
Math 3150-3 Review Sheet - Spring, 2007

In this rather short course, we introduced some partial differential equations (PDEs)
modeled on certain natural phenomena (heat transfer, membrane vibration, etc.), and
developed several approaches that are based on Fourier series and Fourier transform.

1 Partial Differential Equations

There are mainly three types of equations discussed this semester: wave equation, heat
equation, and Laplace’s equation. You may wonder why the first-order convection equa-
tion (ut + aux = 0) did not make to that list. The reason is that it is covered in some
sense by the second-order wave equation which has been traditionally more famous.

One of the major differences between an ODE and a PDE, besides the extra variables,
is the presence of the boundary conditions. A change in boundary shape and/or the
boundary condition can lead to a completely different approach in solving the problem,
often makes an analytic solution impossible. For this reason, we usually talk about a PDE
problem, which specifies the initial and boundary conditions, as opposed to an equation.

The main approach we have developed in this course is the classic separation of
variables technique. This technique follows the simple strategy that attempts to reduce
a PDE problem to several ODE problems, for which we have learned many tools in Math
2250. The procedure to separate variables is quite straightforward and easy to follow.
However, the success relies on two essential features of the problem: that the equation
and boundary conditions are linear, and that the boundary conditions lead naturally to
certain eigenfunctions. The latter part is especially difficult in many applications in that
it is not clear that the eigenvalue problem can be easily solved.

The linearity of the equation and the boundary conditions in a PDE problem allows
us to break a problem into several and solve them separately, if we happen to be able to
do so. Typically we handle one non-homogeneous part at a time. For example, if we need
to solve a problem with a non-zero term on the right-hand-side of the equation, and a
non-zero boundary condition, we solve the problem with non-zero right-hand-side in the
equation, with zero boundary conditions first, and then solve another problem with zero
right-hand-side, but non-zero boundary conditions next. Then according to the principle
of superposition we can add these two solutions to obtain the solution that solves our
problem.

We have worked out several problems in this course, and we list those main solu-
tion features in the following tables. Note that they are all problems with certain zero
boundary conditions. For non-zero boundary conditions, you will need to solve another
problem (such as the steady state solution for the heat equation). On the other hand,
the eigenfunction expansion approach can help us solve the problem with non-zero right-
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hand-sides. The factors listed can be viewed as building blocks to build solutions that
solve your particular problems.

Table 1: One-dimensional time dependent problems

equation boundary conditions factor in x factor in t
wave equation u(0, t) = u(L, t) = 0 sin(nπx

L
) cos( cnπt

L
), sin( cnπt

L
)

heat equation u(0, t) = u(L, t) = 0 sin(nπx
L

) e−( cnπ
L

)2t

Table 2: Two-dimensional time dependent problems (λmn = cπ
√

m2

a2 + n2

b2
)

equation boundary conditions factor in space variables factor in t
wave equation u = 0 on rectangular boundaries sin(mπx

a
) sin(mπy

b
) cos λmnt, sin λmnt

heat equation u = 0 on rectangular boundaries sin(mπx
a

) sin(mπy
b

) e−λ2
mnt

wave equation u = 0 on r = a cos(cλnt), sin(cλnt) J0(λnr), λn = αn/a

Table 3: Two-dimensional Laplace’s equation

shape of region boundary conditions factor in x factor in y

rectangular u(0, y) = u(a, y) = u(x, b) = 0 sin(nπx
a

) sinh(nπ(b−y)
a

)
rectangular u(0, y) = u(a, y) = u(x, 0) = 0 sin(nπx

a
) sinh(nπy

a
)

rectangular u(a, y) = u(x, 0) = u(x, b) = 0 sinh(nπ(a−x)
b

) sin(nπy
b

)
rectangular u(0, y) = u(x, 0) = u(x, b) = 0 sinh(nπx

b
) sin(nπy

b
)

circular u(0, θ) is finite rn, n > 0 sin(nθ), cos(nθ)

wedge u(r, 0) = u(r, α) = 0 r
nπ
α sin(nπθ

α
)

You should be careful with the boundary conditions specified in the problem. A change
in the boundary conditions means that you will have to modify the basic solution factors
listed above.

Several features deserve special mention: for time dependent problems (wave equation
and heat equation), the behavior in t is quite different. In wave equations, if you fix at
a point and observe the change in t, you will find the sin or cos waves which move in a
periodic fashion and keep returning. On the other hand, the heat equation solutions show
a quite different behavior in t: the exponential decay in time. Eventually everything will
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decay to zero if zero boundary conditions are specified, or to whatever steady solution if
non-zero boundary conditions are given.

Finally we will use these building blocks to obtain the solution that solves the problem
and the last step is usually to choose the right combination to match the initial conditions,
or the non-zero part of the boundary conditions. For this step, we need the tools of Fourier
series.

2 Fourier Series

The idea of using a series to represent a function is to establish an identification of the
function through a sequence of numbers. This is similar to the idea of representing a
vector in space by an ordered set of coordinates. Each term in the series is like a vector
along a certain direction so the combination can point wherever you want, that is whatever
function you want to address. There are many technical questions such as whether you
can really represent all the functions you want to consider, and if the series converges.
This is why we need to verify those conditions stated in the theorem before we can start.
In the case of Fourier series, we try to represent all these piecewise smooth functions
(meaning finite amplitude jumps are allowed in the function under consideration) defined
over a finite interval. The Fourier series obtained, through determination of the Fourier
coefficients, is a periodic function which means that it is defined over (−∞,∞), while the
original function is probably just defined over a finite interval. This is fine since we only
care about that interval, and as long as these two functions agree in that interval we can
use the series to replace the original function. So different functions can be represented
by different collections of coefficients.

The rest of the work is the determination of the coefficients. We are given all the
formulas and the work is done by computing various integrals involving sin and cos. Quite
often we need to use the technique of integration by parts. One important property of
trigonometry functions is the orthogonality condition:∫ π

−π
cos mx cos nxdx = 0, if m 6= n,

∫ π

−π
cos mx sin nxdx = 0, for all m and n,∫ π

−π
sin mx sin nxdx = 0, if m 6= n.

This allows us to have these nice formulas to determine the coefficients, it also reduces
the determination problem to a trivial one if the function to be represented is already
a trigonometry function with the right frequency. To see this, consider the problem of
finding coordinates for vectors in a plane. A vector with length one along the 45◦ direction
is represented by (1/

√
2, 1/

√
2) after a short computation. On the other hand, a vector

with length 3 along the positive x-axis is readily represented by (3, 0), which does not
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involve any computation. The situation is similar in Fourier coefficients: if the function
is already one of these sin or cos multiplied by a constant, that constant is the coefficient
corresponding to that term, and you can simply write it down without actually going
through the integral.

The connection between the PDE problem and Fourier series is that we will represent
our solution in a Fourier series, therefore the determination of the solution is equivalent
to the determination of the Fourier coefficients.

3 Fourier Transform

One major limitation of the Fourier series is that they are designed to represent functions
over a finite interval, or periodic functions. If we want to work with non-periodic functions
defined over (−∞,∞), which turn up in PDE problems over infinite spatial intervals, we
need to use the Fourier transform. Again, there are technical conditions whether the
Fourier transform for your function exists or not. The main condition is that the function
itself has to be integrable: ∫ ∞

−∞
|f(x)|dx < ∞.

The obvious advantage of Fourier transform is that it handles derivatives really well: it
translates differentiation in the x-space to multiplication by iω in the Fourier space. The
differential equation is therefore greatly simplified after the Fourier transform. However,
we need to pay a price that the final solution will have to be represented by an integral.
Sometimes we get lucky that the integral can be explicitly evaluated. In many cases we
just have to live with the reality that the solution is represented by an integral with x
and t as parameters. There are many techniques and tricks available to obtain the inverse
transform, that is to work out the integral. But we choose, due to limited time available
in the course, not to devote much energy in mastering the skill. Nevertheless, we need
to understand the basic concept and focus on the identification of variables in various
integral expressions.

Finally we want to emphasize the importance of the heat kernel

K(x) =
1

c
√

2t
e−

x2

4c2t ,

and the convolution K ∗f as the solution to the initial value problem for the heat equation
over (−∞,∞):

u(x, t) =
1√
2π

∫ ∞

−∞
f(y)K(x− y)dy.
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