from the wafer
and packaged in ceramic or plastic and tested, some are found to work at higher
clock rates than others; the faster ones command a higher price. For photographs
and cost details, see [73, pp. 53–66].
Supercomputer clock rates are fixed because of the highly-optimized, and delicate,
design balance between CPU, memory, buses, and peripherals.

2 Acronyms and units

Like any other technical field, computing has its own jargon, and numerous
acronyms. We define technical terms as we encounter them, italicizing their
first occurrence, and include them in the index at the end to make it easy
to find the definitions. All of the authors of cited works and displayed quo-
tations are indexed as well, so you can find your way from the bibliography
back into the text where the citation is discussed.

Manufacturers commonly designate models of computers and their pe-
ripherals by numbers. Some of these, like 360 and 486, become so well
known that they are commonly used as nouns, without naming the com-
pany. Computer products are indexed both by vendor, and by model num-
ber.
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Capacities of computer memories span a very wide range. To keep the
numbers manageable, it has become conventional to adopt the metric sys-
tem’s size prefixes, but with a slightly different meaning: instead of repre-
senting powers of 1000, they stand for powers of 1024, which is 210. For
all quantities other than memory, the size prefixes have their conventional
metric meanings. Figure 3 shows prefixes that you should become familiar
with.

Prefix Symbol Memory Size
kilo K 10241 1024
mega M 10242 1,048,576
giga G 10243 1,073,741,824
tera T 10244 1,099,511,627,776
peta P 10245 1,125,899,906,842,624
exa E 10246 1,152,921,504,606,846,976

Figure 3: Computer memory capacity prefixes.

When a prefix symbol appear before the lowercase letter b, it means that
many binary digits, or bits: 4 Kb is (4 × 1024 =) 4096 bits. Before the
uppercase letter B, it means bytes,1 where a byte is 8 bits: 0.5 KB is 512
bytes. Typical computer networks today transfer data at rates of 10 Mbps
(million bits per second); the ‘million’ here is really 1,048,576.

In case you have forgotten them, or never learned some of them, the
metric prefixes for quantities less than one are given in Figure 4. Notice that
prefix symbols in uppercase mean something larger than one, and symbols
in lowercase mean less than one.

Prefix Symbol Metric Value
milli m 1000−1 0.001
micro µ 1000−2 0.000,001
nano n 1000−3 0.000,000,001
pico p 1000−4 0.000,000,000,001
femto f 1000−5 0.000,000,000,000,001
atto a 1000−6 0.000,000,000,000,000,001

Figure 4: Metric prefixes for small quantities.

The symbol for micro is the Greek letter µ, mu, since the letter m was
already used for milli.

1The spelling byte was chosen to avoid confusion between bites and bits. A four-bit quan-
tity is referred to as a nybble: one hexadecimal digit is represented by a nybble.
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Computer speeds are measured by the number of clock ticks, or cycles,
per second, a unit known as Hertz. Modern computers are very fast, with
clocks ticking millions or billions of times a second, so the common units
are MHz (megaHertz) and GHz (gigaHertz). The value 50 MHz means fifty
million ticks per second, or more conveniently, fifty ticks per microsecond
(µs), and 5 GHz means five billion ticks per second, or five ticks per nano-
second (ns).

Clock speeds are also measured by the length of the clock cycle, which
is the reciprocal of the value in Hz. A clock rate of 1 MHz corresponds to a
cycle time of 1 µs, and 1 GHz to a cycle time of 1 ns.

Modern computer circuits are so densely packed that the distance be-
tween the wires is measured in microns (millionths of a meter). One micron
is about 1/1000 the diameter of a human hair. The most advanced circuits
in early 1994 have 0.25 micron spacing.

3 Memory hierarchy

Closest to the CPU are registers, which are on-chip memory locations, each
capable of holding a single memory word.

Next to registers is a small primary cache (from 1 KB to 64 KB), and on
some systems, a larger secondary cache (256 KB to 4 MB). One system, the
Solbourne Viking/MXCC, has a 16 MB tertiary cache.

Cache memories are built from static random-access memory (SRAM)
chips, which are an order of magnitude more expensive than the dynamic
random-access memory (DRAM) chips used in main computer memory, and
correspondingly faster.

Beyond registers and cache lies main memory, sometimes called ran-
dom-access memory (RAM). On some systems (CDC 6600 and 7600, Hitachi
S-820, large models of the IBM 360 family and descendants, and NEC SX-3/
SX-X), main memory can be further divided into ‘fast’ and ‘slow’ memory.

Beyond registers, cache, and RAM lies virtual memory, in which disk
storage, or slow RAM, is used to provide the illusion of a much larger address
space than that offered by main memory.

Figure 5 illustrates the relative sizes and access times of these memory
levels, and Figure 6 shows their cost and performance. Figure 7 presents
disk storage price and speed trends.

Before we discuss each of these levels in the memory hierarchy, we need
to take an excursion into instruction set design. Instruction sets have a
major impact on cost and performance, and registers, the fastest level in
the memory hierarchy, are intimately connected to the instruction set. We
will return to a discussion of registers in Section 3.2 on page 15.
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Level Size (words) Access Time (cycles)
Register 64–246 < 1
Primary cache 8K 1–2
Secondary cache 256K 5–15
Main memory 4G 40–100
Disk 100G > 1000

Figure 5: Memory hierarchy: size and performance. The disk time is based on
a 100 MHz clock, 10 msec average access time, 10 MB/sec transfer rate, and 4 KB
disk blocks. The data for all but disk is taken from [8, Fig. 7].
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Figure 6: Cost and access time of memory technologies. The access time gap
indicated at the lower right demonstrates a limitation of current memory technolo-
gies: there is nothing available between disk and DRAM, despite the rather large
difference in access times. The data is taken from [73, Fig. 9.16, p. 518].

3.1 Complex and reduced instruction sets

On some architectures, the data to be operated on must first be loaded into
a register from memory, and when the operation is complete, the register
value must be stored back into memory before the register can be reused.
This was the approach taken on early computers of the 1940s and 1950s,
and on the high-performance CDC mainframes of the late 1960s and early
1970s.
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Disk Model Year Price/MB Ratio Bytes Ratio
US$ /sec

IBM 350 1956 9760 13555 10,000 1
IBM 1301 1961 3313 4601 90,000 9
IBM 2314 1965 1243 1726 312,000 31
IBM 3330-11 1973 191 265 806,000 81
IBM 3350 1973 1,198,000 120
IBM 3370 1979 41 57 1,859,000 186
DEC 5400 1993 0.64 1 5,532,000 553

Figure 7: Price and speed of computer disk storage. The prices are not ad-
justed for inflation; if they were, the price fall would be much steeper (the consumer
price index rose by a factor of 5.17 from 1956 to 1993). The IBM price and speed
data are taken from [74, p. 646].

The IBM 360 mainframe architecture, introduced on April 7, 1964, with
descendants still in wide use today, and copied2 by Amdahl, RCA, and Wang
in the USA, Nixdorf and Siemens in Germany, Fujitsu and Hitachi in Japan,
and Ryad in the USSR, took a different approach. It added complicated
instructions that allowed arithmetic operations directly between a register
and memory, and permitted memory-to-memory string moves and com-
pares.

The Digital Equipment Corporation (DEC) VAX architecture (1978) went
even further, with register-register, register-memory, and memory-memory
variants of most instructions: the Fortran statement A = B + C could be
compiled into a single triple-memory-address instruction ADD B,C,A, in-
stead of the longer sequence

LOAD Reg1,B
LOAD Reg2,C
ADD Reg1,Reg2
STORE Reg1,A

on a register-register architecture.
In the 1960s and 1970s, this trend of Complex Instruction Set Com-

puter (CISC) architectures seemed a good thing, and most vendors followed
it. Alliant, Amdahl, Bull, Burroughs, Convex, Data General, DEC, Fujitsu,
Gould, Harris, Hewlett-Packard,Hitachi, Honeywell, IBM, Intel, Motorola, Na-

2Competing implementations were possible, because IBM published a definitive descrip-
tion of the architecture, known as the IBM System/360 Principles of Operation, together with
formal mathematical specification of the instruction set. IBM obtained numerous patents
on the technology required to implement System/360, so it survived, and indeed, thrived,
in the competition. Successive editions of the Principles of Operation continue to define the
IBM mainframe computer architecture.
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tional Semiconductor, NCR, NEC, Norddata, Philips, Prime, RegneCentralen,
Siemens, Texas Instruments, Univac, Wang, and Xerox all built and marketed
CISC machines, although they weren’t called that at the time.

One argument for CISC was that it eased the translation of high-level lan-
guages into machine instructions, as in the Fortran example above. Another
was that the best way to achieve maximum performance was to put complex
operations entirely inside the CPU. A good example of this is a string move
instruction. In a high-level language, it would require a loop that moved
one byte at a time. Implemented on chip, it could require millions of cycles
to complete, but all of the loop control overhead could be handled without
reference to memory, or further instruction fetch and decoding.

Notably absent from the CISC pack were Control Data Corporation (CDC)
and Cray Research, Inc., which built the top-end machines for scientific com-
puting. Seymour Cray was one of the founders of CDC in the 1960s, and one
of the main architects of the CDC 1604, 6600 and 7600 machines. In the
early 1970s, he left CDC to form Cray Research, Inc., where he was the prin-
cipal designer of the Cray 1 and Cray 2. In May 1989, Seymour Cray left Cray
Research, Inc. to form Cray Computer Corporation, where he now heads a
design team working on the Cray 3 and Cray 4, while CRI has gone on to
produce the Cray C-90. The Cray 1 was the first commercially successful
vector supercomputer, with instructions capable of doing vector operations
on up to 64 elements at a time. The Cray 3 and the smaller Convex C-3 are
so far the only commercially-available computers constructed with gallium
arsenide (GaAs) technology, which offers faster switching times than the
various silicon circuit technologies used in other computers.

Cray’s designs are characterized by small instruction sets that support
only register-register operations; load and store instructions are the only
path between CPU and memory. Although this type of architecture requires
more instructions to do the job, the fact that Cray has been able to produce
several of the world’s fastest supercomputers3 since 1976 is evidence that
the approach has merit.

In 1975,a design team at IBM Austin under the leadership of John Cocke
began development of a new architecture based on some of Cray’s princi-
ples; the effort became known as the IBM 801 Project, after the number of
the building in which they worked [75, 33,28]. The initial target application
of the new processor was telephone switching circuitry, but the scope was
later broadened to general-purpose computing. The project operated under
industrial secrecy until the first publications about it appeared in 1982.

In 1980, two architects in academia, John L. Hennessy at Stanford Uni-
versity, and David A. Patterson across San Francisco Bay at the Berkeley

3You can pick up the latest Cray 3 with 1 CPU and 64 Mwords of memory for about
US$3 million. Four CPUs will cost about US$10 million, and sixteen, the architectural limit,
about US$32 million. Save your spare change for operations costs; the electricity bill for the
Cray X-MP/24 at the San Diego Supercomputer Center ran about US$1 million per year.
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campus of the University of California, decided to investigate load-store
microprocessor designs, and Patterson coined the name RISC, for Reduced
Instruction Set Computer.

Today’s descendents of these efforts are the MIPS processors used by
DEC, Honeywell-Bull, NEC, Siemens, Silicon Graphics (SGI), Stardent, Tan-
dem, and others, from the Stanford work, and the SPARC processors used
by AT&T, Cray, Fujitsu, ICL, LSI Logic, Philips, Solbourne, Sun, Texas Instru-
ments, Thinking Machines, Toshiba, Xerox, and others, from the Berkeley
work.

The vindication of the RISC design concept came when the Berkeley RISC-
I chip ran benchmarks at a substantial fraction of the speed of the popular
DEC VAX-780 minicomputer, and the RISC-II chip surpassed it. Both chips
were done by student design teams under direction of their professors.

Back at IBM, the 801 Project was finally convinced to look at the work-
station market, and in 1986, IBM introduced the IBM RT PC, the first RISC
workstation. Sadly, such a long time, eight years, had elapsed between de-
sign and product introduction that the performance of the RT was below
that of its competitors, and the machine was widely viewed as a failure. In-
deed, there was an industry joke that RT stood for Reduced Taxes, because
IBM gave away more systems than they sold.

Nevertheless, IBM learned many useful lessons from the RT, and started
a new project in 1986 to develop their second generation of RISC processors.
This work resulted in the introduction in February 1990 of the IBM RS/6000
workstations, based on the RIOS, or POWER (Performance Optimized With
Enhanced RISC), CPU.

The IBM RS/6000 systems stunned the world with their floating-point
performance. In less than a year following the RS/6000 announcement,
IBM had more than US$1 billion in sales revenues from the new machines,
far beyond their initial marketing projections, and an excellent showing for
a new product in a US$60 billion company. Figure 8 shows the financial
rankings of some of the computer companies mentioned in this document.

Half-million dollar large minicomputer systems of the time were deliver-
ing 1 to 2 Mflops (millions of floating-point operations per second), and the
highest-performance small supercomputer, the Ardent Titan (graphics.
math.utah.edu is a local example) could reach 15 to 20 Mflops with vec-
tor operations and four processors working in parallel. The new single-
processor IBM RS/6000-320 could achieve more than 30 Mflops in matrix
multiplication and Gaussian elimination, and cost only about US$15,000.

Since early 1990, several other vendors have introduced RISC worksta-
tions capable of very high floating-point performance, and by late 1993,
workstations based on the DEC Alpha, Hewlett-Packard PA-RISC, and IBM
POWER-2 processors were offering 100 to 250 Mflops. For comparison, the
multi-million-dollar 1976-vintage Cray 1 vector supercomputer had a peak
speed of 160 Mflops.
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World Rank IS Revenue (US$M)
1992 1991 Company 1992 1991 % Change

1 1 IBM 64,520.0 62,840.0 2.7%
2 2 Fujitsu 20,142.2 19,330.9 4.2%
3 3 NEC 15,395.0 15,317.6 0.5%
4 4 DEC 14,162.0 14,237.8 -0.5%
5 5 Hewlett-Packard 12,688.0 10,646.0 19.2%
6 6 Hitachi 11,352.0 10,310.2 10.1%
7 7 AT&T 10,450.0 8,169.0 27.9%
8 9 Siemens Nixdorf 8,345.1 7.308.6 14.2%
9 8 Unisys 7.832.0 8,000.0 -2.1%

10 13 Toshiba 7,448.7 5,115.9 45.6%
11 10 Apple 7,173.7 6,496.0 10.4%
19 17 Sun 3,832.0 3,454.7 10.9%
20 24 Microsoft 3,253.0 2,275.9 42.9%
42 31 Wang 1,490.0 1,940.0 -23.2%
47 47 Intel 1,230.0 1,100.0 11.8%
55 44 Data General 1,100.8 1,212.0 -9.2%
60 54 Motorola 935.0 987.0 -5.3%
62 72 Silicon Graphics 923.0 805.7 14.6%
68 65 Texas Instruments 800.0 747.9 7.0%
69 58 Cray Research 797.6 862.5 -7.5%
97 46 Control Data 517.0 1,172.6 -55.9%

Figure 8: Selected entries from the Datamation 100. Rankings from the top
100 of the world’s information technology suppliers from the 1993 annual Datama-
tion survey [2]. Some corporate revenues are excluded from the data: Intel’s 1992
gross revenue exceeds US$5 billion.

In supercomputing, peak or advertising power is the maximum performance that
the manufacturer guarantees no program will ever exceed. . . . ForO(1000)matrices
that are typical of supercomputer applications, scalable multicomputers with several
thousand processing elements deliver negligible performance.

C. Gorden Bell
1992 [12, p. 30]

Silicon Graphics expects to ship their Power Challenge systems in mid-
1994 with 350 Mflops peak performance per processor, and up to 18 pro-
cessors in a box. Sun has announced plans for new 64-bit generations of
SPARC, to be named UltraSPARC, based on the SPARC Version 9 architecture
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specification [97] The first two generations should appear in 1995, and the
third generation, targeted at 700 to 1000 Mflops, in 1997. Current SPARC
processors are capable of 10 to 50 Mflops. Fujitsu, Hitachi, and NEC all
have teraflop computer projects with target dates of 1995 or 1996. Just
how much of this promised performance will be achievable by real-world
applications remains to be seen.

The irony of the teraflops quest is that programming may not change very much,
even though virtually all programs must be rewritten to exploit the very high de-
gree of parallelism required for efficient operation of the coarse-grained scalable
computers. Scientists and engineers will use just another dialect of Fortran that
supports data parallelism.

C. Gorden Bell
1992 [12, p. 29]

. . . a new language, having more inherent parallelism, such as dataflow may evolve.
Fortran will adopt it.

C. Gorden Bell
1992 [12, p. 43]

One might assume from the words complex and reduced that RISC com-
puters would have smaller instruction sets than CISC computers. This is
not necessarily the case, as Figure 9 shows. The distinguishing character-
istic is really that RISC designs restrict memory access to load and store
instructions, have uniform instruction widths, and attempt to achieve one
cycle (or less) per instruction. Some CISC implementations average 10 or
more cycles per instruction.

The DEC Alpha instruction set is particularly large. Of the 451 instruc-
tions, 305 (68%) are floating-point instructions. This architecture was de-
signed for high floating-point performance, and has both IEEE 754 and DEC
VAX floating-point instructions.

Sophisticated optimizing compilers are essential on RISC architectures,
and hand-coded assembly-language programs are expected to be very rare.
On CISC architectures, compilers employ only a modest fraction of the in-
struction sets. RISC designers argue that only instructions that get used
should be in the architecture.
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Combined Max. No. of
No. of Indirect Load/Store No. of Memory
Instr. Memory Arithmetic Memory Address No. of

Processor Sizes Address Operations Accesses Modes Instr.
Historic CPU
EDSAC (1949) ?? ?? ?? ?? ?? 18
IBM 701 (1952) 1 ?? ?? ?? ?? 33
IBM 704 (1954) ?? ?? ?? ?? ?? 91
IBM 709 (1957) ?? Yes ?? ?? ?? > 180
IBM 7090 (1958) ?? Yes ?? ?? ?? > 180
IBM 1401 (1958) 6 No ?? 3 ?? 34
IBM 7044 (1961) ?? Yes ?? ?? ?? 120
IBM 7094 (1962) ?? Yes ?? ?? ?? 274
IBM 7030 Stretch (1961) ?? Yes ?? ?? ?? 735
CDC 6600 (1964) 1 No No 1 ?? 63
CISC-style CPU
IBM System/360 4 No Yes 2 2 143
IBM System/370 4 No Yes 2 2 204
IBM System/370-XA 4 No Yes 2 2 208
IBM 3090-VF 4 No Yes 2 2 ≥ 379
Intel 4004 ?? ?? ?? ?? ?? 45
Intel 8008 ?? ?? ?? ?? ?? 48
Intel 8085 ?? ?? ?? ?? ?? 74
Intel 8086 ?? No Yes 2 ?? 133
Intel 80386 12 No Yes 2 15 135
Intel 80486 12 No Yes 2 15 151
Intel iAPX 432 many Yes No 3 4 221
Motorola 68040 11 Yes Yes 2 44 114
DEC VAX 54 Yes Yes 6 22 244
RISC-style CPU
Cray 1 2 No No 1 1 128
Cray X-MP 2 No No 1 1 246
DEC Alpha 1 No No 1 1 451
HP PA-RISC 1 No No 1 10 165
IBM 801 1 No No 1 4 ???
IBM POWER 1 No No 1 4 184
Intel i860 1 No No 1 1 161
Intel i960 2 No No 1 7 184
MIPS R2000 1 No No 1 1 93
MIPS R4000 1 No No 1 1 154
Motorola 88000 1 No No 1 3 51
Sun SPARC 1 No No 1 2 72

Figure 9: Instruction set sizes. The IBM 701 was the first IBM machine to use binary, instead
of decimal, arithmetic. The IBM 709 followed the IBM 704, the machine on which the first Fortran
compiler was released, in April 1957. The 709 got Fortran by mid-1958. A related model, the
IBM 705, was the last large vacuum tube computer built by IBM.
The IBM 7030 Stretch was the first attempt at a supercomputer, one that would run over 100
times faster than existing computers, with a design target of 1 µs for a floating-point addition.
It was the first machine to use a 64-bit word, the first to use 8-bit bytes, and one of the first
to be built with transistors instead of vacuum tubes. Only seven machines were ever made, so
Stretch was not a commercial success. In the early 1980s, a Stretch was resurrected and run for
several years at Brigham Young University in Provo, UT, USA.
The CDC 6600 was probably the first commercially successful scientific computer, three times
faster than the IBM Stretch, and much cheaper. It is the direct ancestor of today’s Cray
supercomputers.
Some of the data is taken from Digital Review, 2 December 1991, p. 52.
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An optimizing compiler is ultimately written by an overworked human being. If
the human being can’t figure out how to make the compiler profitably use a given
instruction, then his compiler is not going to emit it.

Brian Case
1992 [85, p. 13]

Constant instruction widths in RISC architectures make it easier to over-
lap instruction execution, a technique called pipelining.

If a pipelined CPU runs internally at a faster clock rate than other com-
ponents, it is said to be superpipelined. The MIPS R4400 is the best current
example of this.

If multiple functional units are provided so that for example, a floating-
point operation, an integer operation, and a branch operation can all be
processed simultaneously, the architecture is said to be superscalar. The
IBM RS/6000, Intel i960CA, and SuperSPARC processors are all superscalar.
The best such architectures are capable of averaging substantially less than
one cycle per instruction on numerically-intensive benchmarks.

It is futile to compare different processors by clock rate, since different
instructions, particularly on CISC computers, have widely different cycle
counts. Equally useless are MIPS (millions of instructions per second) rat-
ings. One CISC instruction can require several RISC instructions. What really
matters is the time taken to do the same job.

Researchers continue to explore ways of preparing realistic benchmark
programs for comparison of computer systems. The most reliable bench-
mark suite at present is that from the System Performance Evaluation Cor-
poration (SPEC). SPEC numbers are based on a large collection of numeri-
cal and non-numerical programs, and reported as SPECint92 and SPECfp92
numbers. The latter are approximately the same magnitude as Mflops.
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Measuring 1/8 inch wide by 1/6 inch long and made of 2,300 MOS transistors,a

Intel’s first microprocessor was equal in computing power to the first electronic
computer, ENIAC, which filled 3,000 cubic feet with 18,000 vacuum tubes when it
was built in 1946. Intel’s 4004 4-bit microprocessor (1971) could execute 60,000
operations in 1 second—primitive by today’s standards, but a major breakthrough
at the time.

Intel [43, p. 132]
1992

aA transistor is a modulation, amplification, and switching device implemented in solid-
state logic (i.e. no moving parts). It replaced the older, and very much larger, vacuum tubes,
or valves as they are called in Britain.

In 1956, the Nobel Prize in Physics was awarded to William Shockley, John Bardeen, and
Walter H. Brattain of AT&T Bell Telephone Laboratories for their invention of the transistor
in December 1947 (the year of the EDSAC).

In 1972, John Bardeen shared a second Nobel Prize in Physics with Leon N. Cooper and J.
Robert Schrieffer, for their theory of superconductivity.

In the mid-1980s, discoveries of (relatively) high-temperature superconductivity led to a
surge of interest in the field. Superconductivity may someday be an important aspect of
high-performance computers, because in a superconducting circuit, there is no electrical
resistance, and therefore, no heat. It is a combination of resistive heating, and short circuits
due to the small wire sizes, that currently limits computer chip size and speed.

. . . the development of the 16-bit 8086, introduced in 1978. . .29K transistorsa . . .
In late 1985, Intel introduced the Intel 386 DX microprocessor. It has more than
275,000 transistors on a chip.
In February 1989, Intel also introduced the world’s first one-million transistor CPU,
the i860 microprocessor.

Intel [43, p. 133–134] 1992

aThe Intel 4004 had 2300 transistors, the 8008 had 2000, and the 8085 had 6200.

It has recently been observed that the number of transistors in emerging
high-density memory chips is much larger than the number in current CPUs.
Although memory circuits are much simpler than CPUs because of their
regularity, it is nevertheless possible that future large memory chips might
contain a CPU without sacrifice of significant chip area. This would have
several important effects:

• access time to the on-chip memory would be sharply reduced, with a
corresponding increase in performance;

• the cost of a powerful CPU would become negligible;

• every computer could potentially be a parallel computer.
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By the year 2000, . . . it should be possible to integrate between 50 and 100 mil-
lion transistors on a silicon die. . . a processor. . . could have as many as four distinct
CPUs on-chip, two megabytes of cache memory, a special 20-million transistor unit
devoted to advanced human interface incorporating voice I/O, image recognition
and motion video, and two vector processing units for three-dimensional graphics
and simulation. Each of the four CPUs, each with 5 million transistors, could run at
700 million instructions per second. Together, all the units on this 250-MHz chip
might perform at 2 billion instructions per second.

Intel [43, p. 135] 1992

3.2 Registers

Almost all computers have registers to provide a small amount of fast-
access on-chip memory. The number of registers is limited because a fixed
number of bits in the instruction word encodes the register address: a 3-bit
register address permits (23 =) 8 registers. Figure 10 illustrates a typical
instruction encoding.

Immediate-type op rs rt immediate

31 25 20 1526 21 16 0

Jump-type op target

31 2526 0

Register-type op rs rt rd re funct

31 25 20 15 10 526 21 16 11 6 0

Figure 10: CPU instruction formats. These particular encodings are for the MIPS
processors, used in DECstation, MIPS, Silicon Graphics, and Stardent computers.
The 5-bit rs, rt, rd, and re fields address 32 registers.
In the immediate-type and jump-type encodings, the 6-bit operation code limits the
total number of instructions to 64. However, the register-type instructions have a
6-bit function code to supply 64 more instructions for each operation code, so the
instruction set could be made quite large.
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The number of registers varies among architectures; it can be as few as 1
to 4, but in high-performance systems, is usually larger, with 8 to 64 being
typical. Figure 11 presents register characteristics of several well-known
architectures.

Registers usually need to be saved and restored at the point of proce-
dure calls, so large register sets can make procedure calls, context switches,
and interrupt handling expensive. This is undesirable, because modern pro-
gramming techniques encourage modularization of code into many small
procedures. On the other hand, having too few registers means that exces-
sive numbers of load and store instructions must be issued.

One RISC architecture, the Sun SPARC, supports overlapping register win-
dows selected from large register sets, up to 520 in current chip implemen-
tations. Each process sees 32 registers at one time, 8 for global values, 8 in
the caller’s space, 8 for local values, and 8 in the callee’s space. When a pro-
cedure call is made, the register window is moved over 16 registers, so that
the former 8 callee registers now become 8 caller registers, without having
to move any data. This scheme reduces the frequency of register saving
and restoring at procedure calls and returns, and also simplifies address-
ing of procedure arguments. When the complete register set is exhausted
because of deeply nested procedure calls, the processor interrupts so that
a software trap handler can arrange to save the complete register set. In
practice, this is a rare occurrence.

Most architectures have separate integer and floating-point registers (e.g.
IBM 360, Intel, Motorola 680x0, and almost all RISC architectures, other
than the Motorola 88000). A few have general-purpose registers that can
hold either integer or floating-point values (e.g. DEC PDP-10, DEC VAX, and
Motorola 88000). Separate integer and floating-point registers permits de-
sign of systems without any floating-point hardware, which is sometimes
cost-effective in specialized applications. Separate register sets also im-
pose a form of type safety, in that an integer operation cannot be applied
to a floating-point value without first moving the value to a register of the
proper type.

On most architectures, almost any register can be used with any instruc-
tion, but on a few, notably the early models of the Intel processors used in
the IBM PC, most instructions require use of particular dedicated registers.
This inflexibility forces the use of additional register-register or register-
memory instructions that would be unnecessary with a general register ar-
chitecture.

In the case of floating-point registers, each may hold a single word, in
which case adjacent even/odd register pairs are required to hold a double-
precision value, and if supported, four adjacent registers hold a quadruple-
precision value.

Some architectures support floating-point registers that hold double-
precision values, in which case single-precision values are extended with
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General Floating-point Vector
Architecture Registers Registers Registers
AMD 29000 128 × 32-bit local 0 0

64 × 32-bit global
CDC 6400 8 address (A) 18-bit 0 0

+ 8 index (B) 18-bit
+ 8 data (X) 60-bit

Convex C-1, 2, 3 8 address 32-bit 0 8 × 128-element 64-bit
+ 8 data 64-bit + 8 × 128-element 64-bit

communication registers
Cray 1, 2, 8 address (A) 24-bit 0 8 × 64-element 64-bit

X-MP, Y-MP + 64 index (B) 24-bit
+ 8 scalar (S) 64-bit

+ 64 scalar (T) 64-bit
Cray C-90 same as on Cray Y-MP 0 8 × 128-element 64-bit
DEC PDP-10 16 × 36-bit 0 0
DEC PDP-11 8 × 16-bit 6 × 64-bit 0
DEC VAX 15 × 32-bit 0 0
DEC Alpha 32 × 64-bit 32 × 64-bit 0
Fujitsu VP-2600 16 × 32-bit 4 × 64-bit 8 × 2048-element 64-bit

or 256 × 64-element 64-bit
Hitachi S-820/80 16 × 32-bit 4 × 64-bit 32 × 512-element 64-bit
HP 9000/8xx 32 × 32-bit 12 × 64-bit 0
HP 9000/7xx 32 × 32-bit 28 × 64-bit 0
IBM 360 16 × 32-bit 4 × 64-bit 0
IBM 3090-VF 16 × 32-bit 4 × 64-bit 16 × 128-element 32-bit

or 8 × 128-element 64-bit
Intel 8086 + 8087 8 dedicated 16-bit 8 × 80-bit 0
Intel i860 32 × 32-bit 32 × 32-bit 0
Intel i960 16 × 32-bit local + 4 × 80-bit 0

16 × 32-bit global
MIPS R4000 32 × 32-bit 32 × 32-bit 0
Motorola 68k 8 data (D) 32-bit 8 × 80-bit 0

+ 8 address (A) 32-bit
Motorola 88k 32 × 32-bit 0 0
NEC SX-3 128 × 64-bit 0 72 × 256-element 64-bit
Sun SPARC 32 × 32-bit 32 × 32-bit 0
Sun SPARC V9 32 × 64-bit 32 × 64-bit 0
Stardent 1520 32 × 32-bit 32 × 32-bit 32 × 32-element 64-bit

Figure 11: Register counts for various architectures. Some machines have additional
special-purpose registers which are not recorded here. Machines without floating-point reg-
isters use the general registers instead.
The DEC PDP-10 registers are mapped into the start of addressable memory, and short code
loops can be moved there for faster execution.
The Stardent vector registers can be configured in groups of any power of two, e.g. one 1024-
element 64-bit register, two 512-element registers, . . . , 1024 1-element registers. However,
Stardent compilers default to using 32 32-element registers, because performance studies
later demonstrated that memory access speed, not vector length, limited performance.
Like the Stardent, the Fujitsu VP-2600 registers are reconfigurable, and the compilers do this
automatically.
Although the Hitachi vector registers have fixed length, the hardware is capable of managing
operations on vectors of arbitrary length. On other vector processors, the compiler must do
this job.
Where register counts are not a power of two, some registers have been dedicated for special
purposes, such as holding flags, or a permanent zero, or the current instruction address.
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trailing zero bits in the fraction, and quadruple-precision values, when sup-
ported, fill an adjacent register pair.

Finally, a few architectures (but most of the world’s computers) have
floating-point registers that are longer than memory double words: the
Honeywell mainframes of the 1970s, and the Intel and Motorola micropro-
cessors. The latter two implement floating-point arithmetic in the IEEE 754
80-bit temporary real format, making conversions between the extended
format and the 32-bit or 64-bit formats during memory references. Floating-
point computations are done only with 80-bit values. The higher precision
of intermediate computations is generally beneficial, but it can sometimes
lead to surprises.

3.3 Cache memory

Between registers and regular memory lies cache memory, which is con-
structed with faster, but more expensive, memory technology; see Figure 6
on page 6 for some comparisons.

A register bank is faster than a cache, both because it is smaller, and because the
address mechanism is much simpler. Designers of high performance machines have
typically found it possible to read one register and write another in a single cycle,
while two cycles [latency] are needed for a cache access. . . . Also, since there are
not too many registers, it is feasible to duplicate or triplicate them, so that several
registers can be read out simultaneously.

Butler W. Lampson
1982 [73, p. 483]

The first commercial machine to provide cache memory was the IBM
360/85 in 1968, although the idea had been discussed for several machines
built in England in the early 1960s.

In some architectures, the cache is on chip, giving the opportunity for
introducing a larger secondary cache off chip.

The goal of cache designs is to keep the most frequently-used values
in faster memory, transparently to the programmer and compiler. That is,
when a load instruction is issued, the CPU first looks in the cache, and if the
required value is found there, loads it. Otherwise, it fetches the word from
memory into the cache, and then into the register.

To further enhance performance, most cache designs fetch a group of
consecutive memory words (2, 4, 8, 16, or 32) when a word is loaded from
memory. This word group is called a cache line. The reason for loading
multiple words is that adjacent words are likely to be needed soon. This is
generally the case in matrix and vector operations in numerical computing.
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On a store operation, data is written from a register into the cache, not
to memory. If the design is a write-through cache, then the cache word is
also immediately sent to memory. If it is a write-back cache, the cache word
is not transferred to memory until the cache location is needed by another
load operation.

A write-through policy means that some unnecessary stores to memory
are done, but memory always contains the current data values. A write-
back policy means that unnecessary stores are avoided, but makes design
of multiprocessor systems more difficult, since other processors now have
to look in multiple caches, as well as memory. A write-back policy also
interferes with immediate visibility of data in video-buffer memory.

Many cache designs have separate caches for instructions and data. The
I-cache does not have to support write operations, since instructions are
treated as read-only. Separation of instructions and data produces better
cache use, and allows the CPU to fetch instructions and data simultaneously
from both I- and D-caches. It is also possible to use different sizes and
cache-line lengths for the I- and D-caches; a larger D-cache is likely to be
advantageous.

Clearly, the introduction of cache introduces substantial complications,
particularly in multiprocessor computers. Cache also interposes an addi-
tional overhead on memory access that may be undesirable. An internal re-
port from Sun Microsystems tabulated timings of 412 benchmark programs
on the same Sun workstation, with and without cache. On 15 benchmarks,
the cached system actually ran slower than the non-cached system, usually
by about 20%, because little reuse was being made of the data loaded from
memory into cache.

Smaller vector machines with caches generally bypass the cache in vector
loads and stores. Some larger vector machines have no cache at all: their
main memories are constructed with SRAMs instead of DRAMs, so they are
equivalent to cache memories in speed. The Kendall Square Research (KSR)
parallel processor dispenses instead with main memory: it has a patented
All Cache architecture.

Cache architectures remain an active area of research, and will likely do
so until a memory technology is found that eliminates the ever-widening
gap in performance between the CPU and memory.

3.4 Main memory

Today, main memory, or random-access memory (RAM), is constructed with
solid-state storage devices. These devices do not retain stored data when
power is removed.
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3.4.1 Main memory technologies

Dynamic RAM (DRAM) must be continually refreshed to maintain its data.
The refresh operation is handled by the memory controller hardware, and
is therefore invisible to programs and programmers, but it does impact
memory performance.

Static RAM (SRAM) does not require refreshing, but is much more expen-
sive; see Figure 6 on page 6 for some comparisons.

RAM used to be called core memory because it was constructed of tiny
ferrite cores, small perforated disks (like a washer), each about the diameter
of a pencil lead, hand-woven into a matrix of fine wires. If you shook a core
memory module, you could hear it faintly jingle. Each core recorded just
one bit, so core memory was very expensive compared to solid-state RAM,
which replaced it in the 1970s. Core memory first appeared on the MIT
Whirlwind computer whose development began in 1947; it had 2048 16-bit
words of core, and was in use at MIT until the mid-1960s.

Among the customers who especially appreciated ferrite-core memories were those
who had previous used IBM 701 or 702 computers equipped with cathode ray tube
memories. Application programs were frequently run twice on the 701 because the
computer provided no other way to know if an error had occurred. On the 702,
errors were detected all too frequently by the parity-check, error-detection circuitry.
The improvement in reliability with ferrite cores was dramatic.

Emerson W. Pugh, Lyle R. Johnson, and John H. Palmer
1991 [74, p. 175]

Because of its laborious construction, core memory was not cheap. Al-
though a mechanical core threading machine was invented in 1956, core
main memories for the early IBM 360 machines cost about US$0.02 per bit,
and faster core memories were as much as US$0.75 per bit [74, p. 195].
Assuming only one parity bit per byte, this corresponds to prices ranging
from US$189,000 to more than US$7 million per megabyte of core memory,
compared to 1994 prices of about US$40 for a megabyte of semiconductor
memory. When the factor of four from the consumer price index change
from 1965 to 1992 is incorporated to account for inflation, a megabyte of
fast memory in 1965 would have cost as much as the most expensive su-
percomputer today!
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. . . the one single development that put computers on their feet was the invention
of a reliable form of memory, namely, the core memory. . . . Its cost was reasonable,
and because it was reliable, it could in due course be made large.

Maurice V. Wilkes
Memoirs of a Computer Pioneer
1985 [98, p. 209] [73, p. 425]

The name core lives on, even if the technology does not: a dump of the
memory image of a UNIX process is still called a core file.

Most computers today also have a small amount of read-only memory
(ROM) for holding startup code that is executed when the machine is first
powered on. ROM chips cannot be rewritten after their first writing.

. . . the first commercial use of LSI MOS silicon-gate technology occurred with the
introduction of Intel’s 1101 256-bit SRAM in 1969. It was the emergence shortly
thereafter of the 1103, the world’s first 1 Kbit dynamic RAM (DRAM), that signaled a
breakthrough; for the first time, significant amounts of information could be stored
on a single chip. The 1103 began to replace core memories and soon became an
industry standard. By 1972, it was the largest selling semiconductor memory in the
world.

Intel [43, p. 131] 1992

Erasable programmable ROM (EPROM) can be erased by exposure to ul-
traviolet light.

A variant of EPROM, known as electrically-erasable programmable ROM
(EEPROM), can be written a few thousand times under application of higher
voltage.

Another variant, non-volatile RAM (NVRAM), can retain stored data pro-
vided a small voltage from a backup battery is supplied.

Flash memory, introduced by Intel in 1988, combines the reliability and
low cost of EPROM with the electrical erasability of EEPROM.

EPROM and NVRAM are used where small amounts of memory must be
maintained for long times without external disk storage. These two mem-
ory technologies are used for real-time clocks, computer startup configura-
tion parameters, and access passwords and page counts in PostScript laser
printers. They make it possible to have small standalone computers without
any external device, such as a magnetic tape, for loading the initial program
code. This is extremely important in embedded applications; the average
automobile produced in Detroit in the 1990s has more than 20 micropro-
cessors in it.
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The microprocessor and the EPROM developed a symbiotic relationship with one
another: The ability of EPROM to be reprogrammed to meet specific application
needs allowed the microprocessor to act as a general-purpose processor to handle
the logic functions of a virtually unlimited range of applications.

Intel [43, p. 131] 1992

In the early 1990s, single inline memory modules (SIMMs) became com-
mon. SIMMs are ordinary DRAM chips, but in a different mounting config-
uration. Instead of plugging in flat on a large memory board, SIMMs are
mounted on a small board that plugs in perpendicular to a memory board
slot, allowing larger numbers of chips to be attached.

DRAM chip capacities are measured in bits; 8 chips together produce an
identical number of bytes. In all but the cheapest designs, more than 8 chips
are used: 9 chips provide a single parity bit per byte, and 37 chips provide
single-bit error correction, and double-bit error detection, in each 32-bit
word. Error detection and recovery are increasingly important as memory
capacities increase, because error rates are proportional to capacity.

3.4.2 Cost of main memory

For the last two decades, memory prices have fallen by a factor of about
four every three to four years, and succeeding generations of architectures
have had increasingly large address spaces. Memory sizes will be treated in
the next section; the memory price fall is illustrated in Figure 12.

From 1990 to 1993, memory prices have regrettably been relatively con-
stant, but capacity continues to increase. By 1993, 4 Mb DRAMs were com-
mon, and by the end of that year, the per-byte price of 16 Mb DRAM dropped
below that of 4 Mb DRAMs. In early 1994, 64 Mb DRAMs became available.

At the International Solid State Circuits Conference (ISSCC’93) held in
San Francisco in February 1993, Hitachi, NEC, and Toshiba announced ini-
tial prototypes of working 256 Mb DRAMs, with access speeds as low as
30 ns. Sony and Mitsubishi also described 256 Mb DRAM plans. NEC ex-
pects to ship sample quantities by 1995, and is also investigating 1 Gb DRAM
development.

At the same conference, Hitachi announced 64 Mb SRAM; the densest
static RAM to date has been 16 Mb.

Perhaps the most tantalizing prospect for the future of computer mem-
ory technology came from the Electrotechnical Laboratory in Japan, which
has produced Josephson junction RAM.4 JJRAM chip capacity is still very

4The British physicist Brian Josephson (1940–) received the Nobel Prize in Physics in 1973
for his picosecond switching technology. The discovery was made in 1962 when he was only
22 years old!



3.4 Main memory 23

0

10

20

30

40

50

60

70

1976 1978 1980 1982 1984 1986 1988 1990

US
Dollars

per
DRAM
chip

Year

16 Kb
64 Kb 256 Kb

1 Mb

�

� �

�

♦ ♦ ♦ ♦
♦

♦

♦

♦
♦ ♦ ♦

♦

♦

♦ ♦ ♦ ♦ ♦

♦

♦

♦
♦

♦

Figure 12: Memory chip price and capacity. Prices are not adjusted for inflation;
if they were, the curves would fall even more sharply (the consumer price index
change from 1978 to 1990 is very close to a factor of two). DRAMs drop to a constant
price of US$1 to US$2 per chip, independent of capacity. For reasons connected with
transistor technology, each successive DRAM chip generation increases capacity 4
times. The data is taken from [73, Fig. 2.9, p. 55].

small—16 Kb, but it is 100 times faster than 256 Mb DRAM, and consumes
only 5% of the latter’s power.

3.4.3 Main memory size

In the early 1950s, there was a widely-held belief among theorists that 1000 words
or so of memory should suffice. However, practical programmers seemed to need
more than that.

Charles J. Bashe et al
1981 [6, p. 365]

The size of main memory is limited by the number of address bits in the
architecture, and by how much the customer can afford to pay.
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The architects of the IBM 360 were aware of the importance of address size and
planned for the architecture to extend to 32 bits of address. Only 24 bits were used
in the IBM 360, however, because the low-end 360 models would have been even
slower with the larger addresses. Unfortunately, the architects didn’t reveal their
plans to the software people, and the expansion effort was foiled by programmers
who stored extra information in the upper eight “unused” address bits.

John L. Hennessy and David A. Patterson
1990 [73, p. 486]

In work begun in 1975, the 24-bit memory address of the IBM 360 archi-
tecture was increased to 31 bits in the IBM 370-XA (eXtended Architecture)
first released in 1981 with the IBM 308x models, but it took some time for
operating system support became available, precisely for the reason noted
in the quotation above. It was not possible to use all 32 bits for addressing,
because an important loop instruction used signed arithmetic on addresses,
and because bit 32 was used to mark the last entry in a procedure call ad-
dress list.

Once the software had been cleaned up, further evolution was easier: the
IBM ESA/370 (Enterprise Systems Architecture) was announced in 1988 and
implemented in the ES/3090 processor family. It supports a 44-bit address
(16 TB), using a technique to be discussed in the next section.

There is only one mistake that can be made in computer design that is difficult to
recover from—not having enough address bits for memory addressing and mem-
ory management. The PDP-11 followed the unbroken tradition of nearly every
computer.

C. G. Bell and W. D. Strecker
1976 [73, p. 481]

(7) Provide a decade of addressing. Computers never have enough address
space. History is full of examples of computers that have run out of memory-
addressing space for important applications while still relatively early in their life
(e.g. the PDP-8, the IBM System 360, and the IBM PC). Ideally, a system should be
designed to last for 10 years without running out of memory-address space for the
maximum amount of memory that can be installed. Since dynamic RAM chips tend
to quadruple in size every three years, this means that the address space should
contain seven bits more than required to address installed memory on the initial
system.

C. Gordon Bell
Eleven Rules of Supercomputer Design

1989 [81, p. 178]
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Year of Address Memory
Processor Introduction Bits Size (bytes)

4004 1971 12 4,096 (4K)
8008 1972 14 16,384 (16K)
8080 1974 16 65,536 (64K)
8085 1976 16 65,536 (64K)
8086 1978 20 1,048,576 (1M)
8088 1978 20 1,048,576 (1M)

80186 1981 20 1,048,576 (1M)
80286 1982 24 16,777,216 (16M)
80386 1985 44 17,592,186,044,416 (16T)
80486 1989 44 17,592,186,044,416 (16T)

Pentium 1993 44 17,592,186,044,416 (16T)
P6 1995 (est) 44 17,592,186,044,416 (16T)
P7 1997 (est) 64 18,446,744,073,709,551,616 (16E)

iAPX 432 1981 40 1,099,511,627,776 (1T)
i960 1985 32 4,294,967,296 (4G)
i860 1989 32 4,294,967,296 (4G)

Figure 13: Intel processor memory sizes. The Intel 4004 was the first microproces-
sor. P6 and P7 are code names for development projects; the final product names will
differ.
The last three processors are rather different architectures.
The iAPX 432 was an extremely complex processor, designed for support of the Ada
programming language. It was a commercial failure because its complexity severely
limited performance. Although its memory space seems large, it is divided into 16M
segments, each of 64KB. The instruction set is variable-length bit encoded, and instruc-
tions need not start on a byte boundary; they vary in length from 6 to 344 bits. There
are no registers; operands reside in memory, or on a stack in a special segment.
The i960 is a curious blend of RISC and CISC. It has been used extensively in device
control applications, including many laser printers.
The i860 RISC processor appeared in only one workstation, from the now-defunct Star-
dent. It is used in Intel multiprocessor supercomputers, the iPSC860, Delta, Sigma,
and Paragon. The i860 has complicated instruction sequencing requirements that have
made it quite difficult to write correct compilers. This no doubt accounts for the long
delay in implementing the UNIX operating system on it.

Figure 13 illustrates the growth in memory capacity of successive models
of the most widely-sold CPU architecture, that used in the IBM PC. Figure 14
shows the increasing memory capacity of IBM processors, starting from the
early days of digital computers. Memory growth in Cray supercomputers
is included in Figure 17 on page 37. Together, the architecture families of
these three vendors span much of the history, and most of the performance
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Processor Year of Address Memory
Family Introduction Bits Size (bytes)

702 1953 ?? (decimal) 10,000 (144K)
704 1954 15 (word) 147,456 (144K)

705-I 1954 ?? (decimal) 20,000 (19K)
705-II 1956 ?? (decimal) 40,000 (39K)
1460 1963 ?? (decimal) 16,000 (15K)
7010 1962 ?? (decimal) 100,000 (97K)
7080 1960 ?? (decimal) 160,000 (156K)
7074 1960 ?? (decimal) 300,000 (292K)
7094 1963 15 (word) 147,456 (144K)

7030 Stretch 1961 24 2,097,152 (2M)
System/360 1964 24 16,777,216 (16M)
System/370 1971 24 16,777,216 (16M)

801 1978 32 4,294,967,296 (4G)
System/370-XA 1981 31 2,147,483,648 (2G)

ESA/370 1988 44 17,592,186,044,416 (16T)
RS/6000 1990 52 4,503,599,627,370,496 (4P)

Figure 14: IBM processor memory sizes. The IBM 7030 Stretch was unusual in that it
used bit addressing; 224 bits is equivalent to 221 (2M) bytes.

range, of computing.

A 64-bit address first became available in 1993 from DEC with the Alpha,
and from Silicon Graphics with the MIPS R4000. IBM, Hewlett-Packard, and
Sun are expected to have 64-bit addressing about 1995 or 1996, with Intel
following somewhat later. The 64-bit address space is so vast that if you
were to start writing to it at the substantial rate of 100 MB/sec, it would
take 5850 years to fill memory just once!

Of course, with 1994 memory prices of about US$40/MB, it would also
cost US$704 trillion to buy a full 64-bit memory; that number is very much
larger than the US national debt. By the time you retire, computer memories
of this size may just be affordable.

Larger address spaces will significantly impact program design. In par-
ticular, it will be possible for even large files to be memory-mapped, and
therefore to appear to be byte-addressable, like an array, without any perfor-
mance hit from I/O, which requires system calls, context switches, real-time
waits, and data movement.
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The 960 design goal was a worst-case interrupt latency on the order of 5 µs. Unfor-
tunately, the floating-point remainder instruction, for example, takes up to 75,878
clock cycles to complete (honest!). Even at 20 MHz, that’s nearly 4 ms.

John H. Wharton
1992 [85, p. 235]

A partial list of successful machines that eventually starved to death for lack of
address bits includes the PDP-8, PDP-10, PDP-11, Intel 8080, Intel 8086, Intel 80186,
Intel 80286, AMI 6502, Zilog Z80, CRAY-1, and CRAY X-MP.

David A. Patterson and John L. Hennessy
1990 [73, p. 481]

3.4.4 Segmented memory

Since the earliest machines in the 1940s, most computer architectures have
been designed with a linear address space, with the number of bits in an ad-
dress constrained by the machine word size. Thus, several 36-bit machines
used an 18-bit word address (262,144 words, or slightly more than 1 MB),
and most 32-bit machines designed since the DEC VAX was introduced in
1978 have a 32-bit byte address, supporting 4,294,967,296 bytes (4 GB).

One important architecture, the Intel x86 processor family used in the
IBM PC, has not followed this model. Instead, it uses segmented memory. In
the 8086, 8088, and 80186, the 16-bit architecture supports a 20-bit memory
address, capable of addressing 1 MB. An address is formed by left-shifting
a 16-bit segment register by 4 bits, and adding it with unsigned arithmetic
to a 16-bit offset register. In the 80286, by some complicated tricks, the
address space was extended to 24 bits, supporting 16 MB of addressable
memory, the same as the IBM 360 mainframe architecture provides. The
80286 also introduced a complicated memory protection mechanism.

If the 80286 protection model looks harder to build than the VAX model, that’s
because it is. This effort must be especially frustrating to the 80286 engineers, since
most customers just use the 80286 as a fast 8086 and don’t exploit the elaborate
protection mechanism. Also, the fact that the protection model is a mismatch for
the simple paging protection of UNIX means that it will be used only by someone
writing an operating system specially for this computer.

John L. Hennessy and David A. Patterson
1990 [73, p. 448]
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In the Intel 80386 and later processors, registers are 32 bits wide, and
the non-segmented address size is accordingly extended to provide a 4 GB
linear address space. With the addition of segmentation, the address size
can be further extended to 44 bits, supporting 16 TB of memory. This has
yet to be relevant for any operating system on the IBM PC. Regrettably, the
majority of programs and operating systems that run on the IBM PC are
designed for memory segmented into 64 KB chunks.

Pitfall: Extending an address space by adding segments on top of a flat address
space.

. . . From the point of view of marketing, adding segments solves the problems
of addressing. Unfortunately, there is trouble any time a programming language
wants an address that is larger than one segment, such as indices of large arrays,
unrestricted pointers, or reference parameters. . . . In the 1990s, 32-bit addresses
will be exhausted, and it will be interesting to see if history will repeat itself on the
consequences of going to larger flat addresses versus adding segments.

David A. Patterson and John L. Hennessy
1990 [73, p. 483]

Segmented memory on the IBM PC has caused the industry, program-
mers, and customers untold grief, and the costs, could they ever be realisti-
cally estimated, would likely be in the billions of dollars. Different address-
ing modes are required to access data in a single 64 KB segment than are
needed in a multi-segment space. Also, different procedure call and return
instructions are required for single- and multi-segment code.

On the 80286 and earlier systems, loading an array element in a single
segment takes one instruction, while loading an array element from a multi-
segment array takes about 30 instructions. Using arrays larger than 64 KB
is therefore very expensive in both time and space.

To make matters even worse, some compilers offer memory models in
which incrementing a pointer (address variable) only increments the offset
register, resulting in wrap-around in the same segment instead of correctly
advancing into the next segment.

Compiler vendors must support multiple memory models, usually called
tiny, small, medium, compact, large, and huge. Six versions of each library
must be maintained and provided. Programmers must explicitly select the
correct memory model at compilation time, and use near (16-bit) or far (20-
bit, 24-bit, or 32-bit) pointers in their code. It is a common experience for
an evolving program to grow from one memory model to another, requiring
rewriting of code with new type size declarations. In assembly language,
memory-referencing instructions must be modified. Slow processor speed,
limited memory, and several years of unreliable compilers (traceable to the
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complexities of the Intel architecture) caused many software vendors to pro-
gram entirely in assembly language, instead of in a more easily maintained
and ported high-level language.

Some compilers do not support the compile-time declaration of multi-
segment arrays, so they must be allocated dynamically at run-time, and
pointers, instead of arrays, must then be used.

In the 80286 and earlier models, the stack size is limited to one 64 KB
segment, so programs with large arrays or structures inside procedures
must be rewritten to allocate them dynamically.

Because of the different address models and call and return instructions,
it is not sufficient for an IBM PC owner to install more physical memory in
order to run bigger programs. The programs must be rewritten.

The result of all of this is that porting code developed on other architec-
tures to the IBM PC is usually a very painful task, and sometimes, simply
proves to be infeasible. Code developed explicitly for the IBM PC, especially
if it uses near and far data types, is often difficult to port to other systems.

Computer historians will very likely conclude that the IBM/Microsoft
choice of the segmented-memory Intel x86 processor family over the linear-
address-space Motorola 680x0 family for the IBM PC is one of the greatest
mistakes ever made in computer system design.

Will the considerable protection-engineering effort, which must be borne by each
generation of the 80x86 family, be put to good use, and will it prove any safer in
practice than a paging system?

David A. Patterson and John L. Hennessy
1990 [73, p. 449]

The Intel x86 architecture is not the only one with memory segmentation,
but it has certainly been the one occasioning the most suffering.

The Gould, later models of the DEC PDP-10, the Hewlett-Packard PA-
RISC, the IBM ESA/370 architecture, and the IBM RS/6000 systems all have
segmented memory, but the segment sizes are sufficiently large that their
limits are less frequently reached.

It is instructive to compare the approach to segmentation taken by Intel
and that used by IBM’s ESA/370. Each had the goal of producing upward
compatibility with the vendors’ previous architectures, the Intel 8008, and
the IBM 370 and IBM 370-XA. In order to create a larger address than could
be held in a single register, both vendors introduced segment registers.

In the Intel design, segment register names are explicitly encoded into
every instruction that references memory, and are thus highly visible.

In the IBM ESA/370 design, a new access register set was added. For each
of the 16 32-bit general registers, there is a corresponding access register.
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Each access register contains flag bits, and a 13-bit index field. When a
certain flag bit is set, extended addressing is called into play, and the index
field is used to locate an entry in an address table which is then added
to the 31-bit address from the general register, effectively producing a 44-
bit address capable of addressing 16 TB, just as with the Intel 80386 and
later processors. However, the segmentation is invisible in all but the small
number of new instructions added in ESA/370 to manipulate the access
registers and segment address table.

In the normal single-segment case, including all IBM 370 code that ex-
isted before ESA/370, all that needs to be done is to zero all of the access
registers before a process begins. All instructions then execute as they used
to, since the access register extended addressing bit is never found to be set.
In a multi-segment program, compilers can generate additional instructions
to set the access registers and address table.

The IBM design is obviously much cleaner than Intel’s. Since IBM had a
decade of experience with the Intel processors, perhaps this should have
been expected.

3.4.5 Memory alignment

For those architectures with word-addressable memory, such as the IBM
processors up to the early 1960s, and the CDC and Cray systems since
then, there is usually no constraint on the alignment of data in memory:
all addressable items of necessity lie at word boundaries.

With byte addressing, the situation changes. Memory designs of the IBM
360 processors in the 1960s required that data be aligned at byte addresses
that were integral multiples of their natural size. Thus, an 8-byte double-
precision floating-point value would have to be stored at a byte address
whose lower three bits were zero. On System/360, if a non-aligned value was
accessed, then a software interrupt handler was invoked to handle the fixup.
The Motorola 68000 processor family also has this alignment requirement.

The reason for memory alignment restrictions is that although memories
are byte addressable, they are usually word aligned, so two bus accesses
would be necessary to load a non-aligned word.

The IBM System/370 architecture removed the memory alignment re-
striction, and so do the DEC VAX and Intel 80x86 architectures, although
they all have a run-time performance hit for non-aligned memory accesses.

RISC architectures restored the alignment restriction, and thus, pro-
grams that were written in the 1970s and early 1980s on other machines
may fail, or perform unexpectedly poorly, when run on a RISC processor.

Although compilers for high-level languages will ensure that individual
variables are always allocated on correct memory boundaries, they cannot
do so where a statement in the language imposes a particular storage or-
dering. Examples of such statements are Fortran COMMON and EQUIVALENCE,
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Pascal and PL/I record, and C struct. Data misalignment can also arise
from the passing of arguments of a narrow data type to a routine that de-
clares them to be of a wider type; this is common in Fortran for scratch
arrays.

Fortunately, the solution is simple: in memory structuring statements,
put the widest variables first. For example, in Fortran COMMON, put COMPLEX
and DOUBLE PRECISION values, which take two memory words, before the
one-word INTEGER, REAL, and LOGICAL values.

With arrays, you can also choose array sizes to preserve alignment, even
if you do not align by type sizes. For example, the Fortran statements

integer ix
double precision x
common / mydata / ix(4), x(3)

produce correct alignment. This technique is less desirable, however, be-
cause subsequent changes to array sizes can destroy the alignment.

Porting a program from a wide-word machine like a CDC or Cray to a
narrower-word one can also introduce alignment problems where none ex-
isted before, when floating-point precision is changed from single to double.

Some compilers have options to warn of alignment problems, or with
record and struct statements, to insert suitable padding to ensure proper
alignment. Use them, but be cautious about automatic insertion of padding:
it may destroy alignment assumptions elsewhere.

3.5 Virtual memory

Virtual memory is the last level in the memory hierarchy. It is the use of
external disk storage, or rarely, large slow RAM, to provide the illusion of
a much larger physical memory than really exists. Virtual memory first
appeared in 1962, on an English computer called the Atlas.

Virtual memory hardware is designed to map linear blocks of the ad-
dress space, called memory pages, into corresponding blocks of physical
memory. Memory pages typically range from 512 bytes (0.5 KB) to 16384
bytes (16 KB) in size; 1 KB and 4 KB are probably the most common sizes in
1994. This mapping usually requires a combination of hardware and soft-
ware support. The software is called into action when the hardware dis-
covers that the needed address is not yet in physical memory, and issues a
page fault interrupt.

Virtual memory mapping must happen at every memory reference, and
the addressing hardware is designed to do this with minimal, or even zero,
overhead.

Only when a page fault occurs is significant overhead required: the op-
erating system must then do a context switch to the page fault handler,
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which in turn must arrange to read the necessary block from a special area
of the disk called the swap area. If all of the physical memory is currently
in use, before it can read in the required block, it must find a memory page
to swap out to disk. Ideally, this should be the page that is least likely to
be needed in the near future, but since that is impossible to predict, many
virtual memory implementations employ a least-recently-used paging policy
to select a page that has not been used for some time, and then cross their
fingers and hope that it probably won’t be needed again soon.

Once the memory page has been fetched, another context switch restores
control to the faulting process, and execution continues.

Besides the disk I/O in the page fault handler, and the table searches
needed to find candidate pages when swapping out is required, the con-
text switches are also relatively expensive, since they may involve expensive
transfers between user and kernel privilege modes, and saving and restoring
of all registers and any other relevant state information.

Because of the significant operating system complication, and the need
for virtual addressing hardware, virtual memory is not supported on most
personal computer operating systems, or by the processors used in them.

In the IBM PC family, virtual memory is not supported by DOS, or by
processors prior to the Intel 80286. Rudimentary virtual memory support
is provided by the OS/2 and Windows 3.1 operating systems.

In the Apple Macintosh family, virtual memory was not supported until
version 7 of the Macintosh operating system, released in 1993, nine years
after the Macintosh was first announced. It requires the Motorola 68020
processor with a memory-management unit (MMU) chip, or the Motorola
68030 or later processor, and it must be explicitly enabled by the user.

By contrast, all mainframe computers introduced since the mid 1970s,
and all UNIX workstations, provide virtual memory. Since all current work-
station models are based on processors that support 32-bit (or larger) ad-
dress sizes, there is no reason, other than cost, why large virtual memory
spaces cannot be routinely provided.5

Cray supercomputers are an exception to this practice. For performance
reasons, they have never offered virtual memory, and they use faster static
RAMs instead of DRAMs for main memory, so they don’t provide cache
memory either.

5With the introduction of 4 GB disks by DEC in 1993, with a surprisingly low cost, under
US$3000, it is now economically feasible to configure a UNIX workstation with a completely
accessible 32-bit (4 GB) address space. One vendor, Seagate, has announced 9 GB disks for
the fall of 1994.
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4 Memory bottlenecks

We have now completed a survey of the computer memory hierarchy, and
presented data that allows quantitative comparisons of the relative perfor-
mance of each of the levels.

The main conclusion that we have to offer is this: always use the fastest
possible level in the memory hierarchy. With the fastest processors run-
ning with 5 ns cycle times, SRAM speeds of 15 ns, DRAM speeds of 70 ns
to 80 ns, disk latency times of 10,000,000 ns, and disk transfer times of
10 MB/sec, or 400 ns per 32-bit word, there is an enormous range of mem-
ory performance. If data has to be fetched from cache memory, rather than
from a register, the computer will run 3 to 4 times slower. If data comes
instead from regular memory, the computer will run 15 to 20 times slower.
If the data has to be fetched from disk, millions of instruction cycles will be
lost.

4.1 Cache conflicts

If data comes from cache memory, there is the possibility that a cache miss
will require reloading the cache from main memory, causing further loss
of cycles. In such a case, it is likely that a word in cache will have to be
replaced, possibly writing it back to memory before doing so. If that word
is the one that will be needed by the next instruction to be executed, we
have a case of a cache conflict. When does this happen? It happens when
the two words map to the same cache location, which means that with a
direct-mapped cache, their addresses are the same, modulo the cache size.

For a specific example, consider the MIPS R2000 CPU used in the DECsta-
tion 3100 workstation. The R2000 supports cache sizes from 4 KB to 64 KB,
so let us assume the minimum 4 KB cache. The R2000 loads only one 32-bit
word from memory on a cache miss. Thus, on this processor, referring to
array elements that are 4096 bytes apart will cause cache conflicts. This is
surprisingly easy, as the following Fortran code demonstrates:

integer k
real x(1024,32), y(1024)
...
do 20 i = 1,1024

y(i) = 0.0
do 10 k = 1,31

y(i) = y(i) + x(i,k)*x(i,k+1)
10 continue
20 continue

In this code, every iteration of the inner loop will cause a cache conflict,
because the dot product needs elements that are 4096 bytes apart.
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Fortunately, the code can be easily modified to reduce the frequency of
cache conflicts: just change the array dimensions from 1024 to 1025 or
more. The wasted space is worth the gain in performance.

Although you might expect that cache conflicts of this severity might be
rare, this is not the case. Mathematical models based on grid subdivisions,
such as finite element methods for solving differential equations, generally
result in array sizes that are powers of 2, and it is just those powers that
are likely to coincide with cache sizes which are also powers of two.

Several months ago, we were using such a program to benchmark sev-
eral different computer systems to find which would be most suitable for a
planned large computational effort. This program had two-dimensional ar-
rays with 256 rows, and unexpectedly poor performance on some systems
suggested that we look for cache conflicts. It turned out that changing a sin-
gle character in the 5700-line program, the 6 in 256 to a 7, had the dramatic
effect shown in Figure 15.

Speedup
Machine O/S (257 vs. 256)
DEC Alpha 3000/500X OSF 1.2 1.029
HP 9000/735 HP-UX 9.0 1.381
IBM 3090/600S-VF AIX 2.1 MP370 0.952
IBM RS/6000-560 AIX 3.3 1.913
IBM RS/6000-580 AIX 3.2 2.435
SGI Indigo R4000 IRIX 4.0.5f 4.376
SGI Indy SC R4000 IRIX 5.1 3.678
Sun SPARCstation 10/30 SunOS 4.1.3 0.959
Sun SPARCstation 10/41 Solaris 2.1 0.998

Figure 15: Cache conflict performance impact. The last column shows the
speedup obtained by increasing array dimensions from 256 to 257; this required
only a single-character change in a PARAMETER statement.
The IBM 3090 vector processor shows a slowdown because increasing the array
dimension required one extra vector iteration for each loop; with 256 elements, 8
32-element vectors span the loop, but 257 elements require 9 vectors.
It is unclear why the Sun SPARCstation 10/30 ran 4% slower; the problem size
changed by only 0.5%.

It is good programming practice to keep declared array sizes distinct
from the problem size. In Fortran, this means that two-dimensional arrays
should be used like this:

subroutine sample (a,maxrow,maxcol, nrow,ncol, ...)
integer i, j, maxrow, maxcol, nrow, ncol
real a(maxrow,maxcol)
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...
do 20 j = 1,ncol

do 10 i = 1,nrow
...

where 1 ≤ nrow ≤ maxrow and 1 ≤ ncol ≤ maxcol, rather than like this:

subroutine sample (a,nrow,ncol, ...)
integer i, j, nrow, ncol
real a(nrow,ncol)
...
do 20 j = 1,ncol

do 10 i = 1,nrow
...

Although this saves two arguments, and about as many microseconds per
call, it is much less flexible than the first style, which separates the current
problem size from the declared size, and facilitates adjustment of array
dimensions to minimize cache conflicts.

Some programmers choose a style halfway between these two. Since
the last dimension of a Fortran array is not required for address computa-
tions, they omit maxcol from the argument list, and use a constant value
of 1 (Fortran 66), or an asterisk (Fortran 77), for the last dimension in the
type declaration. While this saves one argument, it has the significant dis-
advantage that run-time subscript checking is then not possible, making
debugging difficult.

4.2 Memory bank conflicts

DRAMs have a peculiar property that their access time, the time between the
issuance of a read request and the time the data is delivered, is noticeably
shorter than their cycle time, the minimum time between requests. Figure 16
gives some typical performance characteristics.

The access and cycle time difference means that in order to avoid delays
in accessing memory repeatedly, memory is often interleaved into separate
memory banks. Thus, in a design with four memory banks, words n, n+ 4,
. . . , n+ 4k come from the first bank, words n+ 1, n+ 1+ 4, . . . , n+ 1+ 4k
from the second bank, and so on. Each bank is independent, so that each
can deliver data simultaneously. Thus, typical program code that accesses
array data, and loads of a cache line, will not encounter additional cycle-time
delays.

What does this mean for programmers? Well, if the program accesses
data in the same memory bank, instead of data in interleaved banks, there
will be a slowdown. For ease of bank determination, the number of banks is
generally a power of two, as illustrated in Figure 17, so just as in the Fortran
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Row access
Year of Chip Slowest Fastest Column Cycle

Introduction Size DRAM DRAM Access Time
1980 64 Kb 180 ns 150 ns 75 ns 250 ns
1983 256 Kb 150 ns 120 ns 50 ms 230 ns
1986 1 Mb 120 ns 100 ns 25 ms 190 ns
1989 4 Mb 100 ns 80 ns 20 ms 165 ns
1992 16 Mb ≈85 ns ≈65 ns ≈15 ns ≈140 ns

Figure 16: Generations of fast and slow DRAM time. The 1992 figures are
estimates. Memory is organized as a rectangular matrix, and a complete memory
request takes both a row and a column access. The data is taken from [73, Fig. 8.17,
p. 426].

code example above for cache conflicts, there will be memory bank delays
when the addresses of successive array elements differ by a multiple of the
bank size. The same programming technique of choosing array dimensions
which are not powers of two removes the delays.

4.3 Virtual memory page thrashing

We described in Section 3.5 how virtual memory works. A program’s work-
ing set is the collection of data it needs over a time interval measured in
seconds.

In the ideal case, the available physical memory is sufficient to hold the
working set, and the first reference to each memory page in the swap area
on disk will result in its being mapped into physical memory, so that no
further swap activity will be needed until the working set changes.

In the worst case, every memory reference will reference data which is
not yet in physical memory, and as Figure 5 on page 6 showed, delays of
many thousands, or even millions, of cycles can result. When a process initi-
ates disk I/O, most operating systems will suspend it in order to run another
process that has been waiting for the CPU to become available. This means
that a page swap can also require four, or more context switches, as control
passes from the first process, to the kernel, to the new process, and then
back again. The context switch changes the demands on memory, and addi-
tional virtual memory paging can be required. This is the main reason why
Cray supercomputers do not provide virtual memory: it is simply impossi-
ble to make performance guarantees when a process’ memory space is not
entirely resident in physical memory.

A simple Fortran code segment for matrix multiplication illustrates the
potential problem:
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Year of Clock Cycle Memory Memory Memory
Machine Intro- CPUs Speed Time Size Bus Width Banks

duction (MHz) (ns) (bytes) (bits)
Convex C-1 1985 1 10 100 1 GB 72 64
Convex C-2 1988 1–4 25 40 4 GB 72 64
Convex C-3 1991 1–8 60 16.67 4 GB 72 256
Cray 1 1976 1 80 12.5 8 MB 64 16
Cray 1/S 1979 1 80 12.5 32 MB 64 16
Cray X-MP 1983 1–4 105 9.5 64 MB ?? 64
Cray X-MP 1986 1–4 118 8.5 64 MB ?? 64
Cray Y-MP 1988 1–8 167 6.0 256 MB ?? 256
Cray 2 1985 1–4 244 4.1 2 GB ?? 128
Cray C-90 1991 1–16 238.1 4.2 4 GB ?? ??
Cray 3 1993 1–16 480 2.08 4 GB ?? 256

or 512
Cray 4 1995 1–64 1000 1.0 ?? ?? ??
DEC Alpha 3000-400 1993 1 133 7.5 16 EB 256 ??
DEC Alpha 3000-500 1993 1 150 6.7 16 EB 256 ??
DEC Alpha 7000-600 1993 1 182 5.5 16 EB 256 ??
DEC Alpha 10000-600 1993 1 200 5.0 16 EB 256 ??
Hitachi S-810 1983 1 35.7 (s) 28.0 ?? ?? ??

71.4 (v) 14.0
Hitachi S-820/80 1987 1 125 (s) 8.0 512 MB 512 ??

250 (v) 4.0
IBM 3090S-VF 1987 1–6 66.7 15.0 2 GB 64 16
IBM ES/3090S-VF 1989 1–6 66.7 15.0 16 TB 64 ??
IBM RS/6000-320 1990 1 20 50.0 256 MB 64 4
IBM RS/6000-530 1990 1 25 40.0 512 MB 128 4
IBM RS/6000-540 1990 1 30 33.3 256 MB 128 4
IBM RS/6000-580 1992 1 62.5 16.0 1 GB 128 4
IBM RS/6000-590 1993 1 66.6 15.0 2 GB 256 4
IBM RS/6000-990 1993 1 71.5 14.0 2 GB 256 4
NEC SX-3/SX-X 1989 1–4 344.8 2.9 1 GB ?? 1024

Figure 17: Memory interleaving on various computers. Notice the bank increase on Cray super-
computers of successively higher performance, as well as the memory size increase. The large numbers
of memory banks on the Cray machines after 1979 ensure that 64-element vector register loads can
proceed in parallel without memory bank delays.
As chip density increases, interleaving increases memory cost, because each bank must be completely
filled, preventing extending memory by small amounts. For example, a 16 MB memory can be built with
512 256 Kb chips in 16 banks, but with 32 4 Mb chips, only one bank is possible.
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integer i, j, k, m, n, p
real a(m,n), b(m,p), c(p,n)
...
do 30 j = 1,n

do 20 i = 1,m
a(i,j) = 0.0
do 10 k = 1,p

a(i,j) = a(i,j) + b(i,k) * c(k,j)
10 continue
20 continue
30 continue

Recall that Fortran stores arrays in memory with the first subscript varying
most rapidly. We have arranged the code so that the outer two loops step
over the array a(*,*) in storage order, and in the inner loop, the array
c(*,*) is also accessed in storage order. However, the array b(*,*) is
accessed across the rows, so successively fetched elements are spaced far
apart in memory. If too little physical memory is available, every iteration
of the inner loop could cause a page fault, so the worst case is n×m×p page
faults.

Because the innermost statement is independent of the outer loop or-
der, provided we handle the zeroing of a(*,*) properly in advance, we can
reorder the loops six different ways: i-j-k, i-k-j, j-k-i, j-i-k, k-j-i,
or k-i-j. No matter which of these we choose, at least one of the arrays
will be accessed sub-optimally in row order in the inner loop. The optimal
ordering depends on the machine architecture, and also on the compiler.

What is the solution? Assume that m, n, and p are all of order N , so
that the matrix multiplication requires N3 multiplications and N2(N − 1)
additions, or approximately 2N3 flops in all. If we transpose the b(*,*)
matrix in a separate pair of loops before the matrix multiplication triply-
nested loop, we can accomplish the transposition inO(N2) iterations, some
of which will surely generate page faults. The transposition is trivial to pro-
gram if the array is square, and more complex algorithms exist for rect-
angular array transposition in place [5, 14, 16, 26, 56]. However, the O(N3)
operations of the matrix multiplication will run with minimal, or no, page
faulting in the inner loops, depending on the length of the array columns.
On completion of the matrix multiplication, the transposed matrix can be
transposed a second time to restore it to its original form.

Transposition has a side benefit: on systems with caches, loading of a
cache line will move into the cache data that will be required on the subse-
quent iterations.
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4.4 Registers and data

Since registers are the fastest memory technology, we want frequently-used
values kept in registers, rather than in cache or main memory. Except for as-
sembly languages, however, most programming languages provide no way
to designate which variables are to reside in registers. Even in the C pro-
gramming language, which does have register attributes in type declara-
tions, there is no guarantee that the compiler will follow the programmer’s
recommendation; indeed, it can ignore register declarations completely.

Instead, we must rely on the compiler to do a good job of assigning local
values to registers for the duration of long-running code sequences, such
as deeply-nested inner loops.

However, if the architecture is register poor, such as in the Intel x86 fam-
ily, there is little the compiler can do. RISC machines with their large register
sets fare considerably better here, and on today’s RISC workstations, good
compilers will place most local variables in registers if high optimization
levels are selected. They will usually not do so if no optimization, or debug
compilation, is selected.

Since no optimization is usually the default, the programmer must take
care to explicitly request optimization. Regrettably, with most UNIX compil-
ers, this inhibits the output of a symbol table, making debugging difficult.
Thus, once a program has been debugged, it is important to recompile it
with the highest optimization level, and of course, to thoroughly test it
again, since optimization is the area of compilers where the most bugs tend
to lurk.

Register assignment is not possible for values whose address is required
in the code, such as with the C language & (address-of) operator. If the
variable is passed as a procedure-call argument, it will have to be stored
into memory, and then retrieved into a register on return.

If a value is used only once, little good is done by keeping it in a register.
In the matrix multiplication example above, the innermost statement

a(i,j) = a(i,j) + b(i,k) * c(k,j)

achieves three reuses of i, three of j, and two of k, but none of the array
elements themselves. Since the 1960s, most optimizing compilers have
been programmed to recognize loop indices as prime candidates for register
residency, and consequently, under optimization, the loop indices probably
would not be materialized in memory, and substantial parts of the address
computations would be moved outside the innermost loop. Indeed, a(i,j)
would very likely be assigned to a register for the duration of the innermost
loop, since both subscripts are constant in the loop.

One technique for performance improvement of array algorithms that
was popularized in the 1970s is loop unrolling. In the matrix multiplication
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example, the inner loop would be rewritten something like this, assuming
prior transposition of the b(*,*) array.

do 10 k = 1,(p/5)*5,5
a(i,j) = a(i,j) + b(k ,i) * c(k ,j)

x + b(k+1,i) * c(k+1,j)
x + b(k+2,i) * c(k+2,j)
x + b(k+3,i) * c(k+3,j)
x + b(k+4,i) * c(k+4,j)

10 continue
do 15 k = (p/5)*5 + 1,p

a(i,j) = a(i,j) + b(k,i) * c(k,j)
15 continue

The second loop is a cleanup loop to handle the cases where p is not a
multiple of 5. The first loop iterates only one-fifth as many times as the
original loop, reducing the ratio of loop overhead (incrementing counters,
array addressing, and loop counter testing and branching) to real work (the
floating-point arithmetic). It also meshes well with cache-line fetches. Ob-
viously, unrolling complicates the coding, and makes it easy to introduce
bugs. Unrolling often gives a performance improvement of several per-
cent. By the late 1980s, many optimizing compilers had been developed
that could unroll the innermost loop automatically, avoiding the need for a
human programmer to do the work.

Unfortunately, linear loop unrolling does nothing for register data reuse.
Each of the array elements is fetched from memory, and used only once.

The solution to this dilemma was apparently first observed by Ron Bell,
a researcher at IBM Austin laboratories where the IBM RS/6000 workstation
was developed, and published in a technical report in August 1990 [13].

Bell’s key observation is that matrix multiplication does not decree any
special order of computation; indeed, with m × n parallel processors, each
element of a(*,*) can be computed independently of all the others.

Bell therefore suggested computing a q×q block of the product simulta-
neously in the inner loop. The code to do this is quite complicated because
of the need to have cleanup loops for each loop index, but we can see the
general pattern by examining the statements in the inner loop for the case
q = 3:

a(i+0,j+0) = a(i+0,j+0) + b(i+0,k) * c(k,j+0)
a(i+0,j+1) = a(i+0,j+1) + b(i+0,k) * c(k,j+1)
a(i+0,j+2) = a(i+0,j+2) + b(i+0,k) * c(k,j+2)

a(i+1,j+0) = a(i+1,j+0) + b(i+1,k) * c(k,j+0)
a(i+1,j+1) = a(i+1,j+1) + b(i+1,k) * c(k,j+1)
a(i+1,j+2) = a(i+1,j+2) + b(i+1,k) * c(k,j+2)
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a(i+2,j+0) = a(i+2,j+0) + b(i+2,k) * c(k,j+0)
a(i+2,j+1) = a(i+2,j+1) + b(i+2,k) * c(k,j+1)
a(i+2,j+2) = a(i+2,j+2) + b(i+2,k) * c(k,j+2)

Notice the data usage patterns: each array element from the b(*,*) and
c(*,*) arrays is used q times in the computation of q2 elements of a(*,*).
If a compiler is sufficiently clever, it will recognize this, and only load the
element once. The total number of data values in the inner loop is q2 from
a(*,*), and q from each of b(*,*) and c(*,*), or q2+2q in all; Figure 18
tabulates several values of this simple expression.

q 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
q2+q 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255

Figure 18: Inner loop data value counts in q × q unrolling. The second row is the number of
registers needed to hold all data values. Each value will be re-used q times.

The numbers in the second column of Figure 18 should be compared
with the register counts for various architectures in Figure 11 on page 17.

It appears that with its 32 floating-point registers, the IBM RS/6000
should be able to handle the case of q = 4; with q = 5, there is a short-
age of 3 registers, so some registers would have to be reused, and some
data values would have to be loaded more than once. Thus, one would pre-
dict that q = 4 should be the optimal size for q × q loop unrolling on this
architecture.

This turns out to be the case, as shown in Figure 19. Indeed, the improve-
ment is dramatic. Without optimization, the straightforward code with the
normal inner loop and no optimization reaches only 1.24 Mflops, while 4×4
unrolling with optimization produces 44.22 Mflops, an improvement by a
factor of 35.7.

For the RS/6000 POWER architecture, the peak speed in Mflops is exactly
twice the clock rate in MHz. Thus, the 25 MHz clock of the model 530 could
potentially produce 50 Mflops. The 4× 4 unrolling technique has achieved
88.4% of that result, which is astonishingly good. For comparison, Figure 20
shows the performance of the well-known LINPACK linear-equation solver
benchmark on several supercomputers.

The last column of Figure 19 demonstrates how important code opti-
mization is on RISC architectures; similar speedups have been obtained on
RISC machines from other vendors.

Since these results were obtained in the fall of 1990, it has since been
demonstrated that similar block unrolling techniques can produce compa-
rable speedups in Gaussian elimination as well.
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IBM RS/6000-530
DOUBLE PRECISION

×  Matrix Multiplication
Loop type no-opt opt opt/

Mflops Mflops no-opt
A = BC

normal 1.24 18.09 14.6
unrolled 2.46 16.25 6.6
2 × 2 2.21 30.61 13.9
3 × 3 3.09 33.17 10.7
4 × 4 3.92 44.22 11.3
5 × 5 4.55 31.84 7.0

A = BTC
normal 1.27 18.09 14.2
unrolled 2.75 15.92 5.8
2 × 2 2.15 28.43 13.2
3 × 3 3.09 33.17 10.7
4 × 4 3.90 39.80 10.2
5 × 5 4.60 33.17 7.2

Figure 19: IBM RS/6000-530 matrix multiplication performance. The normal
loop has one multiplication and addition. The unrolled loop uses five-fold linear
unrolling. The second half of the table shows results for transposed B. The data is
taken from [9].

The measurements in Figure 19 are for 100 × 100 matrices. The three
matrices, each 80 KB in size in double-precision arithmetic, require 240 KB
of memory, but the IBM RS/6000-530 has only 64 KB of cache. However,
computation of one column of A requires all of B and only one column of
C, so the main demand on cache is from only one of the matrices. This
suggests that larger matrices might show the effect of cache overflow, and
this is indeed the case, as can be seen in Figure 21.

Notice the drastic plunge in performance for the normal and unrolled
cases when the matrix size increases beyond 100 × 100; this happens be-
cause the matrices can no longer fit in cache memory. One way to fix this
performance problem would be to introduce strip mining of the outer loops,
that is, to rewrite them as multiple loops over blocks of the matrices, with
block sizes chosen to maximize cache usage. This is exceedingly tedious to
program correctly, however. Regrettably, very few compilers are capable of
doing it automatically.

Fortunately, the technique of q × q unrolling, combined with pre- and
post- matrix transposition, is capable of maintaining high performance lev-
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Machine ×  Fortran ×  Assembly Peak
(1 processor) Mflops % Peak Mflops % Peak Mflops

Convex C-120 6.5 32% 17 85% 20
Convex C-210 17 34% 44 88% 50
Convex C-3810 44 37% 113 94% 120
Cray 1/S 27 17% 110 69% 160
Cray 2/S 41 8% 384 79% 488
Cray 3 241 25% n/a n/a 962
Cray C-90 387 41% 902 95% 952
Cray X-MP/4 66 28% 218 93% 235
Cray Y-MP/8-32 84 25% 308 93% 333
ETA 10E 62 16% 334 88% 381
Fujitsu VP-2100/10 112 22% 445 89% 500
Fujitsu VP-2200/10 127 13% 842 84% 1000
Fujitsu VP-2600/10 249 5% 4009 80% 5000
Hitachi S-820/80 36 4% n/a n/a 840
IBM 3090/180VF 12 10% 71 64% 116
IBM ES/9000-320VF 22 24% 91 68% 133
IBM ES/9000-411VF 23 13% 99 54% 182
IBM ES/9000-520VF 60 13% 338 76% 444
IBM ES/9000-711VF 86 15% 422 75% 563
NEC SX-1 36 6% 422 65% 650
NEC SX-2 43 3% 885 68% 1300
NEC SX-3/12 313 11% 2283 83% 2750
Stardent 1510 6.9 43% 13 81% 16

Figure 20: LINPACK linear-equation solver performance on selected supercom-
puters, for single processors only. The Stardent was billed as a ‘personal’ super-
computer, costing around US$50K–$100K. It has since been substantially outclassed by
newer RISC workstations, and the company no longer exists. The Convex is marketed
as a ‘departmental’ supercomputer, with prices in the range of US$0.5M–$2M. The other
machines are all in the US$5M–$32M class.
Notice how little of peak performance is attainable for the small matrix, particularly for
those machines with the fastest peak performance.
The LINPACK 100 × 100 benchmark is coded in Fortran, and no source code modifica-
tions are permitted. In the Fortran code, the innermost loops are replaced by calls to
special subroutines for vector operations. On most supercomputers, this reduces perfor-
mance because those subroutines have too little work to do, compared to the overhead
of invoking them.
The 1000 × 1000 case can be coded any way the vendor wishes, as long as it gets the
correct answer. On some machines, all, or part, of the code is programmed in hand-
optimized assembly code.
The data are taken from the LINPACK benchmark report, available as a PostScript file,
performance, in the xnetlib benchmark directory, and via anonymous ftp to either of
netlib.ornl.gov or netlib.att.com. The report is updated regularly with new results.
The source code can be found in the same places.
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IBM RS/6000-530
DOUBLE PRECISION
Matrix Multiplication

A = BC A = BTC
Loop type Size Mflops Mflops
normal 100 13.27 18.95

200 2.17 17.35
300 1.86 17.71
400 1.69 18.29
500 1.49 18.28

unrolled 100 14.21 16.58
200 2.17 15.65
300 1.87 16.66
400 1.68 16.77
500 1.49 17.15

2 × 2 100 26.53 28.43
200 5.41 29.56
300 5.45 30.29
400 5.30 30.44
500 4.87 30.51

3 × 3 100 28.43 33.13
200 9.56 31.60
300 10.43 32.77
400 9.26 32.70
500 8.40 33.17

4 × 4 100 39.81 44.18
200 16.80 40.41
300 17.25 42.62
400 15.50 43.34
500 14.56 43.40

5 × 5 100 36.19 30.61
200 19.46 31.29
300 18.92 31.90
400 17.19 32.57
500 16.66 33.06

Figure 21: IBM RS/6000-530 large matrix multiplication performance. The
precipitous drop in performance for matrices larger than 100 × 100 is dramatic
evidence of the importance of cache memory. The difference between the last two
columns shows the benefit of cache line loads and unit stride, not virtual memory
paging effects, since the machine had ample memory to hold all of the matrices.
The data is taken from [9].



45

els, and once again, as predicted, q = 4 is the optimal choice for this archi-
tecture.

The sharp-eyed reader may have noticed that the performance for the
100 × 100 case in Figure 21 is lower than that given in Figure 19. The rea-
son is that in the larger benchmark, all matrices were dimensioned for the
500×500 case; this leaves memory gaps between successive columns for the
smaller matrices, and results in some virtual memory paging degradation.

More details of the matrix multiplication algorithm implementation with
case studies for selected architectures can be found in a separate report [9],
and in a very large compendium of frequently-updated publicly-accessible
results [10]. A study of the effect of the memory hierarchy on matrix mul-
tiplication for the IBM 3090 vector supercomputer can be found in [58].

5 Conclusions

This document has provided a broad survey of the computer memory hier-
archy and its impact on program performance. There are many lessons to
be learned from the data presented here. The most important are:

• Align variables at their natural memory boundaries.

• Choose array dimensions to minimize cache and memory bank con-
flicts.

• Select the memory spacing of successive array elements to minimize
cache and memory bank conflicts, and virtual memory thrashing.

• Pick algorithms that will give maximal data reuse, so that compilers
can keep values in registers, avoiding cache and memory altogether.

The first three points were widely known in the scientific computing com-
munity by the early 1980s,

The last one is new, and is particularly relevant to RISC architectures
because of the processor-memory performance gap illustrated in Figure 1
on page 2. It dates only from the summer of 1990, and it is not yet widely
appreciated and understood.

6 Further reading

The alert reader will have noted numerous references to Hennessy and Pat-
terson’s book [73]. If you want to understand more about the aspects of
computer architecture that affect performance, the best recommendation I



46 6 FURTHER READING

can give is to acquire that book, and study it thoroughly. The noted com-
puter architect who designed the famous DEC PDP-11, PDP-10, and VAX
computers said this in the preface to the book:

The authors have gone beyond the contributions of Thomas to Calculus and Samuel-
son to Economics. They have provided the definitive text and reference for com-
puter architecture and design. To advance computing, I urge publishers to withdraw
the scores of books on this topic so a new breed of architect/engineer can quickly
emerge. This book won’t eliminate the complex and errorful microprocessors from
semiconductor companies, but it will hasten the education of engineers who can
design better ones.

C. Gordon Bell
1990 [73, p. ix]

As this document was going through its final editing stages at the end
of January, 1994, I stopped to browse in a bookstore, and discovered a new
book [31] by the same authors. According to the book’s preface, it is both an
update of the earlier volume [73], as well as a revision to make the material
more accessible to less advanced readers. It also incorporates additional
historical material. I look forward to many pleasant hours of study of this
new book.

Wilkes’ autobiography [98] and the papers in the collection edited by
Randall [76] cover the early days of computing, starting with the ancient
Greeks, and continuing up to 1980.

The evolution of IBM computers is well described in several books and
journals. The early history of computing machinery, and of the company
that became IBM, is treated in a biography of Herman Hollerith [3], the father
of the punched card. The decades of the Watson presidencies are covered
in Tom Watson Jr.’s very readable autobiography [96]. Bashe et al in a book
[7] and an article [6] cover the IBM machines of up to the early 1960s, and
Pugh et al in a book [74], and Padegs in an article [70], continue the story
with the IBM 360 and early 370 systems. The architecture of the System/
370 is described by Case and Padegs [24]. The IBM 370-XA architecture is
briefly summarized by Padegs [71]. The March 1986 IBM Journal of Research
and Development, and the January 1986 IBM Systems Journal are special
issues devoted to the IBM 3090 and its vector facility. The March 1991 and
July 1992 issues of the IBM Journal of Research and Development cover the
System/390 and ES/9000 architectures. The January 1990 issue of the IBM
Journal of Research and Development covers the architecture of the IBM
RS/6000. Finally, Allen [1] provides a history of IBM language processor
technology.

Bell et al [11] describe the architecture of the PDP-10 processor.
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The January 1978 issue of the Communications of the ACM is devoted
to articles about various computer architectures.

The history of Intel Corporation and the development of semiconductor
memory and processor technology is summarized in [43].

Organick [69] covers the Intel iAPX 432 from a high-level language pro-
grammer’s point of view, and Hunter, Ready, and Farquhar provide low-level
architectural details [34].

The Intel i860 is presented in two books from Intel [41, 42].
Myers and Budde describe the architecture of the Intel i960 [67], and

Intel has produced one volume [48] about the i960.
Intel has published several books on the 80x86 family [35–40, 44–47, 49–

52]. Two books [52, 92] cover the Intel Pentium, released in 1993. Pentium
is the first superscalar processor in the Intel product line.

There are numerous books on assembly language programming for the
Intel 80x86 family: [15, 17–22, 57, 59–62, 68, 72, 79, 80, 84, 99]. Of these,
Palmer and Morse’s book [72] concentrates exclusively on the floating-point
processor. The authors are the chief architects of the 8087 and 8086 pro-
cessors, respectively, and Palmer was also one of the designers of the IEEE
754 Floating-Point Standard.

The major RISC architectures are described in Slater’s book [85]. The
book also covers specific chip implementations of several systems, and the
individual chapters are written by independent industry analysts who are
not above registering criticisms of particular features.

The DEC Alpha architecture is described in two books [29, 83]; the second
is by the chief architects of Alpha.

Holt et al [32] cover version 1.0 of the Hewlett-Packard architecture in
the HP 9000/8xx machines, but not the more recent version 1.1 architecture
of the HP 9000/7xx series.

Kane and Heinrich [53, 54], Brüß [23], and Chow [27] treat the MIPS pro-
cessors.

The Motorola 88000 RISC architecture is described in [66]. The Motorola
680x0 CISC architecture family is treated in several books [63–65].

The SPARC version 8 architecture is covered in three books [25, 87,89],
and the new 64-bit SPARC version 9 architecture in one book [97].

Siewiorek and Koopman, Jr. offer a case study of the Stardent personal
supercomputer architecture [81]. Russell describes the architecture of the
Cray 1 supercomputer [78], and the Robbins offer a study of the Cray X-
MP [77]. Stevens and Sykora provide a short description of the Cray Y-MP
[88]. Brief descriptions of Japanese supercomputers are given in articles
by Takahashi et al [90] and Uchida et al [91] on the Fujitsu VP-2000 series,
by Eoyang et al [30] and Kawabe et al [55] on the Hitachi S-820/80, and by
Watanabe et al [94, 95] on the NEC SX-3/SX-X. Simmons et al [82] compare
the performance of current Cray, Fujitsu, Hitachi, and NEC supercomputers.
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Performance measurements of high-performance computers are always
in demand, and performance claims are often inflated. Bailey’s humorous
note [4] points out some of the ways in which data can be distorted to
fool the customer. Bailey also gives some interesting observations of the
relative performance of RISC processors and vector supercomputers [5]; he
concludes that the two chief areas of concern on RISC machines are the slow-
ness of division, and inadequate memory bandwidth. He also provides rec-
ommendations about matrix-transposition algorithms that maximize cache
usage.

Baskett and Hennessy [8] provide a very interesting survey of recent
progress toward obtaining supercomputer performance from parallel ma-
chines built from microprocessors, at a fraction of the cost.

If you want to learn more about the evolution and costs of high-perfor-
mance computing, you should read C. Gorden Bell’s Ultracomputers: A Ter-
aflop Before Its Time article [12]. Bell gives arguments about why a teraflop
computer should not be built before 1995 or 1996, even if it is technologi-
cally feasible to do so earlier.

Short biographies of Nobel Prize winners can be found in Wasson’s book
[93]. Slater [86] provides longer biographies of computer pioneers, and
therein, histories of most of the major computer companies.
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