## Some Solution Notes for Assignment No. 3

Here we address several confusing points encountered in this assignment.

- Problem 2.4.8

Part (a). We need to show

$$
\frac{10^{-2^{n+1}}}{\left(10^{-2^{n}}\right)^{2}}=\frac{10^{-2^{n+1}}}{10^{-2 \cdot 2^{n}}}=\frac{10^{-2^{n+1}}}{10^{-2^{n+1}}}=1
$$

Part (b). Note that

$$
\frac{10^{-(n+1)^{k}}}{\left(10^{-n^{k}}\right)^{2}}=10^{2 n^{k}-(n+1)^{k}}
$$

and

$$
2 n^{k}-(n+1)^{k}=2 n^{k}-\sum_{i=0}^{k}\binom{k}{i} n^{i}=2 n^{k}-\left(n^{k}+k n^{k-1}+\cdots\right)=n^{k}-k n^{k-1}-\cdots
$$

The above goes to infinity as $n \rightarrow \infty$ so

$$
10^{2 n^{k}-(n+1)^{k}} \rightarrow \infty
$$

- Problem 2.5.14

Part (b).

$$
\frac{1 /(n+1)^{n+1}}{1 / n^{n}}=\frac{n^{n}}{(n+1)^{n+1}}=\left(\frac{n}{n+1}\right)^{n} \cdot \frac{1}{n+1}
$$

We are reminded the famous limit $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$, therefore the limit of the above as $n \rightarrow \infty$ is $e^{-1} \cdot 0=0$.
On the other hand, for $\alpha>1$,

$$
\frac{1 /(n+1)^{n+1}}{1 / n^{\alpha n}}=\frac{n^{\alpha n}}{(n+1)^{n+1}}=\left(\frac{n}{n+1}\right)^{n} \frac{n^{(\alpha-1) n}}{n+1} .
$$

The first factor approaches $e^{-1}$, while the second factor approaches infinity, therefore the product has infinity as its limit.

- Problem 3.1.2

For the linear interpolation, we only need two points and must make a decision as which two points should be used. If we want to interpolate to $x=1.4$, we should use the data points $x=1.25$ and $x=1.6$. The data point $x=1$ should be left alone.

