Math 5610/6860 Final Practice Problems

1. Let

$$f(x) = \frac{e^x - \cos x}{\sin x}$$

- (a) Use 3-digit rounding arithmetic to evaluate f(0.01).
- (b) An alternative to evaluate f(0.01) is to use Taylor series expansions of the three functions involved $(\cos(x), \sin(x), e^x)$ to replace various terms in f but retain only terms up to $O(x^2)$, then evaluate the resulting approximation using the same three-digit rounding arithmetic.
- (c) Show that even with Taylor series expansion approximations, the second approach results in substantial improvement over the first by comparing with the exact value.
- 2. We try to find a solution of equation $f(x) = \log(1+x) + 0.25 x = 0$ in [0.5, 1.5]. The obvious choice of iteration is

$$g(x) = \log(1+x) + 0.25.$$

- (a) Show that for any $x \in [0.5, 1.5]$, $g(x) \in [0.5, 1.5]$, therefore there is a fixed point in [0.5, 1.5].
- (b) Find a positive constant k < 1 such that $g'(x) \leq k$ for all $x \in [0.5, 1.5]$, then estimate the maximum number of iterations needed if we start with $p_0 = 1$ and require that the absolute error of the approximation is less than 10^{-6} .
- 3. Find a cubic spline S(x) for $x \in [0, 1]$ satisfying S(0) = 1, S(1) = 0, S''(0) = S'(1) = 0.
- 4. From the Taylor expansion

$$\frac{f(x+h) - f(x)}{h} = f'(x) + \frac{h}{2}f''(x) + \frac{h^2}{3!}f'''(x) + \dots$$

we have

$$f'(x) = N_0(h) - \frac{h}{2}f''(x) - \frac{h^2}{3!}f'''(x) - \dots$$

Use Richardson's extrapolation to derive the next approximation $N_1(h)$ for f'(x). What is the order of accuracy for N_1 ? Do you recognize this approximation for f'(x)?

5. Use Gaussian quadrature with n = 3 to approximate

$$\int_0^\pi x \cos x \, dx.$$

6. Consider the second-order ODE for y(t)

$$y'' + p(t)y + q(t)y = f(t)$$

where p(t), q(t) and f(t) are given, and the initial conditions y(0) = 0, $y'(0) = \alpha$. Cast the problem in the form of a system of first-order equations and suggest a secondorder method to solve it numerically. Explicitly write down the iteration formulas for $w_n \approx y(t_n)$, where $t_n = n\Delta t$, $n = 0, 1, \ldots, N$. 7. Find the linear least square approximation for the data points

8. Consider the nonlinear system

$$x^2 - 2y^2 = 0$$
$$y - \sin 3x = 1$$

Write down the iteration steps from Newton's method, assuming an initial guess (x_0, y_0) .