
Lecture Notes for 5765/6895, Part II

The choices of material we cover after Chapter 5 have been more flexible, reflect-
ing recent developments and our own interest. In the following, we discuss and
summarize the materials under various topic listings.

1 Stochastic Volatility

1.1 Motivations

One obvious and major limitation in the classic Black-Scholes-Merton model is
its assumption that the stock price follows a geometric Brownian motion with
constant volatility. Even though there is no perfect way to determine the volatility
of a stock, one thing we know for sure is that it varies in time in some random
fashion. The implication of the constant volatility assumption leads to a log price
that is supposed to have a normal distribution, a claim that is easily invalidated
in reality. For actual pricing and trading of stock derivatives, this limitation gives
rise to the phenomenon of so-called “volatility smile” or “volatility skew”, where
the implied volatilities observed on the market vary according to the strike price
and the expiration of individual contracts, which means that the most important
input (underlying volatility) in pricing an option needs to be adjusted in practice.
The overall purposes of developing stochastic volatility models are twofold: we
want to model the actual volatility as realistic as possible, so that the stock price
distribution used in the model is close to the observed data (for instance, the
tails of the lognormal distribution are too thin for most observed stocks so other
distributions are preferred); at the same time we want to develop a tool that fills
in the gap in the implied volatility data set so that an appropriate volatility value
can be used in derivative pricing and hedging.
First of all, let us revisit the concept of implied volatility σimp, which is a value that
is associated with a call or put price. In the case of a call, this value is obtained
by solving the following equation:

cBS(t, S(t);K,T, σimp) = cmarket, (1)

where cmarket is the observed call price, and cBS is the Black-Scholes-Merton for-
mula for European call. A similar relation defines the implied volatility for a put.
The need for stochastic volatility becomes obvious when we notice that σimp would
be different for different strike K, everything else being equal. This clearly contra-
dicts the assumptions of the Black-Scholes model, where σ is just the volatility for
the underlying stock, which has nothing to do with the strike price, and it intro-
duces an extra source of ambiguity in option pricing. For example, if a 3-month
call on stock X with strike 50 is being traded at implied volatility of 20%, while
a similar call on the same stock with strike 45 is being quoted at 22%, what σ
value would you use in the Black-Scholes-Merton formula when you need to sell
another call at strike 55? As we know that the volatility is the single most crucial
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parameter in pricing, this lack of preciseness will be pivotal in the eventual profit
and loss of the trading.
When we develop stochastic volatility models, we need to keep in mind some key
phenomena observed in stock price data: (1) volatility clustering, and (2) the
common highly peaked, fat tail stock return distributions. One breakthrough in
option pricing in the last 20 years is the realization of the fact that volatility as a
process is mean reverting in time: abnormally high or low levels of volatility cannot
be sustained for very long time, so mean-reverting processes (such as Ornstein-
Uhlenbeck) are natural candidates for modeling stochastic volatility.

1.2 A General Form

A general form of stochastic volatility models can be expressed as a process for the
stock price

dS(t)

S(t)
= µdt+

√
V (t) dW1(t), (2)

where V (t) is the instantaneous variance of stock return at time t, and a process
for V itself

dV (t) = α (S(t), V (t), t) dt+ ηβ (S(t), V (t), t)
√
V (t) dW2(t) (3)

with a correlation between two Brownian motions W1 and W2 given by

< dW1, dW2 >= ρ dt, −1 ≤ ρ ≤ 1. (4)

Notice that we use a general square root process for V (t) here since we require V
to remain positive given V (0) > 0. This will become important in the analytics
later.

1.3 Pricing Equation

To derive the pricing equation for derivatives under the stochastic volatility model,
we follow a similar no-arbitrage based approach to form a portfolio that will be
hedged for risks in both stock price and volatility. More precisely, we seek a
portfolio that is free of both W1 and W2 components. To do that, we need the
Itô’s formula in two dimensions and apply it to the price of a portfolio that consists
of two derivatives and the underlying itself,

Π(t) = U(t)−∆(t)S(t)−∆1(t)U1(t), (5)

where U(t) is the price of the asset in question, and U1 is the price of another asset
that is dependent on the same underlying S(t). The reason for two derivative
assets in the portfolio is obvious: we have two risk factors, so more than one
asset is needed in order to cancel the multi-factors in their prices. A key point in
differentiating Π(t) is to notice that we assume self-financing, therefore

dΠ = dU −∆ dS −∆1 dU1 (6)
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and the dependences are on S and V . After the application of Itô’s formula and
regrouping, we have two terms with W1 and W2 dependences, and we can set them
both to zero by requiring

∂U

∂S
−∆1

∂U1

∂S
= ∆, (7)

∂U

∂V
−∆1

∂U1

∂V
= 0. (8)

With risk factor dependences eliminated, we must have a riskless return for the
portfolio:

dΠ = rΠ dt (9)

where r is the riskless rate. However, this equation alone does not directly lead
to a PDE for U or U1, as there are two unknown functions U and U1 involved.
Another important observation is to be made, which is motivated by a separation
of variable technique. Here we need to separate U terms and U1 terms into two
sides of the equation, such as

LU = L1U1, (10)

for some differential operators L and L1. Since U and U1 are arbitrary derivative
prices, both sides must be independent of either U or U1 and we have

LU = L1U1 = −f(S, V, t). (11)

Motivated by the definition of market price of risk, a specific form of f is chosen:

f = α− φβ
√
V (12)

Notice that α and β notations are generic and they are not necessarily related to
Eq.(3). The rationale behind this form is the following: if we form a delta hedged
portfolio

Π1 = U − USS (13)

and the excess return over dt is

dΠ1 − rΠ1dt = β
√
V UV (φ dt+ η dW2) . (14)

Here φ represents the excess return over the risk-less interest, scaled by the volatil-
ity of volatility η. It is natural to call it the market price of risk in regard to the
volatility factor. As in the risk-neutral setting for constant volatility model, if we
set φ = 0, the PDE for U can be written as

∂U

∂t
+

1

2
V S2∂

2U

∂S2
+ ρηβSV

∂2U

∂S∂V
+

1

2
η2β2V

∂2U

∂V 2
+ rS

∂U

∂S
+ α

∂U

∂V
= rU (15)
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1.4 Heston’s Model (1993)

The most popular model in the above form is probably Heston’s model (1993),
where a mean-reversion is built into the volatility process:

dS(t)

S(t)
= µdt+

√
V (t) dW1(t), (16)

dV (t) = κ(θ − V )dt+ η
√
V (t)dW2(t). (17)

We can see that we just need to set α to this mean reverting form, and β = 1
in Eq.(3). One advantage of this model is that we can easily interpret various
parameters: κ represents the speed of mean reversion, and θ is the long time
equilibrium of V . It should be pointed out that the process for V is just one
example of the CIR process, where a crucial condition for the parameters is known
(κθ ≥ η2/2) in order to make sure that V stays above zero if it starts out positive.
The resulting PDE for Heston’s model is

∂U

∂t
+

1

2
V S2∂

2U

∂S2
+ρηSV

∂2U

∂S∂V
+

1

2
η2β2V

∂2U

∂V 2
+ rS

∂U

∂S
+κ(θ−V )

∂U

∂V
= rU (18)

The success of this model is due to the fact that a closed-form solution to the above
equation exists for the European call and put. There are several steps involved in
solving this equation for the particular form of payoff functions (call or put).

• Step 1: Introduce changes of variables

x = log(Se−r(T−t)/K), τ = T − t, c(x, V, τ) = U(S, V, t),

so we can eliminate the variable dependence in the coefficients.

• Step 2: Motivated by the Black-Scholes formula, suggest a solution form

c(x, V, τ) = K [exP1(x, V, τ)− P0(x, V, τ)] ,

so we have P1 and P0 satisfying two equations that are similar.

• Step 3: The terminal conditions for P1 and P0 have a nice form

lim
τ→0

Pj = H(x) =

{
1 x > 0
0 x ≤ 0

j = 0, 1. (19)

• Step 4: After the treatment regarding the terminal conditions, Fourier trans-
form can be used to convert the PDE into several ODEs.

• Step 5: Once the ODEs are solved, take the inverse Fourier transform to
express the solution to the original problem in a principal-value integral.
The calculation is rather tedious but it is indeed a closed-form solution.

It should be noted that in many applications the condition κθ ≥ η2/2 is sometimes
violated. One treatment to fix this artifact is to introduce a boundary condition
(such as the reflection condition) for the V process, and impose a corresponding
condition for the PDE at V = 0.
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1.5 Volatility Smile

As a simple example that indeed stochastic volatility models can predict the smile
observed on the market, we consider a toy model where the volatility is a Bernoulli
random variable:

σ̄2 =

{
σ2
1 with probability p
σ2
2 with probability 1− p (20)

So the implied volatility is solved from

cBS(K, σimp(p,K)) = p cBS(K, σ1) + (1− p) cBS(K, σ2) = cmarket (21)

After some clever manipulations, it can been shown that

∂2σimp
∂K2

≥ 0.

So indeed there is a “smile” in the implied volatility curve.

2 Jump Diffusion

2.1 Introducing Poisson jump process

Stock prices are known to jump at unusual moments, such as at major political
or economical events. It is natural to address the continuous path restriction in a
diffusion process by introducing a jump component. We begin with adding Poisson
jumps to a diffusion process:

X(t) = X(0) +

∫ t

0

∆(s) dW (s) +N(t), (22)

where ∆(t) is an adapted process (depending on information up to t), and N(t)
is the number of jumps before t. The jump times τk, k = 0, 1, . . .with τ0 = 0 have
the property that the time differences in between consecutive jumps τk − τk−1are
independent exponential rv’s with parameter λ, which will be called the jump
intensity that measures how often jumps appear in time. With the jump times
defined, the number of jumps before t can be written as

N(t) = max

{
n :

n∑
k=0

τk ≤ t

}
(23)

and we can show the following properties:

1. the distribution of N(t) is given by

P {N(t) = k} =
(λt)k

k!
e−λt, k = 0, 1, . . . (24)
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2. Independent increment: N(t1) − N(t0), N(t2) − N(t1), . . . , N(tn) − N(tn−1)
are stationary and independent, for any sequence t0 < t1 < t2 < · · · < tn.

3. E [N(t)−N(s)] = Var [N(t)−N(s)] = λ(t− s), t > s

4. M(t) = N(t)− λt is a martingale.

In the Poisson jump process N(t), every time there is a jump, N(t) gains an
additional increment of size one. It is necessary to introduce processes with random
jump sizes. For this reason, we consider the so-called compound Poisson process

Q(t) =

N(t)∑
i=1

Yi (25)

where rv’s Yi are described by specifying their distributions. If we assume E [Yi] =
β, then

E [Q] =
∞∑
k=1

E

[
k∑
i=1

Yi|N(t) = k

]
· P [N(t) = k] = βλt (26)

To conclude this subsection, we write the class of jump-diffusion process that we
will consider here as

X(t) = X(0) +

∫ t

0

∆(s) dW (s) +Q(t). (27)

2.2 Itô’s formula for Compound Poisson Processes

Starting with a jump diffusion process X(t), if we have a function evaluated at
X(t), we will need to study the differential of that function, in terms of the changes
in X. In another word, we will need a version of Itô’s formula for X(t) that is
described by Eq.(27). First we assume the simple Poisson process and notice

f(N(t)) = f(N(0)) +

∫ t

0

df

where

df =

{
f(N(t))− f(N(t−)) jump at t

0 no jump at t

Therefore,

f(N(t)) = f(N(0)) +
∑
0≤s≤t

(f(N(s))− f(N(s−))) ,

where the sum is over all possible jump times s. It is straightforward to extend
this to

f(Q(t)) = f(Q(0)) +
∑
0≤s≤t

(f(Q(s))− f(Q(s−))) (28)

for compound process Q. For more general jump diffusion processes (Brownian
motion plus Poisson jumps), there is a version of Itô’s formula that combines the
above with the original formula for diffusion alone.
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2.3 Merton’s Model (1976) for Pricing European Options

Merton proposed the following model for stock prices that allow jumps

dS(t)

S(t−)
= (α− λk) dt+ σ dW (t) + dQ(t) (29)

where k = E [Y − 1] and the term λt are there to be consistent with the notion
that α is still the expected growth rate. Another way to see this equation is

dS(t)

S(t−)
=

{
(α− λk) dt+ σ dW (t) no jump at t
(α− λk) dt+ σ dW (t) + Y − 1 jump at t

The reason to use Y − 1 instead of Y can be seen in the case

dS(t)

S(t−)
=
S(t)− S(t−)

S(t−)
= Y − 1

which implies
S(t) = S(t−) + (Y − 1)S(t−) = Y S(t−).

It is clear that the random variable Y models the ratio of the stock price when
jumps happen, so it is necessary to use a distribution with positive values. In
Merton’s original model, the lognormal distribution is chosen for Y such that
Y = (1 + k) exp(−1

2
ν2 + νZ) and Z is the standard normal random variable . The

solution to Eq.(29) is therefore

S(t) = S(0)Y (N(t)) exp

[
(α− σ2

2
− λk)t+ σW (t)

]
(30)

where

Y (n) =

{
1 n = 0,
Πn
j=1Yj n ≥ 1,

(31)

and N(t) is the number of jumps before time t.
One immediate calculation from this model is the expected payoff under a proper
measure, such as the call price

c(0, S(0)) = E
[
e−rT (S(T )−K)+

]
=

∞∑
j=0

E
[
e−rT (S(T )−K)+ , N = j

]
· P [N = j]

=
∞∑
j=0

(λT )je−λT

j!
E
[
e−rT (S(T )−K)+ , N = j

]
= e−λT

∞∑
j=0

(λT )j

j!
E
[
cBS

(
S(0)Y (j)e−rT , T,K, σ, r

)]
= e−λ(1+k)T

∞∑
j=0

(λ(1 + k)T )j

j!
cBS (S(0), T,K, σj, rj) (32)
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where

σj =

√
σ2 +

jν2

T
, rj = r − λk +

j log(1 + k)

T
. (33)

The last equation is derived by taking expectation with respect to the rv Yj and it
can be shown that this expectation can be expressed in terms of the Black-Scholes
formula again, with modified parameters σj and rj.
To justify this option price, we first try to follow the hedging argument in the
original Black-Scholes derivation, but soon realize that it will not work. The
difficulty can be explained by considering the simple case where

dS = S(t)− S(t−) = (Y − 1)S(t−),

and
df = f(S(t))− f(S(t−)) = f(Y S(t−))− f(S(t−)).

No matter what you choose to multiply in front of either dS or df , there will not
be a combination that will eliminate the jump change in S, simply because Y is
another random variable. In the textbook, it is shown that jump risk could be
eliminated if the jump size Y is deterministic, which is an unrealistic assumption.
A compromise is made if we want a price process to be a ”martingale” under
some loose conditions. If we look at the differential of f(t, S(t)) when S(t) follows
Eq.(29) and make sure that the drift term is zero, we end up with a partial integro-
differential equation

ft + (α− λk)SfS +
1

2
σ2S2fSS + λE [f(Y S)− f(S)] = rf (34)

Here the expectation is taken with respect to the random variable Y . This is
the equation that leads to the Merton’s call price formula when the appropriate
terminal condition f(T, S(T )) = (S(T ) − K)+ is imposed. In fact, when other
payoff functions are imposed, the solution to this equation should give the jump-
diffusion model price for that particular derivative.

3 American Options

American options differ from their European counterparts in that they can be
exercised any time before expiration. Therefore they are at least as valuable as, if
not more than, the European counterparts. We have seen in the binomial model
that the modification is quite straightforward in implementation, but the analysis,
the proof that such policy is indeed optimal, are much more complicated. In fact, a
beautiful and readily accessible mathematical presentation of the American option
is only available in the form of a free boundary PDE problem, as presented below.
We have argued that American calls on stocks that pay no dividends are best to
be left to the expiration, so they are as valuable as the European calls. Because of
this important observation, most American option discussions start with American
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puts, in which case it’s indeed optimal to exercise prior to the expiration of the
option. The real question is what this criterion to exercise is.
First, we know that the optimal exercise time is not known ahead of time, therefore
it is a random variable. Since we cannot rely on the future information to make
a decision, this random variable is a stopping time with respect to the filtration
generated by the process. An exercise policy is a procedure for the investors to
follow, so we use the terms “exercise policy” and “stopping time” interchangeably.
A natural way to search for a stopping time is to introduce a barrier, with the first
time this barrier is crossed being the stopping time. In the American put, it has
the form

τ = min {t : S(t) ≤ L(t)}

where L(t) is a pre-specified barrier and it must satisfy the following conditions

L(t) ≤ K, L(T ) = K.

Once we have this function, it is easy for the investors to follow the strategy: at
any time t before the expiration, if S(t) is higher than L(t), he/she should hold
the put; on the other hand, if S(t) is lower than L(t), he/she should immediately
exercise to obtain a payoff K−S(t). The question for the optimal exercise policy is
to find the barrier L(t) such that the value of the option is maximized. As it turns
out, the problem is solved via the following free boundary value problem, which
can be summarized in the following. The region {(S, t), 0 ≤ t ≤ T, 0 < S <∞}
will be divided into two regions by the barrier L(t). In the region above L(t), we
have the option price V satisfying

Vt + rSVS +
1

2
σ2S2VSS = rV (35)

V ≥ (K − S)+ (36)

and in the region below L(t),

Vt + rSVS +
1

2
σ2S2VSS < rV (37)

V = K − S (38)

This is a typical free boundary value problem where the boundary L(t) itself is
part of the solution, and we must be very careful about the boundary conditions
at L(t). For the American put, the following conditions are imposed:

V is continuous across L, and lim
S→L

VS = −1. (39)

How should we hedge an American option (pretending you sold the option), given
that the price is obtained from the above formulation? The following are the
guidelines:

1. As long as the option is not exercise, delta hedge;
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2. If the option is exercised exactly when the boundary is crossed, you should
be able to break even if hedged properly;

3. If the option holder chooses to exercise when the boundary is not crossed,
so the payoff is actually lower than the value of the option, you should just
close the option (sell the option on the market and pay the owner the payoff
he/she is entitled) and walk way with the difference;

4. If the option holder does not exercise when the barrier is actually crossed,
which means that the payoff is higher than the option value, you should cash
out the difference and use the remaining balance to delta hedge the option
as a new option.

4 Interest Rate Term Structures

The obvious challenge for modeling interest rates is that there are so many related
rates on the market, and they must be modeled in a consistent way. To make things
more manageable, all these rates can be compared in two aspects: the particular
type and the maturity. The maturity is easier to understand: a two-year rate is a
rate that is guaranteed for the next two years if you deposit the money with the
particular financial institution that offers it. Here are some typical rates you find
on the market:

1. one-month LIBOR rate, a measure of rates at which banks make loans to
each other for a one-month period;

2. 2-year treasury bill (yield), the yield (to be described below) you received
when you loan the money to US treasury for two years;

3. 15-year swap rate, a fixed rate that will be good for 15 years at which you ex-
change interest payments with some counterparty in exchange of the floating
rate;

4. 30-year mortgage rate offered by a particular bank.

Suppose we restrict to one type of rate and just consider the differences in matu-
rity, the goal would be to generate a curve that describes the rates for different
maturities. This curve is called the yield curve, and it can be equivalently shown
in three forms. Before we describe these three forms, it is important to under-
stand the concept of an important class of financial securities - bonds. A bond
is a certificate issued by an issuer to investors that promises to pay back the face
value and subsequent coupons stated on the bond at some prearranged dates. The
importance of bonds is made all significant in that they are securities and can be
freely traded on the market. Imagine that a bond that promises $100 in 5 years
(for the purpose of illustration, assume no coupons) and it is selling at a price of
$50, which implies an annualized rate of about 14% (doubling your money in 5
years) and is all “guaranteed” if the issuer does not default in the next five years.
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The tricky part is that the investor does not always hold it until maturity. He can
buy the bond at $50 today and sell it for $50 again tomorrow. In that case he
would lose the interest and end up with a zero return for the investment. On the
other hand if the price moves up by one dollar in a week, the realized return would
be 2%× 365/7 ≈ 104%, annualized. The game in interest rate markets (so-called
fixed-income markets) is to buy and sell these interest rate dependent securities in
an environment where all kinds of rates are fluctuating with some form of depen-
dences. With the trading practices in mind, we now introduce the following three
descriptions of the yield curve.

1. yield y(t, T ): for each dollar deposited at time t, you will receive ey(t,T )(T−t)

at the maturity T ;

2. zero-coupon bond price B(t, T ): for a zero-coupon bond maturing at T with
face value $1, the price at time t < T is B(t, T );

3. forward rate f(t, T ): observed at time t, the implied short rate for depositing
at time T .

These three descriptions can be converted from one to another via the following
relations.

B(t, T ) = e−y(t,T )·(T−t) (40)

f(t, T ) = y(t, T ) + (T − t) ∂y
∂T

(41)

For a fixed time of observation t, the yield curve is a function of maturity T .
However, when we focus on the dynamics of the yield curve, we are more concerned
with the change in t, while T serves as a parameter. In terms of modeling, we want
to describe dy(t, T ), dB(t, T ), or df(t, T ), where the differential is with respect to
the time t. As we can see that the parameter T itself will also change, so potentially
we will be dealing with a partial stochastic differential equation, which is far beyond
the capability of our standard machineries. In the following, we briefly mention
two classes of term structure models.

1. Short rate models: we choose to model the instantaneous change of the short
rate R(t), which applies to an instantaneous time period and a typical real
life example is the overnight rate. Popular choices include

• Vasicek model:

dR(t) = κ(θ −R(t)) dt+ σ dW (t)

• BDT (Black-Derman-Toy) model:

dy(t) = (θ + βy(t)) dt+ σ dW (t), R(t) = exp(y(t))

2. HJM model: a model that describes the dynamics of the forward rate f(t, T ).
This is considered a complete model as the parameter T explicitly appears
in the model and it extends to multidimensions.
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We will limit ourselves to the discussion of short rate models, for which the PDE
approach is a powerful tool. First we introduce the discount process

D(t) = exp

(
−
∫ t

0

R(s) ds

)
(42)

The usefulness of this process is that for no-arbitrage to hold, D(t)B(t, T ) must
be a martingale under the risk-neutral measure. As a consequence,

B(t, T ) = E
[
D(T )

D(t)
|F(t)

]
(43)

The martingale property allows us to derive an equation for the price of any in-
terest rate derivative under this one-factor world assumption - we just need to
differentiate and set the drift term to zero. Suppose the short rate model is given
by

dR(t) = β dt+ γ dW (t),

the PDE for the price of the derivative f(t, R) is

ft + βfR +
1

2
γ2fRR = Rf (44)

with the terminal condition for f(T,R(T )) determined based on the derivative
payoff. For a zero-coupon bond, the terminal condition is f = 1 when t = T .
How do we use a model to price interest-rate derivatives? First we choose a model
and calibrate it (determine the parameters) to make sure that bond prices from the
model are reasonably matched to the market. Next we should use the calibrated
model to price other derivatives, such as the interest rate caps/floors and interest
swap options. It is in these not-so-common, or structured instruments where the
financial institutions can rake huge profits, if they can hedge the products they sell
accurately with more common instruments. Equally possible they can also stand
to lose a lot of money.

5 Credit Derivatives

One of the important motivations for credit derivatives is the need to address po-
tential defaults of counterparties in various financial contracts, such as an interest
rate swap, where a product called credit default swap (CDS) is often used to hedge
the credit risk. But the innovators at that time never imagined the widespread use
of credit products as a vehicle to speculate and make all kinds of bets.
The mathematical question is how to quantify the risk of a default of a particular
entity. Here is a toy example to illustrate the principle: suppose there is a 5-year
zero-coupon corporate bond issued by a company that matures in 5 years but the
company may default at time τ within the next 5 years, in which case the company
will not be able to meet the obligation to fully pay back the principal amount. We
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assume the distribution of τ is an exponential distribution with parameter λ, that
is

P [τ ≤ 5] = 1− e−5λ.

Suppose the risk-free interest rate (annualized) for the 5-year investment is r, and
there is no payment in case of a default, the discounted expected payoff at T = 5
is therefore

P = P [τ > 5] · e−5r + P [τ ≤ 5] · 0 = e−5(r+λ).

The yield of this bond is therefore y = r + λ, and we can see that the extra yield
in addition to the risk-free rate is due to the intensity λ.

5.1 Reduced Form Models

Here the focus is on modeling the default intensity λ, for which λ∆t can be viewed
as the likelihood of default over a short period (t, t + ∆t). It is obvious that the
intensity λ must be time-dependent to develop a particular default term structure.
Not only λ should be time varying, but also it is most likely stochastic, thus
opening the door for many models reflecting the forecast for the credit future of
a particular entity, such as one versus multi factors, mean reversion, and so on.
In developing a proper model, a balance should be maintained between analytic
tractability and realistic and comprehensive description of the phenomena.

5.2 Structural Models

The other type of model, pioneered by Merton (1973), is called structural model,
and they are based on the fundamental argument that a default is triggered when
the company’s total asset falls below the company’s total liability. We need to
understand the basic corporate financing principle that a company can choose
between issuing debt or equity to raise the capital it needs to expand its business.
The debt holders are capped at the gain, but they have the priority in collecting
the remaining asset if the company goes bust.
Merton’s original argument is the following. Let V be the total asset of the com-
pany and B the outstanding liability, and they are both time dependent. At
maturity T ,

• If V > B, the bond holders receive their promised amount B, while the
equity holders take away the rest (V −B);

• If V ≤ B, which is the case where the company would fail their obligations,
the bond holders take everything that is left (V ) and the stock holders get
nothing.

The payment received by the stock holders is therefore exactly the same payoff of
a call option

(V −B)+ =

{
V −B, V > B

0, V ≤ B

13



So the value of the stock at t < T can be expressed as the Black-Scholes formula
(with a proper probability measure), and the value of the defaultable bond at t is

B(t) = V (t)− e−r(T−t)E
[
(V (T )−B)+|F(t)

]
This is one of the first clean expressions for modeling defautable bonds, and the
dependence on the volatility as required in the Black-Scholes formula highlights
the risk in the company’s credit conditions.
An obvious weakness of the model in this form is that defaults are allowed only at
the maturity T . The extension of this model leads to an application of the famous
“first exit” problem. Let V (t) be the value of the asset at time t, the first time V
falls below B

τ = min {s : V (s) ≤ B}

gives the default time, and the probability of default before t

P (t) = P [τ < t]

as a function of time is the outcome of the model that can be calibrated to the
market implied default probabilities. The problem becomes a calibration problem
for the process X(t) = V (t)−B, that is the determination of the model parameters.
In the case where X is a Brownian motion or Geometric Brownian motion, there
are well-known results based on the reflection principle. We illustrate this approach
by building a series of processes from the very basic.

1. X(t) = W (t), with barrier m > 0. We define the exit time

τm = min {t : X(t) ≥ m}

For any w > 0, the reflection principle gives

P [τm ≤ t,W (t) ≤ w] = P [W (t) ≥ 2m− w]

Therefore,

P [τm ≤ t] = P [τm ≤ t,W (t) ≤ m] + P [τm ≤ t,W (t) > m]

= 2P [W (t) ≥ m]

=
2√
2πt

∫ ∞
m

e−
x2

2t dx = 2

(
1−N

(
m√
t

))
.

2. X(t) = W (t), m ≤ 0. We define

τm = min {t : X(t) ≤ m}

A similar calculation based on symmetry gives

P [τm ≤ t] = 2

(
1−N

(
− m√

t

))
.
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3. X(t) = σW (t), m > 0.

τm = min {t : X(t) ≥ m}

We have

P [τm ≤ t] = 2

(
1−N

(
m

σ
√
t

))
.

4. X(t) = α+σW (t) where α is a constant, we note that X(t) ≥ m is equivalent
to W (t) ≥ m−α

σ
so

P [τm ≤ t] = 2

(
1−N

(
|m− α|
σ
√
t

))
.

5. X(t) = αt + σW (t) with constant α > 0 and σ. This turns out to be a
substantial problem that involves a change of measure:

W̃ (t) = W (t) +
αt

σ

The calculation follows the change of measure formula

P [τm ≤ t] = E
[
I{τm≤t}

]
= Ẽ

[
1

Z
I{τm≤t}

]

5.3 First-to-default (first-to-exit) models

In many CDS/CDO modeling, the first-to-default, or second-to-default issues would
arise. Suppose τ1, τ2, . . . , τm are default times of companies 1, 2, . . . ,m, each with
a survival probability

pi = P [τi > t]

How do we determine the distribution of the first-to-default, or first-to-exit time
τ = mini {τi}?
In the case all the company defaults are independent from each other,

P[τ > t] = P [τ1 > t, τ2 > t, . . . , τm > t]

= P[τ1 > t] · P[τ1 > t] · · ·P[τm > t]

= p1 · p2 · · · pm

This simplifies the problem quite a bit, and it can explain the popularity with
such intensity-based models. However, this convenience in practice effectively en-
courages many practitioners to assume this all-too-important, but not necessary
realistic, independence assumption. This can be devastating in many applica-
tions.

15



5.4 Copula Model

Now that we realized that the independence assumption is not a reasonable one,
and the correlation factor is often a major issue in many structured products
such as CDOs, it becomes clear to practitioners that the dominant issue is to
model correlations. The copula model makes an often oversimplified attempt to
address this issue. It is observed that the random variable τ can be transformed
to another random variable with uniform distribution: Suppose p(t) = P[τi > t]
is the survival probability, the inverse CDF method suggests that if we take a
uniformly distributed rv U ∼ Unif [0, 1], then τ = p−1(U) has 1 − p(t) as its
CDF. The idea of the copula model is that instead of working with rv’s τi with
individual distributions and a rather special correlation structure, it would be
far simpler to work with transformed rv’s Ui, for which the correlation structure
may be much easier to specify. The copula model thus changes the problem of
imposing a correlation structure for τ1, τ2, . . . , τm into a correlation structure for
U1, U2, . . . , Um. Namely, we call

C(u1, u2, . . . , um) = P(U1 ≤ u1, . . . , Um ≤ um),

a copula function for the transformed rv’s U1, U2, . . . , Um. A particular copula
model specifies the form of the copula function C. Consider two rv’s, for examples,

1. Independence: C(u, v) = uv;

2. Perfect correlation: C(u, v) = min(u, v);

3. Gaussian: C(u, v) = P (N(X) ≤ u,N(Y ) ≤ v) where X, Y are standard
joint normal random variables with correlation coefficient ρ, and N(x) is the
cumulative normal distribution function.

Gaussian copula model is one of the most popular copula models in which a pair
of joint Gaussian rv’s with correlation coefficient ρ is simulated (which is easy to
do), and they are turned to a pair of uniform distributed U, V , and then further
turned to a pair τ1, τ2. The problem, however, is that the correlation between X
and Y is not the same as the correlation between τ1 and τ2.

6 Exotic Options

Option payoffs can be divided into two categories according to its dependence on
the underlying: those on the underlying value at expiration T , or those on all
the underlying values over certain time period. The latter is often called path-
dependent options as the payoff can depend on the whole path, rather than the
ending value of the underlying as in the case of call/put options.
We use barrier options to illustrate some of the common features among exotic
options. A barrier option usually has a barrier specified in advance, whether the
barrier is crossed in the lifetime of the option will determine the payoff of the option.
A knock-out option differs from a straightforward option in that the option can
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be knocked out - that is, it can cease to exist, if some barrier S = B is crossed
before expiration. For options like that, we need the joint distribution for the
random variables S(t) and MS(t) = max {S(s), s ≤ t}. For example, the payoff
for a up-and-out call is

V (T ) = (S(T )−K)+ · I{MS(T )<B}

There is an elegant PDE approach to solve the valuation problem for the price
v(t, S) (assuming the standard Black-Scholes model for the underlying S):

vt + rSvS +
1

2
σ2S2vSS = rv.

The heart of the approach is in its delicate prescription of the boundary conditions
for the value function v(t, S) :

v(t, 0) = 0, 0 ≤ t ≤ T

v(t, B) = 0, 0 ≤ t ≤ T

v(T, S) = (S −K)+. 0 ≤ S ≤ B

It should be pointed out that this price v(t, S) is the price of the call when S has
not reached B before t.

7 Monte Carlo Methods

The power of Monte Carlo methods is that almost everything can be simulated,
but the efficiency is the drag: the convergence to the true expectation can be
slow. The problem can be illustrated by observing the central limit theorem: if
X1, X2, X3, . . . , XN are i.i.d’s with mean µ and variance σ2, then X1+X2+X3+···+XN−Nµ√

N

converges in distribution to N(0, σ2). We can rephrase this as

X1 +X2 +X3 + · · ·+XN

N

= µ+
X1 +X2 +X3 + · · ·+XN −Nµ

N

= µ+
1√
N

X1 +X2 +X3 + · · ·+XN −Nµ√
N

→ µ+N(0, σ2/N)

The error has a normal distribution of mean zero and variance σ2/N . In another
word, the standard deviation of the error is on the order of 1/

√
N . Obviously this

is not very satisfactory for reducing the error: if you double N , you are only going
to expect the error to be reduced by a factor of

√
2, on average.

Most efforts made in improving the efficiency of Monte Carlo methods are therefore
centered around reducing the variance, so-called the variance reduction techniques.
The simplest one is called antithetic variate approach: suppose the distribution is
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symmetric (X and −X have the same probability being sampled), then for each
sample value X, we will also include −X in the simulations. This method leads to
unbiased approximation at a minimum cost.
One of the main challenges in valuing derivatives using Monte Carlo methods is
the American Option problem. The reason is obvious: for each point in a future
time, you will need to simulate all the branches from that point to determine if
you should exercise or not, and you will need to do this at every point in time.
This made Monte Carlo methods almost impractical, until the Least-Square Monte
Carlo approach came along (Longstaff-Schwartz, 2001). The approach is along the
same line as the algorithm in binomial models, where a comparison is made at
each node. Suppose at a time before expiration, the underlying has value X, the
immediate exercise f(X), and the value of continuation E(Y |X) where Y is the
value of the option if continued. The contribution of the LSM algorithm is in its
approximation of the function g(X) = E(Y |X) and the idea is the following. If
we can approximate g(X) by a quadratic function

g(X) = C0 + C1X + C2X
2,

then we can argue (later prove) that the coefficients should be chosen so∑
k

(
C0 + C1Xk + C2X

2
k − Yk

)2
= min

where Xk and Yk are the value of the underlying at early time t and the value
of the option if continued along the path k. The determination based on a least-
square problem gives rise to the term Least Square Monte Carlo (LSM). In actual
implementations, more sophisticated function forms are used but the principle is
the same. To build this tree-like structure, just like in a binomial tree, you start
from the end, and move one step at a time till the beginning. The striking feature
of the algorithm is that the same paths are generated and used at all different
stages, thus avoiding the need to branch paths at later times. For implementation
details, the numerical example in the original Longstaff/Schwartz paper is quite
illuminating.

8 Statistical Arbitrage

Statistical arbitrage strategies refer to a class of strategies that often rely on some
combined long-short positions, where you buy some stocks and sell some others to
take advantage of some statistical features of the return differences. The key is the
believe that certain features, such as mean-reversion, exist in the return difference,
rather than the return of a stock by itself. The real question is how to find such
pairs with a difference exhibiting such behaviors. Typically we will be looking at
the pairing of relevant stocks, ETF relative to the index, etc. To find proper pairs,
we will need to conduct substantial statistical studies on the differences/spreads
between two or more correlated stocks/indices.
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To give some idea, let us consider the following strategy based on a model for a
stock and the index that includes the stock. Here S denotes a particular stock
price, I is the relevant index, and we assume that the two are related via

dS(t)

S(t)
= β

dI(t)

I(t)
+ ε(t)

ε(t) = α dt+ dX(t)

dX = κ(m−X(t))dt+ σ dW (t)

The reading is that the instantaneous returns of the stock and the index are pro-
portional to each other, with some residual ε. The residual is supposed to have two
components: a drift and a random portion, which is driven by a mean-reversion
process. The idea is that when X is too high, it’s about to go down, namely,
the difference between the returns is getting smaller. Here is a quick example:
suppose we know that S daily returns double the index daily returns on average.
On a particular day, say the S return is 1.4% while the index return is 0.5%, we
see that ε = 0.4% so the X value is quite high, and we believe that it cannot be
sustained so we can start selling the stock and buy the index. When the X value
is reduced to certain level (say the S return is 1.6% and the index return is 0.8%),
we can then close these two positions and rake the profit.
How should we generate signals to buy or sell? Here is one example that introduces
this so-called s-score

s(t) =
X(t)−m

σ

and we notice that this score is centered around the mean reversion level m and
scaled properly by the volatility of the residual (not the stock itself). A typical
strategy runs like the following:

• open long position (buy one share of S, sell βS/I shares of the index), if
s < −a;

• open short position (sell one share of S, buy βS/I shares of the index), if
s > a;

• close long position (sell one share of S, buy βS/I shares of the index), if
s > −b;

• close short position (buy one share of S, sell βS/I shares of the index), if
s < b;

a and b (a > b > 0) are parameters that should be determined from a data analysis.
For real applications, if we believe the process above is a reasonable description
of the relation between the returns, how do we estimate the model parameters
α, κ,m, and β? This remains the real test for a quant analyst.
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