
Homework Problem Notes: Chapters 3-5

3.1 We should introduce Y (t) = −X(t) and show that those requirements stated in the
definition of Brownian motion are all met.

3.3 Here we consider the approximation model where for t = n∆

X(t) = X(0) + σ
√

∆ (X1 + · · ·+Xn)

So X(1) is the sum of 10 i.i.d. variables. For part (c), we need the probability of
X1 +X2 +X3 +X4 +X5 > 0, and this corresponds to the event where more heads
are turned up than tails (5H0T, 4H1T, or 3H2T). This probability is

p5 +

(
5

4

)
p4(1− p) +

(
5

3

)
p3(1− p)2.

3.4 As S(t) = seX(t), we have

(a)

P (S(1) > S(0)) = P (X(1)−X(0) > 0)

= P

(
X(1)−X(0)− µ

σ
>
−µ
σ

)
= 1− Φ

(
−µ
σ

)
= 0.6915

(b)

P (S(2) > S(1) > S(0)) = P (X(2) > X(1) > X(0))

= P (X(2)−X(1) > 0, X(1)−X(0) > 0)

= P (X(2)−X(1) > 0) · P (X(1)−X(0) > 0)

= 0.69152

= 0.4781

(c)

P (S(3) < S(1) > S(0)) = P (X(3) < X(1) > X(0))

= P (X(3)−X(1) < 0, X(1)−X(0) > 0)

= P (X(3)−X(1) < 0) · P (X(1)−X(0) > 0)

= Φ

(
− 2µ√

2σ

)
·
(

1− Φ
(
−µ
σ

))
Here we used the Brownian motion property that increments over non-overlapping
time intervals are independent.
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3.7 Just use the formula for P (Ty ≤ t) on page 44 and pass the limit as t→∞. Make
sure that you do this for µ ≥ 0 and µ < 0 separately.

4.1 You need to find the approximate n such that

(1 + r)n = 3

The text suggests to use the approximation provided that r is small and n is not
too small. It is actually more convenient just to take the log for both sides:

n =
log 3

log(1 + r)

which does not require the approximation conditions.

4.28 The rate of return r is defined as the solution to the equation

X1

1 + r
+

X2

(1 + r)2
= 100

We can solve the quadratic equation in r and obtain

r∗ =
X1 +

√
X2

1 + 400X2

200
− 1

Note that the other root is ignored since it is negative. Now we need to find
P (r∗ > 0.1), that is the probability of

X1 +
√
X2

1 + 400X2 > 220

or
1.1X1 +X2 > 121

We note that Y = 1.1X1 + X2 is a normal random variable with mean 126 and
variance 1.21× 25 + 25 = 2.21× 25, so

P (Y > 121) = 1− Φ

(
121− 126

5
√

2.21

)
= 0.7494

5.4 The payoff from the call is max(S(t)−K, 0) and the payoff from the underlying is
S(t). By comparing the payoff

max(S(t)−K, 0) ≤ S(t)

for any positive S(t), K, so the cost of owning one call must be less than the cost
of owning one share of the underlying stock.
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5.5 We can start from the put-call parity and notice that P > 0 to arrive at

S − C < Ke−rt

5.7 As the payoff of a put is max(K − S(t), 0), the most it can be is K when S(t)
approaches zero. Since there is no reason for the strike to be set below the current
stock price, it is possible that the payoff from the put can be higher than the current
stock price. So it is not necessarily true that P ≤ S. On the other hand, as we just
see that the payoff from a put is always less than or equal to K, that means that it
is always true that P ≤ K.

5.12 The put-call parity for the standard call and put is irrelevant here. We notice that
the sum of payoffs from the digital call and the digital put with the same strike is
just the constant one. Owning a digital call and a digital put with the same strike
is equivalent to have $1 paid at the expiration. So

C1 + C2 = e−rt

is the put-call parity for digital options.

5.15 Suppose you bought the put with strike K1 and sold the put with strike K2, at the
expiration the payoff from this combination is

F (S(t)) =


K1 −K2 S(t) ≤ K2

K1 − S(t) K2 < S(t) ≤ K1

0 K1 < S(t)

It is noted that F (S(t)) ≤ K1 −K2 for any S(t) so the price of this combination,
which is P1 − P2, must be less than K1 −K2.

5.17 (a) Always true. With longer expiration time, there is more room for the stock to
vary and the call only benefits from the up moves so more fluctuation helps
the value.

(b) Not always true. It depends on whether the US interest rate is higher or lower
than the foreign currency interest rate.

(c) Always true. The reason is similar to part (a) as the put can benefit from more
fluctuation.

5.24 The proof is similar to the case of call price in the text.

5.26 Assume K1 > e−r(t2−t1)K2 and S(t1) > K1 so the question comes up if we should
exercise now. Suppose we exercise the call with a payoff S(t1) −K1, which can be
viewed as receiving S(t1) and paying K1 at time t1. Let us consider the following
alternative: we short one share of the stock, receiving S(t1) at t1, then by the time
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t2, we need to buy back one share of the stock to cover the short position. Since we
own the call option at that time, we can buy back the stock at the price

min(S(t2), K2) ≤ K2.

Comparing these two strategies, exercising at t1 entails receiving S(t1) and paying
K1 both at t1, while the other strategy allows you to receive S(t1) at t1 and paying
no more than K2 at t2, which is equivalent to K2e

−r(t2−t1) paid at t1. Then it is
obvious that we would prefer the second strategy.

5.27 We can just compare these two payoff functions for S(t) in three regions: (1) S(t) <
K; (2) K ≤ S(t) < K + A; and (3) S(t) ≥ K + A.
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