Math 3150-3 Final, May 1, 2007

Name: \qquad U. ID: \qquad
Instructions: This is a closed book but open written notes exam. Calculators are not allowed. You need to show all the details of your work to receive full credits.

Problem	1	2	3	4	5	6	7	8	total
worth of points	10	18	10	12	15	15	10	10	100
your points									

1. The smallest integer function, also called the ceiling function, is defined as

$$
\lceil x\rceil=\text { smallest integer that is larger than or equal to } x
$$

For example, $\lceil 3.1\rceil=4,\lceil 3\rceil=3$, and $\lceil-3.1\rceil=-3$.
(a) Plot this function for $x \in[-3,3]$. Make sure that the discontinuities are accurately described. Is this function a periodic function?
(b) Plot the function $f(x)=x-\lceil x\rceil$. Is $f(x)$ periodic? What is the period of this function if it is periodic?
2. The following function $g(x)$ is defined for $x \in(0,1)$:

(a) Suppose $f(x)$ is a periodic function with period 1 which agrees with $g(x)$ when $x \in(0,1)$. Plot $f(x)$ for $x \in\left(-\frac{1}{2}, \frac{1}{2}\right)$ and find its Fourier series representation.
(b) Now let $h(x)$ be the sine series expansion of $g(x)$, plot $h(x)$ for $x \in(-1,1)$. What is the value of p in this case? Find this sine series expansion of g.
3. Solve the following wave equation problem:

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{4} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<1, t>0 \\
u(0, t)=0, u(1, t)=0 \\
u(x, 0)=0, \frac{\partial u}{\partial t}(x, 0)=g(x)
\end{gathered}
$$

Where $g(x)$ is the function plotted in Problem 2. Hint: you should use the result of Problem 2 to avoid repeating calculations.
4. Solve the following heat equation problem:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<1, t>0
$$

with boundary conditions

$$
\begin{gathered}
u(0, t)=10, \quad u(1, t)=0 \\
u(x, 0)=10(1-x)+2 \sin 2 \pi x, \quad 0<x<1 .
\end{gathered}
$$

5. Solve the heat equation in a unit square:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}, \quad 0<x<1,0<y<1, \text { and } t>0
$$

with boundary conditions

$$
\begin{aligned}
& u(0, y, t)=u(1, y, t)=0 \text { for } 0 \leq y \leq 1 \text { and } t \geq 0 \\
& u(x, 0, t)=u(x, 1, t)=0 \text { for } 0 \leq x \leq 1 \text { and } t \geq 0
\end{aligned}
$$

and initial condition

$$
u(x, y, 0)= \begin{cases}100 & \text { if } 0<x \leq \frac{1}{2} \\ 0 & \text { if } \frac{1}{2}<x<1\end{cases}
$$

6. Solve the Poisson's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\sin (\pi x) \sin (\pi y), \quad 0<x<1,0<y<1
$$

with boundary conditions $u(x, 0)=f_{1}(x)=4 \sin (\pi x), f_{2}(x)=g_{1}(y)=g_{2}(y)=0$.
7. Solve the Dirichlet problem for the Laplace's equation on the unit disk, in polar coordinates, for the given boundary value

$$
u(1, \theta)=f(\theta)= \begin{cases}0 & \text { if } 0 \leq \theta<\pi / 2 \\ 1 & \text { if } \pi / 2 \leq \theta \leq \pi \\ 0 & \text { if } \pi<\theta<2 \pi\end{cases}
$$

8. Use Fourier transform to solve the heat equation problem:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, t>0
$$

with the initial condition

$$
u(x, 0)= \begin{cases}1 & \text { if }-2<x<2 \\ 0 & \text { otherwise }\end{cases}
$$

What can you say about the boundary value $\lim _{x \rightarrow \pm \infty} u(x, t)$?

