
Solutions to Homework Assignment 3

1. We should just recognize that W (t+ ∆t)−W (t) is a normal random variable with
mean 0 and variance ∆t, and the definition of the kurtosis.

2. (a) It is straightforward to see
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The last part is based on the law of large numbers. After adding up these three
parts, we have the limit σ2T .
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which can be easily implemented in any estimate. To answer the question when
it is justified to leave out this correction term, we note
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where Z is a standard normal random variable and α = r − σ2/2. The mean
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We claim that as n becomes very large, both the mean and the variance of this
correction term approach zero, therefore it is justified to drop that correction
term when n is very large, or ∆t approaches zero.

(d) If r and σ are both time dependent, we need to adjust the model to
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The sum in question becomes
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The first term will go to ∫ T

0

σ2(t)dt

and the other two will also approach zero, as long as r(t) and σ(t) satisfy some
boundedness conditions.

3. Let f(t, x) = log x,
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