Lectures 2 and 3

Examples of call prices in relation to underlying

Examples of call prices in relation to underlying

Brownian Motion

• $X(t), t \ge 0$: a collection of rv's indexed by t;

• White noise: the increments

Introducing Brownian Motion

• Focusing on returns over any period of time

$$R_i = \frac{S_{i+1} - S_i}{S_i}$$

• Reasonable to assume R_i to have normal distribution

$$R_i \sim N(\mu \Delta t, \beta^2)$$
 or $R_i = \mu \Delta t + \epsilon_i$

•What can we say about ϵ_i ?

 $\epsilon_i \sim \beta N(0,1)$

Brownian Motion Definition

- $X(t), t \ge 0$ is said to be a Brownian motion with drift μ and variance σ^2 if
 - X(0) is a given constant
 - For all positive y and t, X(t+y) X(y) (the increment) is independent of the process up to time y and has a normal distribution with mean μt and variance $\sigma^2 t$.
- Implications:
 - move step by step, each step a normal rv independent of previous steps
 - each step with mean and variance proportional to t.

Important properties

• X(t) is continuous:

$$\lim_{h \to 0} \left(X(t+h) - X(t) \right) = 0$$

- Nowhere differentiable
- To see it as a limiting process of a random walk, we introduce

$$X_i = \begin{cases} 1, & \text{head} \\ -1, & \text{tail} \end{cases}$$

- with sum till n: $Y_n = X_1 + X_2 + \cdots + X_n$
- This is called a symmetric random walk if head and tail have the same probability 1/2

Convergence

- As Δ gets smaller and smaller,
- X(t) X(0) converges to a normal random variable
- mean = μt , variance = $\sigma^2 t$
- the collection of process values over time becomes a Brownian motion process with drift $\,\mu$ and variance parameter $\,\sigma^2$
- Theorem 3.2.1: Given X(t)=x, the conditional probability law of the collection of prices X(y), 0 ≤ y ≤ t, is the same for all values of μ.

Random Walk

- let Δ to be a small time increment
- head probability $p = \frac{1}{2} \left(1 + \frac{\mu}{\sigma} \sqrt{\Delta} \right)$ and tail probability 1 p
- Consider the process

 $X(n\Delta) = X(0) + \sigma\sqrt{\Delta} (X_1 + X_2 + \dots + X_n)$ • or for $n = t/\Delta$ $X(t) - X(0) = \sigma\sqrt{\Delta} \sum_{i=1}^{t/\Delta} X_i$

• We can compute

$$E[X(t) - X(0)] \qquad Var[X(t) - X(0)]$$

Geometric Brownian Motion

- Problem with Brownian motion modeling stock prices:
 - negative values possible
 - price difference over an interval has the same normal distribution no matter what the price at the beginning of the interval
- To fix these two problems, consider $S(t) = e^{X(t)}$ where X(t) is a Brownian motion with drift μ and variance parameter σ^2
- S(t) is said to be a geometric Brownian motion process

• increment in log:
$$\log\left(\frac{S(t+y)}{S(y)}\right) \approx R(y)$$

Useful results with geometric Brownian motion

• σ is called the volatility parameter

• If
$$S(0) = s$$
, we can write $S(t) = se^{X(t)}$

• If X is normal,

$$E[e^X] = \exp\left(E[X] + Var[X]/2\right)$$

$$E[S(t)] = se^{\mu t + \frac{1}{2}\sigma^2 t}$$

• In terms of random walk: $S(y + \Delta) = S(y)e^{X(y + \Delta) - X(y)}$, with move factors

$$u = e^{\sigma\Delta}, \ d = e^{-\sigma\Delta}$$

The Maximum Variable

- Let $X(v), v \ge 0$, be a Brownian motion
- Consider the maximum process $M(t) = \max_{0 \le v \le t} X(v)$
- What we know about this rv for a fixed t?
- Theorem 3.4.1 (conditional distribution):

$$P(M(t) \ge y | X(t) = x) = e^{-2y(y-x)/t\sigma^2}, \ y \ge 0$$

• Corollary 3.4.1 (unconditional distribution):

$$P(M(t) \ge y) = e^{-2y\mu/\sigma^2} \bar{\Phi}\left(\frac{\mu t + y}{\sigma\sqrt{t}}\right) + \bar{\Phi}\left(\frac{y - \mu t}{\sigma\sqrt{t}}\right)$$

The Cameron-Martin Theorem (Girsanov)

- Expectation under different measures
- Reflected in different drifts $\mu \neq 0, \ \mu = 0$
- Sometimes one expectation ($\mu = 0$) is much easier to obtain than the other
- Theorem 3.5.1: Let W be a rv whose value is determined by X (BM) up to t.

$$E_{\mu}[W] = e^{-\mu^2 t/2\sigma^2} E_0 \left[W e^{\mu X(t)/\sigma^2} \right]$$