Math 5610/6860, Sample Test

- 1. Find the rate of convergence of the following sequences as $n \to \infty$ or $h \to 0$.
 - (a) $\lim_{n\to\infty} \left(1 \cos\frac{1}{n}\right) = 0$
 - (b) $\lim_{h \to 0} \frac{1-e^h}{h} = -1$
- 2. Consider the equation $f(x) = x \frac{1}{2}e^{-x} = 0$.
 - (a) We want to use the fixed-point iterations based on $g(x) = \frac{1}{2}e^{-x}$, suggest an interval for picking initial guess p_0 that will guarantee convergence and justify.
 - (b) Write down the iteration formulas for Newton's method and secant method.
- 3. Show that the sequence $p_n = 10^{-\alpha^n}$ for $\alpha > 1$ converges to 0 with order α .
- 4. Derive the system of equations for the cubic spline coefficients with three nodes $x_0 = 0, x_1 = 0.1$, and $x_2 = 0.2$, and corresponding function values. The cubic spline is free at the left end but clamped at the right end with f'(0.2) given.
- 5. Using the function values of f at x = 0, h, and 2h, derive a second-order finite difference approximation to f'(0).
- 6. Suppose we want to use numerical quadratures to approximate $\int_{-1}^{1} |x| dx$, and we consider the following choices: (a) composite trapezoidal with n = 2, (b) Simpson's rule. Which one would you suggest? Compute both quadratures and explain why you would prefer one to the other.