
Lecture Notes for Chapter 6

This is the chapter that brings together the mathematical tools (Brownian motion,
Itô calculus) and the financial justifications (no-arbitrage pricing) to produce the
derivative pricing methodology that dominated derivative trading in the last 40
years. We have seen that the no-arbitrage condition is the ultimate check on a
pricing model and we have seen how this condition is verified on a binomial tree.
Extending this to a model that is based on a stochastic process that can be made
into a martingale under certain probability measure, a formal connection is made
with so-called risk-neutral pricing, and the probability measure involved leads to a
world that is called risk-neutral world. We will examine three aspects involved in
this theory: no-arbitrage condition, martingale, and risk-neutral world, and show
how these concepts lead to the pricing methodology as we know today.

1 Prototype model: a one-step binomial tree

First we take another look at the one-step binomial model and inspect the impli-
cations of no-arbitrage condition imposed on this model, and the emergence of the
so-called risk-neutral probability measure.
To focus on the main issue, let us assume that the risk-free interest rate r = 0.
We have this simplest model for a stock price over one period of time: it starts
with a price S0, and can move to one of two states after this time period: S+ or
S− (assuming S+ > S−). In order that there is no-arbitrage opportunity for any
investor, we must have S− < S0 < S+. Imagine if S0 < S− < S+, then an investor
can buy the stock and he/she is guaranteed to gain a profit since in either scenario
the stock price will be up. On the other hand, if S− < S+ < S0, then an investor
can short the stock and he/she will also be locked in to a net profit as the stock
price will drop in either scenario. These are arbitrage opportunities and the only
way to deny these opportunities is to make sure that S0 is sandwiched between S−
and S+.
What is the implication of this arbitrage-free (or no-arbitrage) condition S− <
S0 < S+? There exists a value p : 0 < p < 1 such that

S0 = pS+ + (1− p)S− (1)

This seemingly innocent representation is actually quite profound: it guarantees
the existence of of probability measure P̃ under which

S0 = Ẽ[S1] (2)

where the random variable S1 denotes the price after the time period, and takes one
of the values S− and S+. The probability measure equipped with this expectation is
that the up move S+ occurs with a probability p, and S− occurs with a probability
1 − p. Remember that we did not say anything about actual probabilities of the
up and down moves when we set up the model. These values p and 1 − p are
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determined from the possible stock prices S− and S+. The expectation formula
suggests that we can imagine a world where the expectation of the future stock
price is actually the current stock price. In that world, no investor would ask
for any compensation for the risk taken, and this is why we call this probability
measure the risk-neutral measure.
Thus we find an equivalence between the arbitrage-free condition and the existence
of the risk-neutral probability measure. One more consequence of this argument is
that we also have a process for S where S is expected to have fluctuations averaged
to be zero, or that the drift is zero, which is what behind the concept of martingale
in stochastic processes.
How is this model related to our goal to price stock derivatives? We will price the
derivative based on the arbitrage-free principle again: if we can form a portfolio
that consists of a share of the derivative and some shares of the underlying stock,
and make the portfolio riskless, then the portfolio value should be easily determined
as it has no fluctuation, which leads to

P0 = C0 + ∆ · S0 = C1 + ∆ · S1 = Ẽ [C1 + ∆ · S1] = Ẽ [C1] + ∆ · Ẽ [S1]

The previous expectation for S1 implies that

C0 = Ẽ[C1] (3)

and this is the pricing formula for the derivative and we see it is specifically derived
for the risk-neutral measure.

2 Stochastic preliminaries

In order to introduce the more general model extended from the above ideas, we
need some stochastic process preliminaries.

2.1 Probability space

A probability space refers to a triple (Ω,F ,P), which specifies the sample space Ω,
a σ-algebra F , and a probability measure P:

1. Ω is called the sample space, and it contains all the possible outcomes;

2. F is a σ-algebra that contains all the events, namely all subsets of Ω. The
collection of events (subsets) is more general than a collection of outcomes,
as it includes all possible combinations of the outcomes;

3. P is probability measure that returns a value between 0 and 1 for each event
in F . In particular, it returns 0 for the empty set, and 1 for Ω, and P(A∪B) =
P(A) + P(B) for nonintersecting events A and B.
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The three objects are integral parts of a system, in particular the concept of F
should be appreciated, as it specifies the kind of events for which P is supposed to
be applied.
As an example, look at a system where n states are possible, each with a probability
of occurring 0 < pi < 1, i = 1, . . . , n, and

∑n
i=1 pi = 1. F is the set that contains

all possible combinations of states, such as the event that either state 1 or state
2 occurs, which has probability p1 + p2. This would be a legitimate probability
space. With this probability space, we can answer questions like

P (one of the states 1 ≤ j ≤ k occurs) = p1 + . . .+ pk

E[V ] = p1v1 + p2v2 + . . .+ pnvn

2.2 Random variable

A random variable X can be introduced only after a specification of the probability
space. The lack of rigorous definition can lead to confusion if the probability space
is not carefully constructed. The connection between a random variable and the
probability space is that we want to refer the event that X is in a Borel subset of
R to an event in F as part of the probability space, so we can assign a probability
to the event.
The most important information about a random variable X is its distribution
function, either in cumulative form

F (x) = P{X ≤ x},

or in mass function (discrete case) p(x) = P{X = x}, or density function (contin-
uous case) f(x) = F ′(x), respectively.

2.3 Filtration

This concept is crucial for a proper description of a stochastic process, and it
addresses particularly the issue of flow of information in time. As we know, a
process is an ordered set of random variables, or a collection of random variables
indexed by time. As time passes, we can imagine that the collection expands and
we can describe events in more and more details. The relation to our discussions
of trading strategies is that we would like to base our trading decisions on the
information received so far, or partial information of the outcome. A mathematical
description of the partial information is therefore critical to a rigorous setup for
our models.
Here is an example involving coin tosses modeled as a discrete time process {ω1, ω2, . . .},
where each ωk is either a head (H) or a tail (T). Suppose we observe up to T = 3
and the sample space will contain all the possible outcomes, such as HHH (three
consecutive heads), THT (first and third heads, second tail), and so on. Suppose
we observe only the first toss, then the event

{ω1 = H} = {HHH,HHT,HTH,HTT} = AH
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refers to the a collection of outcomes which we would not be able to distinguish
at time 1. In another word, at time 1 we cannot tell the difference between HHH
and HHT. The details are only resolved as we move step by step into the future.
We can similarly define another collection AT = {ω1 = T}. At time 1, all we can
observe are contained in a set

F1 = {∅,Ω, AH , AT}

which is a σ-algebra. Move along further in time, at time 2, we can observe
outcomes in more detail, namely we can tell the difference between AHH (the first
two tosses being heads), and AHT (the first head, second tail). Listing all the
combinations involving unions, intersections, and complementary sets, we have
another σ-algebra F2, which contains F1.
Extending this argument, we have a filtration Fn, which satisfies

F0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ F

Roughly speaking, a filtration is a procedure to resolve the details of all the events
according to time, and it involves an increasing collection of events indexed by the
time variable . In continuous time, a filtration is denoted by {Ft, t ≥ 0}
Here is a simple example: the value Xt is going to be revealed at time t, we will
know for sure if the event {Xt > α} (a Borel set) occurred or not by time t. In
this case we say

{Xt > α} ∈ Ft,

but the same event is not in any of Fs for s < t.
We place so much emphasis on the information at time t because we want to
construct trading strategies that can be easily followed. This means that we need
a precise definition of what information that is available at time t and how we give
orders based on this information.

2.4 Conditional expectation

Having introduced the concept of filtration, we are ready to discuss the concept
of conditional expectation. The intuitive idea of conditional expectation is not
difficult to acquire: given what happened up to certain time t, we want to find
the best informed ”prediction”. That approach was naive: to properly introduce
conditional expectation, we need a filtration. If we think of expectation as some
sort of averaging, then conditional expectation refers to averaging over certain
subset, a sub-σ-algebra. Of course this “average” depends on which particular
sub-σ-algebra we specified, therefore it is a “function” of the sub-σ-algebra. In the
language of probability theory, a conditional expectation is a random variable, as
we don’t know which event from the sub-σ-algebra is going to be observed.
There are two special situations that deserve to be mentioned: one is that the
information contained in this subset does not provide any help in determining the
value of X, we say that X is independent of this particular sub-σ-algebra, the
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other is that the information in this subset determines completely the value of X
(we say that X is measurable with respect to this sub-σ-algebra). In between these
two situations we have the more interesting case where a conditional expectation
gives some estimate of X, but not completely.
The standard notation for conditional expectation is

En[X] = E [X|Fn] (4)

for the discrete time case, and

Et[X] = E [X|Ft] (5)

for the continuous time case.

2.5 Stopping time

A stopping time is a random variable and we often use τ to denote. The intuitive
meaning is that a random variable is a stopping time if you can definitely say yes
or no to the following question at time t: has this time τ arrived? In terms of the
filtration, we have the definition for a stopping time: τ is a stopping time if

{ω : τ ≤ t} ∈ Ft

Examples are easy to construct: the first time the stock price reaches 100 is a
stopping time, but the last time the stock price reaches 100 is not a stopping time,
as we will never know if it is the last time that the stock hits that level.

2.6 Markov process

A Markov process is a special situation where

E [X|Ft] = E [X|Xt = x] = f(x)

which implies that the conditional expectation does not require the information of
the path from 0 to t. Instead, the information at a single point t is sufficient to
determine the conditional expectation.

2.7 Martingale

A martingale is a special Markov process where

E [Xt|Fs] = E [Xt|Xs = x] = Xs, for t > s (6)

The interpretation is that if we pause at any time s and try to predict a future
value Xt(t > s), the best prediction is the current value Xs. After some pondering,
we realize that this process has no tendency (bias) to either go up or go down. If
we picture a gambling game, at any time, no matter how much you have won or
lost so far, the game always starts afresh and the chances to win or lose are equal.

5



To give an example, we consider

Xk = Z1 + Z2 + · · ·+ Zk,

where the i.i.d.’s

Zj =

{
1
−1

with equal probabilities 0.5 and 0.5. We can calculate

E[Xk] = 0

but also
E[Xk|Fj] = Xj

as this expectation is taken assuming Fj is specified, implying Z1, . . . , Zj already
observed, therefore no expectation taken with respect to these variables.

2.8 Equivalence of measures and change of measure

Two measures on the same sample space, with the same event spaces, are said
to be equivalent if for all events E, probabilities under these two measures are
either both zero, or both positive. As long as the probabilities are not zero, the
magnitudes do not matter. Intuitively, when we move between two equivalent
measures, we should agree on the same possible events, we are free to redistribute
probabilities, as long as we agree on what’s possible (positive probabilities), and
what’s impossible (zero probability).
For two equivalent measures P and Q, we can express the expectation of some
random variable under P in terms of another expectation of the same random
variable, modified by a random factor called the Radon-Nikodým derivative, under
the other measure Q. This change of measure is fundamental in the Black-Scholes
model that turns a Brownian motion with a drift to the standard Brownian motion
(without drift).

3 Risk-Neutral Pricing

The objective for this chapter is to establish a pricing formula for any derivatives
with a known payoff function. The key to success is whether we can find such
a probability measure for the market model so the price is expressed as the con-
ditional expectation under this so-called risk-neutral probability measure. The
ultimate justification for a price is whether it will allow arbitrage opportunities
on the market. We have several things at hand: no-arbitrage condition that puts
a confidence tag on the price, the existence of a risk-neutral probability measure,
and the martingale representation that guarantees a replicating strategy. One
mathematical theorem that makes the connection possible is Girsanov’s theorem,
and unlike some theorems where the multi-dimensional case simply extends, Gir-
sanov’s theorem for multi-dimension reveals something not easily appreciated in
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one-dimension. The intricacy and interplay of these objects deserve to be exam-
ined from several angles. First we want to move to a world where everyone is
risk-neutral, so the expected return on every security is just the risk-free interest
rate. The feature in this world is that the discounted portfolio value should be a
martingale under this probability measure. Girsanov’s theorem then tells us what’s
needed to be able to move to that world. These conditions become the conditions
for the existence of the risk-neutral probability measure. The magic of this shift in
Brownian motion is that any portfolio characterized through an adapted process
∆(t) that involves self-financing, after proper discount, is a martingale under the
risk-neutral probability measure. Once martingale, we can express the value at an
earlier time as the conditional expectation of the value at a later time. Finally,
what connects the portfolio with the derivative is the martingale representation,
which says any two martingales can be represented by each other. The discounted
conditional expectation of the payoff function is one, and the discounted value
process for a portfolio is another one, and we can relate them using the martin-
gale representation theorem. The existence of the conditional expectation process
guarantees the existence of the portfolio, which eventually matches the payoff func-
tion of the derivative. With this full circle of arguments, we establish the pricing
methodology for any derivatives.
Finally, two fundamental theorems of asset pricing are in place:

1. Existence of a risk-neutral probability measure for the market implies no-
arbitrage opportunities;

2. For a market model that has risk-neutral probability measure, the model is
complete if and only if the risk-neutral probability measure is unique.

The first one is just what we discussed at the beginning of this paragraph. The
second introduces the concept of complete market which in this incarnation just
says that every derivative security can be hedged using the underlying and other
derivatives available on the market. The description of complete market makes us
more aware of the limitation of the Black-Scholes model, and also points to more
realistic models that describe incomplete markets.

3.1 No-arbitrage and risk-neutral measure in multi steps

The extension of the one-step model in section 1 to multi steps is easy to implement,
but not so trivial to justify the connection between no-arbitrage and the existence
of a risk-neutral measure. Instead of just requiring

E[P (t)] = P (0)

for a security with price Pt, we will need

Es[P (t)] = P (s)
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for any t > s. This suggests the use of martingale in the model. The example on
page 129 of the text illustrates this point quite well, where the model has

E[S(t)] = S(0), for t = 1, 2

but
E1[S(2)] 6= S(1).

The failure of the last condition leads to an arbitrage opportunity. The purpose
of this example is to show that the martingale condition is essential to rule out
arbitrage opportunities in the model.

3.2 Implying of risk-neutral probability measure from mar-
ket

The risk-neutral idea sounds unnatural and we wonder if there is such a thing that
can be connected with the market. If we assume the validity of the pricing formula
for a derivative

V (S0, 0) = E[F (ST )] =

∫
F (x)p(x)dx,

with a probability density function p(x) for the random variable ST , we will attempt
to recover p(x) if prices V (S0, 0) can all be observed. Suppose that we have a
collection of call options with the same expiration, but different strike prices K. For
convenience, we assume that the function CK(S0, 0) is available from the market
for all values of K > 0. Assuming K1 < K2, we consider the portfolio

• long a call with strike K1 − ε;

• short a call with strike K1;

• short a call with strike K2;

• long a call with strike K2 + ε.

The value of the portfolio, assuming K2 −K1 small, is

CK1−ε − CK1 − CK2 + CK2+ε

≈− ∂CK
∂K |K1

· ε+
∂CK
∂K |K2

· ε

≈(K2 −K1)
∂2CK
∂K2

· ε

On the other hand, the payoff of the portfolio will converge to

F (S) =

{
1, K1 < S < K2

0, otherwise

8



so

CK1−ε − CK1 − CK2 + CK2+ε

≈ε
∫ K2

K1

p(x)dx

≈ε(K2 −K1)p(ξ)

We therefore conclude

p(ξ) ≈ ∂2CK
∂K2

for K1 < ξ < K2. Finally we let K1 → K2 so we have

p(S) =
∂2CK
∂K2

(S) (7)

This shows that the risk-neutral density for the stock price can be inferred from
the option price, given that the option price is a smooth function of its strike K.

3.3 Accommodating interest rate

The interest effect (time value of money) in the case of deterministic rate can be
summarized in the discount factor

Z(t, T ) = price at t of a zero-coupon bound maturing at T.

The option price with interest rate taken into account is

C(0) = Z(0, T )

∫
p(S)F (S) dS (8)

or
C(0)

Z(0, T )
= E

[
C(T )

Z(T, T )

]
(9)

since Z(T, T ) = 1.
This suggests that we can work with the notion of discounted asset price X̃(t) =
Z−1(t, T )X(t) in the following martingale pricing.

3.4 Discrete and continuous time martingale pricing

As we emphasized, the price for a derivative security that we are looking for is one
such that it causes no arbitrage. In the binomial model, which is our prototype
for discrete time models, the fact that there is no arbitrage implies that there
will be some outcomes outperforming bank deposits (at risk free rates), and some
outcomes underperforming. With discount factor properly factored in, we will
have the current security price is between the good (outperform) and the bad
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(underperform) future prices. Therefore, it is possible to choose a probability
measure such that

S0

B0

= Ẽ
[
S1

B1

]
(10)

Notice that the expectation is taken with respect to the risk-neutral measure,
whose existence is guaranteed by the no-arbitrage condition. In general we can say
(from time n to time n+ 1)

Sn
Bn

= Ẽn

[
Sn+1

Bn+1

]
(11)

Using the repeated conditioning property En[X] = En [En+1[X]], we can generalize
the above to

Sn
Bn

= Ẽn

[
Sm
Bm

]
, m > n (12)

How does this help us to price derivatives such as an option? We need the no-
arbitrage idea again: consider a portfolio with one share of the call, and ∆n shares
of the stock. In the one-step model, we know that by choosing

∆n =
Cn+1(H)− Cn+1(T )

Sn+1(H)− Sn+1(T )
(13)

we will have the option position hedged. Here H and T denote the up and move
cases respectively. In doing so we can have the risk eliminated, meaning Pn+1 will
be the same value in both H and T outcomes. No-arbitrage argument requires

Pn
Bn

= Ẽn

[
Pn+1

Bn+1

]
(14)

for any probability measure, as Pn+1/Bn+1 is now the same in both outcomes. In
particular, the above formula is valid for the risk-neutral measure,

Cn
Bn

+ ∆n
Sn
Bn

= Ẽn

[
Cn+1

Bn+1

]
+ ∆nẼn

[
Sn+1

Bn+1

]
Using Eq.(11), we therefore have

Cn
Bn

= Ẽn

[
Cn+1

Bn+1

]
(15)

and
Cn
Bn

= Ẽn

[
Cm
Bm

]
, m > n (16)

In the continuous time model, it will be more subtle. As we assumed in the discrete
model that ∆n is determined at time n and it remains the same until time n+ 1.
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The situation is quite different in the continuous case. First we introduce our
continuous time model for the stock price and bond price:

dSt = µSt dt+ σSt dWt (17)

dBt = rBt dt (18)

Using Itô’s formula, we can compute for the discounted stock price

d

[
St
Bt

]
=

1

Bt

dSt + St

(
− 1

Bt

)
dBt

= µ
St
Bt

dt+ σ
St
Bt

dWt − r
St
Bt

dt

= (µ− r)St
Bt

dt+ σ
St
Bt

dWt (19)

If µ = r, then we will have a martingale for St/Bt since

d

[
St
Bt

]
= σ

St
Bt

dWt (20)

as σ St

Bt
is determined at time t (so-called adapted), and

E

[
d

[
St
Bt

]]
= 0, (21)

so we can write literally
St
Bt

= Et

[
ST
BT

]
This is the continuous time analogy of Eq.(11). However, in reality we do not
necessarily have µ = r where µ is the expected growth rate of the stock in the real
world. This crucial step would require the following section to explain.

3.5 Obtaining the risk-neutral measure: Girsanov’s theo-
rem

The previous section suggests that our Black-Scholes model shows that the dis-
counted stock price would have no drift if the expected growth rate µ = r, the
risk free interest rate. If indeed we have µ = r in a world, what would be the
implications? Here are some of the features:

• Investors seek no compensation for the risk taken, as long as the expected
growth matches the risk free interest rate;

• Discounted stock price would be a martingale;

• Arbitrage opportunities would not exist.

11



They all sound very nice but we can see that they are impractical in our world.
Can such probability exist in another world? Girsanov’s theorem answers this
question.
Theorem (Girsanov) Let Wt be a Brownian motion with sample space Ω and
probability measure P. Then for a reasonable ν, there exists an equivalent measure
Q on the same Ω such that

W̃t = Wt − νt

is a Brownian motion under Q. The change of measure formula is also available
explicitly but we do not need it here.
The idea behind the theorem is that we can manipulate the probabilities so that the
process with a tendency to move upward (or downward) can be made to “correct”
itself so the bias is removed. Intuitively, suppose the process has a negative drift,
then we can downplay those downward path to an extend, and overplay those
upward so that the the negative drift is corrected. The downplay/overplay effects
are achieved by modifying the probability measure.
Going back to Eq.(19), we can introduce W̃t with ν = −(µ− r)/σ such that

d

[
St
Bt

]
= σ

St
Bt

dW̃t (22)

Then the discounted stock price will be a martingale under the new probability
measure determined by W̃t. We denote this probability measure by a tilde or star
and called it the risk-neutral probability measure. Now we can use it to price any
derivative with the price

V0 = B0Ẽ
[
VT
BT

]
(23)

In particular, when the payoff VT = F (ST ) = (ST−K)+, we have the Black-Scholes
formula reproduced:

C0 = e−rT Ẽ
[
(ST −K)+

]
= e−rT Ẽ

[(
S0 exp

(
(r − 1

2
σ2)T + σ

√
TZ

)
−K

)+
]

= S0N(d1)−Ke−rTN(d2)

3.6 Hedging and self-financing strategies

One important step we have not yet justified: in constructing a portfolio to be risk
less, we assume that some ∆ can be obtained to achieve the perfect hedge. This is
easy to do in the binomial model, but not so obvious in the Black-Scholes model.
The purpose is to justify the pricing formula

Vt
Bt

= Ẽt

[
VT
BT

]
.
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One way to do this is to show that the left-hand-side is a martingale under the
risk-neutral measure. Using Itô’s formula

d

[
Vt
Bt

]
=

1

Bt

dVt −
Vt
B2
t

dBt

=
1

Bt

[(
∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV

)
dt+ σS

∂V

∂S
dW̃t

]
To make sure there is no drift in this expansion, we must have V (S, t) to satisfy
the Black-Scholes PDE

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
= rV (24)

Still, why should we have the discounted derivative price to be a martingale under
the risk-neutral measure?
The justification is based on the hedging of the derivative. Suppose the derivative
in question is a call (with strike K, expiration T ) having price Ct = C(St, t). We
start with the amount C(S0, 0) we received when we sold this call, and wish to do
something with the stock to have cover this call position. Namely, we want to use
this amount C(S0, 0) to replicate the payoff (ST − K)+ at time T . How should
we do it? More specifically, how many shares of the stock should we purchase to
begin with, and how should be adjust?
The answer comes from the martingale representation theorem:
Theorem (martingale representation) If Wt is a Brownian motion with filtration
Ft, suppose Mt is another martingale with the same filtration, then there exists
an adapted process φt such that

dMt = φt dWt

here φt is adapted, meaning that its value is revealed to us by time t. The secret
of hedging ratio is in this φt, which is guaranteed by the representation theorem.
Now assume that Mt = Ct/Bt is a martingale under the risk-neutral measure,
according to the representation theorem, we must have a φt such that dMt =
φt dW̃t. Again, using Itô’s formula

d

(
Ct
Bt

)
= σ

St
Bt

∂C

∂S
dW̃t =

∂C

∂S
d

(
St
Bt

)
This connects the change in Ct to the change in St, and the factor tells us how
many shares of the stock we should get so the price changes are cancelled out.
Now we can answer the question near the end of section 3.6: given C(S0, 0), how
should we replicate the call? We first write

C(S0, 0) =

(
C(S0, 0)− ∂C

∂S
· S0

)
+
∂C

∂S
· S0

= α0S0 + β0S0
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Let αt = C(St, t)− ∂C
∂S
·St, and βt = ∂C

∂S
(St, t), so we consider the portfolio consisting

of αt units of the bond, βt shares of the stock, with value

Pt = αtBt + βtSt.

By the time we get to T , if ST > K, ∂C
∂S

= 1, so PT = (ST −K − ST )BT + ST =
ST − K; and if ST ≤ K, ∂C

∂S
= 0, so PT = C(ST , T ) = 0. Combining these two,

we have the correct payoff (ST −K)+ for the portfolio. Our conclusion is that we
have successfully replicated the call by this portfolio.
How do we construct this portfolio? We should buy and sell according to the latest
α and β, but we also need to check if the change caused by changes in α and β
will cancel out. We can verify that

dCt = αt dBt + β dSt

So this portfolio is a so-called self-financing portfolio.
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