
Solutions for Assignment No. 8

Problem 4.2
We consider one step at a time. At time zero, the agent has a loan in the amount
$1.36 and owns a put. If he doesn’t hedge, in the case the first toss is a head, he
would not have enough amount in his asset (the put) to pay off the loan (which
grows to $1.7); on the other hand, he would have excess amount in his put to pay
off the loan if the coin toss is a tail. What he should do is to buy some stock
to offset the loss/gain in the put. Exactly how many shares he should buy is
determined by the hedge ratio

∆0 =
0.4− 3

8− 2
= −0.4333.

Note ∆0 is the number of shares you need to buy to replicate the put. Therefore if
the agent wants to hedge the put, he should buy 0.4333 shares of the stock, which
costs him $1.7333 and the amount needs to be financed (meaning more loan). The
total loan is now $1.36 + $1.7333 = $3.0933. Now suppose the first toss is a head,
the agent owns a put (valued at $0.40) and 0.4333 shares of the stock (valued at
0.4333 × $8 ≈ $3.4667) so his total asset is approximately $3.8667, which covers
the load with interest 1.25× $3.0933 exactly.
If the first toss is a tail, the agent should exercise the put and take $3 from the
payoff, and his stock value is 0.4333× $2 ≈ $0.8667. With these funds he can also
cover the loan with interest $3.8667. At this point, the game is over as the put
has been exercised and the stock position should also be closed out to pay out the
remaining loan.
In the case the first toss is head and the agent wants to continue on to time two,
if the first toss is head, the new hedge ratio is

∆1(H) =
0− 1

16− 4
= − 1

12
,

so the agent should sell 0.4333− 0.0833 = 0.35 shares and use the proceed to pay
off part of the loan. By the time two, regardless of the outcome of the second toss,
he should have enough (put + stock) to cover the remaining loan.

Problem 4.5
There are a total of 26 stopping times and each of them can be listed in the form

[τ(HH), τ(HT ), τ(TH), τ(TT )].

• Constant times:

[0, 0, 0, 0], [1, 1, 1, 1], [2, 2, 2, 2], [∞,∞,∞,∞];

• Stopping at 1 at least for some paths:

[1, 1, 2, 2], [1, 1,∞,∞], [1, 1, 2,∞], [1, 1,∞, 2],

[2, 2, 1, 1], [∞,∞, 1, 1], [∞, 2, 1, 1], [2,∞, 1, 1];
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• Stopping at 2 at the earliest:

[2, 2, 2,∞], [2, 2,∞, 2], [2,∞, 2, 2], [∞, 2, 2, 2],

[2, 2,∞,∞], [2,∞, 2,∞, ], [∞, 2,∞, 2], [∞,∞, 2, 2], [2,∞,∞, 2], [∞, 2, 2,∞],

[∞,∞,∞, 2], [∞,∞, 2,∞, ], [∞, 2,∞,∞], [2,∞,∞,∞].

In order to maximize the expectation in equation (4.4.5), we need to eliminate
those stopping times that can lead to exercise when the option is out of the money
(corresponding to irrational decisions that would work against holder’s interest).
Obviously, the holder should never exercise in the following situations: the first
toss is head (corresponding to τ(HH) = τ(HT ) = 1), the first and the second
tosses are both head (τ(HH) = 2). Going through the above list and eliminate
those with τ(HH) = τ(HT ) = 1, or τ(HH) = 2, we are left with

• Constants:
[0, 0, 0, 0], [∞,∞,∞,∞];

• Stopping at 1 at least for some paths:

[∞,∞, 1, 1], [∞, 2, 1, 1];

• Stopping at 2 for the earliest:

[∞, 2, 2, 2], [∞, 2,∞, 2], [∞,∞, 2, 2], [∞, 2, 2,∞], [∞,∞,∞, 2],

[∞,∞, 2,∞, ], [∞, 2,∞,∞].

These are the possible candidates for our optimization problem. Computing the
expectations for these 11 cases is straightforward. Notice the simplification when
τ =∞ for some path, which means that there is no contribution (zero cash flow)
to the expectation from that path.

Problem 4.6

(i) When we take an expected value that involves a stopping time, a common
trick is to construct a stopped process, since Sτ is actually not a process. We
first define the discounted stock price process

S̃n =
Sn

(1 + r)n
,

which is a martingale under the risk-neutral measure. Then the stopped
process S̃n∧τ is also a martingale for any stopping time τ . In particular, for
those τ ∈ S0 and τ ≤ N , we have

S0 =
S0∧τ

(1 + r)0∧τ = S̃0∧τ = Ẽ[S̃N∧τ ] = Ẽ
[

SN∧τ
(1 + r)N∧τ

]
= Ẽ

[
Sτ

(1 + r)τ

]
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With the above observation we can establish part (i) by noticing

Ẽ
[

Gτ

(1 + r)τ

]
= Ẽ

[
K − Sτ
(1 + r)τ

]
= Ẽ

[
K

(1 + r)τ

]
− Ẽ

[
Sτ

(1 + r)τ

]
= KẼ

[
1

(1 + r)τ

]
− S0.

The first term on the right hand side depends on what stopping time we
use. If we take the maximum over all τ ∈ S′ and τ ≤ N , we find that the
maximum is attained by the stopping time τ = 0 since r ≥ 0. So we have

V0 = K − S0,

which implies that the derivative is exercised at time zero.

There is another approach (more practical) to solve this problem by following
the algorithm that is modified to accommodate this particular condition that
the derivative must be exercised by N. If the derivative is held till N,

VN = GN = K − SN .

By moving backward in one time, the value of this security at N − 1 is

VN−1(SN−1) = max{GN−1,
1

1 + r
(p̃VN(uSN−1) + q̃VN(dSN−1))}

= max{K − SN−1,
K

1 + r
− SN−1}

= K − SN−1

Here we used the fact for the risk-neutral probabilities:

p̃Sn+1(H) + q̃Sn+1(T ) = (1 + r)Sn.

In general, we can show

Vn = K − Sn >
1

1 + r
Ẽn[Vn+1],

for n = 0, 1, . . . , N − 1. This shows that the holder should immediately
exercise at n if it has not been exercised earlier. Using induction, we conclude
that the derivative should be exercised at n = 0, resulting

V0 = K − S0.

(ii) Let’s compare the following three portfolios:

• A: the above security, and the European call;

• B: the above security, and the American call;

• C: the American put.
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We note that portfolio B would have been equivalent to C if these two securi-
ties in portfolio B had been required to be exercised at the same time, because
the intrinsic values would be K − Sn if Sn < K, and zero if Sn ≥ K. But
the actual portfolio B has the flexibility that each security can be exercised
independently at any time, thus should be more valuable than C:

Value(B) ≥ Value(C).

On the other hand, since the American call is the same as the European call
(no dividend is mentioned in this problem),

Value(C) ≤ Value(B) = Value(A),

or
V AP

0 ≤ K − S0 + V EC
0 .

(iii) The put-call parity is

K

(1 + r)N
− S0 + V EC

0 = V EP
0 .

Since V EP
0 ≤ V AP

0 , we have the desired lower bound for V AP
0 .
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