Math 5610/6860, Sample Test

1. Find the rate of convergence of the following sequences as $n \rightarrow \infty$ or $h \rightarrow 0$.
(a) $\lim _{n \rightarrow \infty}\left(1-\cos \frac{1}{n}\right)=0$
(b) $\lim _{h \rightarrow 0} \frac{1-e^{h}}{h}=-1$
2. Consider the equation $f(x)=x-\frac{1}{2} e^{-x}=0$.
(a) We want to use the fixed-point iterations based on $g(x)=\frac{1}{2} e^{-x}$, suggest an interval for picking initial guess p_{0} that will guarantee convergence and justify.
(b) Write down the iteration formulas for Newton's method and secant method.
3. Show that the sequence $p_{n}=10^{-\alpha^{n}}$ for $\alpha>1$ converges to 0 with order α.
4. Derive the system of equations for the cubic spline coefficients with three nodes $x_{0}=$ $0, x_{1}=0.1$, and $x_{2}=0.2$, and corresponding function values. The cubic spline is free at the left end but clamped at the right end with $f^{\prime}(0.2)$ given.
5. Using the function values of f at $x=0, h$, and $2 h$, derive a second-order finite difference approximation to $f^{\prime}(0)$.
6. Suppose we want to use numerical quadratures to approximate $\int_{-1}^{1}|x| d x$, and we consider the following choices: (a) composite trapezoidal with $n=2$, (b) Simpson's rule. Which one would you suggest? Compute both quadratures and explain why you would prefer one to the other.
