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Abstract. We compute holomorphic Euler characteristics of the line bundles
⊗n

i=1 L⊗di

i

over the moduli space M0,n of stable n-pointed curves of genus 0, where Li is the holo-
morphic line bundle over M0,n formed by the cotangent lines at the i-th marked point.

§1 Introduction

Let M0,n be the space of n (ordered) distinct points (x1, · · · , xn) on P1 modulo
PSL2(C). There is a natural compatification of this space by adding n-pointed singular
stable curves to the boundary. The compactified space M0,n is called Deligne-Mumford
moduli space. Each point xi induces a line bundle on M0,n with fibre T ∗

xi
P1. This line

bundle can be extended to M0,n, which we denote by Li. (For rigorous definitions see the
next section.)

Denote χd1,···,dn
the holomorphic Euler characteristics of the line bundles

⊗n

i=1 L⊗di

i

χd1,···,dn
=

∑
k

(−1)kdimCHk(M0,n,
n⊗

i=1

L⊗di

i ). (1)

Let qi’s be formal variables. Introduce the generating function

G(q1, · · · , qn) =
∑

(d1,···,dn)

χd1,···,dn
qd1
1 · · · qdn

n

= χ(

n⊗
i=1

1

1 − qiLi

).

(2)

Our main result is:

Theorem

G(q1, · · · , qn) = (1 +
n∑

i=1

qi

1 − qi

)n−3
n∏

i=1

1

1 − qi

. (3)

In fact, several examples show that this formula might actually give the dimensions of
the spaces of holomorphic sections of the line bundles, i.e. all higher cohomology groups
vanish. We will indicate some of them in §3.
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Here we have several remarks. First, this formula is related to the theory of two-
dimensional gravity. Recall that the tree level correlation functions of two-dimensional
gravity are defined to be [DW]:

Nd1,···,dn
=<

n∏
i=1

c1(Li)
di , M0,n > . (4)

Let us introduce another formal variable zi, which is related to qi by the formula qi = ezi .
If we define the generating function as

F (z1, · · · , zn) =
∑

(d1,···,dn)≥0

Nd1,···,dn
zd1
1 · · · zdn

n

=

∫
M0,n

1

(1 − z1c1(L1)) · · · (1 − znc1(Ln))
,

(5)

then using the string equation [DW] one easily gets

F (z1, · · · , zn) = (z1 + · · ·+ zn)n−3. (6)

Thus the Euler characteristics χd1,···,dn
can be regarded as the correlation functions in the

corresponding K-theory and formula (6) is a limiting case of our theorem in the cohomology
theory.

We remark also that our ”correlation functions” can be written as:

χd1,···,dn
=

∫
M0,n

ch(
⊗

L⊗di

i )Td(M0,n) (7)

by the Riemann-Roch Formula. Since the structure of the Todd classes of M0,n is still not
well understood at this moment, our formula may provide some information.

The idea of using generating function was suggested by A. Givental and motivated
by the fixed point localization technique [G] [Ko] in the equivariant quantum cohomology
theory. Notice that the formula (2) can be written as

∫
M0,n

Td(M0,n)∏
i 1 − ec1(Li)+zi

,

and the denominator of the intergrand is exactly that of the holomorphic Bott-Lefschetz
fixed point formula, with c1 + zi interpreted as the equivariant first Chern class (of the
fibrewise U(1)-action).

In the next section we will review some basic facts on stable curves and its moduli
spaces. The proof of the formula (3) will be given in §3.

Acknowledgements. I wish to thank Prof. A. Givental for suggesting this problem , and for
his guidance during this work. I am also grateful to Hsiang-Ping for her constant support.
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§2 The stable curves and their moduli spaces

Let C be the field of complex numbers, over which all schemes are defined.
An n-pointed stable curve (C; x1, · · · , xn) of genus zero is a connected and reduced

curve of arithmetic genus zero with at most ordinary double points such that C is smooth
at xi, xi 6= xj (for i 6= j) and every component has at least 3 special points (marked
points + singular points). ([Kn]). A family of n-pointed genus zero stable curves over an
algebraic scheme S is a flat, projective morphism π : F → S with n sections x1, · · · , xn

such that each geometric fibre (Fs; x1(s), · · · , xn(s)) is an n-pointed stable curve of genus
zero. Two families (π : F → S; x1, · · · , xn) and (π′ : F ′ → S; x1

′, · · · , xn
′) are isomorphic

if there exists an isomorphism h : F → F ′ over S such that h ◦ xi = xi
′.

Define the moduli functor M0,n to be a contravariant functor from the category of
algebraic schemes to the category of sets, which assigns to each algebraic scheme S a set
M0,n(S) of isomorphism classes of families of stable curves over S. In [Kn] Knudsen showed
that there exists a fine moduli space M0,n representing the functor M0,n. Furthermore
M0,n is a smooth complete variety equipped with a universal curve π : Un → M0,n and
universal sections x1, · · · , xn (marked points).

In addition to representing M0,n, M0,n also gives an interesting compactification of
the space of n distinct points on P1 modulo automorphisms of P1. This (noncompact)
space is contained in M0,n as an open subset, which is sometimes called the finite part of
M0,n.

Knudsen also showed that Un is isomorphic to M0,n+1. In particular, there are n + 1
canonical morphisms:

π
(i)
n+1 : M0,n+1 → M0,n, i = 1, · · ·n + 1,

which map an (n + 1)-pointed curve (as a point in M0,n+1) to an n-pointed curve by
forgetting the i-th point. They are called forgetful maps. Notice that it might be necessary
to contract unstable components (stabilization) when forgetting the marked points. In the

following discusion only π
(n+1)
n+1 will be needed. Therefore we will denote it simply by πn+1

and call it the forgetful map .
The bundle Li is defined as the conormal bundle to the universal section xi : M0,n →֒

Un. Li is a holomorphic line bundle because the marked points are always nonsingular.

To compare the difference of L
(n)
i and π∗

n(L
(n−1)
i ) (L

(n−1)
i is the corresponding line bundle

on M0,n−1) we will need some important divisors on M0,n.
Define Di to be the divisor on M0,n whose generic elements are the curves with two

components, with {xi, xn} on one branch and the remaining marked points on the other. It
is known ([Kn]) that {Di} form a family of smooth divisors on M0,n with normal crossings.

With these definitions we are able to state:

Lemma 1.

L
(n)
i

∼= π∗
n(L

(n−1)
i ) ⊗O(Di). (8)

Proof. See [W]. A local holomorphic section of the locally free sheaf L
(n−1)
i is represented

by a local holomorphic one form ω on the curve [C] ∈ M0,n−1 evaluated at xi and π∗
n(ω(xi))

vanishes exactly on the divisor Di.
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Q. E. D.

By definition a stable curve C is locally a complete intersection. Then the general
theory of duality [H] will guarantee the existence of a canonical invertible sheaf K over C.
In fact, let f : C′ → C be the normalization of C, y1, · · · , yl; z1, · · · , zl the points on C′

such that f(yi) = f(zi) = pi, i = 1, · · · , l, are the double points of C. Then the canonical
sheaf is the sheaf of one forms ω on C′, regular except for simple poles at y’s and z’s and
the Resyi

(ω) = −Reszi
(ω)([DM]). Therefore the Serre duality reads:

H1(C,O(D))∗ = H0(C, K ⊗O(−D)) (9)

for any divisor D on C. With (9) it is easy to see

Lemma 2. Let D =
∑

i diDi, di ≥ 0, be a divisor on M0,n. We have

H1(C,O(D)) = 0. (10)

Proof. H1(C,OC) = 0 by the definition of arithmetic genus. By Serre duality H1(C,OC) =
H0(C, K) and H1(C,O(D))∗ = H0(C, K ⊗O(−D)) = 0 because −D ≤ 0.

Q. E. D.

§3 The proof of theorem

We will prove the formula (3) by induction on n. First notice that the case n = 3 is
trivial. Since M0,3 is a point, χd1d2d3

= 1 for every triplet (d1, d2, d3). By the definition

of (2), G(q1, q2, q3) =
∑

(d1,d2,d3)≥0 qd1
1 qd2

2 qd3
3 . This is exactly the RHS of formula (3) as

a formal power series. For the case of general n we need the following two reduction
propositions.

Proposition 1. Let πn : M0,n → M0,n−1 be the forgetful map. Denote L
(n)
i and L

(n−1)
i

by Li and li respectively, then

ch(πn∗(

n−1⊗
i=1

1

1 − qiLi

)) = (1 +

n−1∑
i=1

qi

1 − qi

)ch(

n−1⊗
i=1

1

1 − qili
). (11)

Here πn∗(α) = R0πn∗(α) − R1πn∗(α) are the Grothendieck’s higher direct images for any
element α ∈ K(M0,n) and the LHS of equation (11) is a formal power series

∑
(d1,···,dn−1)

ch(πn∗(

n−1⊗
i=1

L⊗di

i ))qd1
1 · · · q

dn−1

n−1 .

Proof. Let α :=
⊗n−1

i=1 L⊗di

i . Our problem is essentially to compute Riπn∗(α). As stated
in §2 πn : M0,n → M0,n−1 is in fact the universal curve, the fibre Cx over x ∈ M0,n−1

is just an (n − 1)-pointed curve of genus 0. By lemma 1 Li = πn
∗(li)

⊗
O(Di). Since
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π∗
n(li) is trivial on each fibre Cx of πn, α|Cx

= O(D) with D =
∑

diDi. By lemma 2
H1(Cx,O(D)) = 0, we have R1πn∗(α) = 0.

It remains to compute R0πn∗(α). Since H1(Cx,
⊗n−1

i=1 Li) = 0 , H0(Cx,O(
∑n−1

i=1 diDi))
forms a vector bundle (call it H0) on M0,n−1 by Grauert’s theorem. Then πn∗(α) will be

isomorphic to H0
⊗

(
⊗n−1

i=1 l⊗di

i ).
By definition, the fibre Cx is a tree of P1 with n − 1 marked points x1, · · · , xn−1.

An element of H0(Cx,O(D)) is a meromorphic function with poles of order no more
than di at xi. It would be constant if there are no poles. Therefore an element of
H0(Cx,O(D))/(constants) is uniquely determined by the polar parts of the function at
the marked points. By the rationality of each fibre the polar parts are independent and
the space of polar parts at the marked point xk is filtered by the degree of poles:

F1 ⊂ F2 ⊂ · · · ⊂ Fdk

where Fi is the subspace of functions with poles of order no more than i. It is easy to see
that the graded spaces Fi+1/Fi are isomorphic to T⊗i

xk
. Therefore the vector bundle H0 is

topologically isomorphic to (C ⊕ l−1
1 ⊕ l−2

1 ⊕ · · · ⊕ l−d1
1 ⊕ · · · ⊕ l−1

n−1 ⊕ · · · ⊕ l
−dn−1

n−1 ).
Combining all above, we have

ch(R0πn∗(

n−1⊗
i=1

Li))

=(
n−1∏
i=1

edic1(li))(1 + e−c1(l1) + · · ·+ e−d1c1(l1) + · · · + e−c1(ln−1) + · · · + e−dn−1c1(ln−1)).

Now multiplying the above by qd1
1 · · · q

dn−1

n−1 and summing over (d1, · · · , dn−1) ∈ Zn
+ (Z+ :=

N ∪ {0}), we have

∑
(d1,···,dn−1)

n−1∏
i=1

edic1(li)(1 + e−c1(l1) + · · · + e−dn−1c1(ln−1))qd1
1 · · · q

dn−1

n−1

=
∑

(m1,···,mn−1)

(d1,···,dn−1)

em1c1(l1) · · · emn−1c1(ln−1)qd1
1 · · · q

dn−1

n−1 ,
(12)

where either mi = di for all i or mi = di for all i except one for which di − mi ∈ N is
arbitrary. Thus (12) is equal to

∑
(m1,···,mn−1)∈Zn

+

(ec1(l1)q1)
m1

· · · (ec1(ln−1)qn−1)
mn−1

[1 +
∞∑

k=1

(qk
1 + · · ·+ qk

n−1)]

=(1 +
q1

1 − q1
+ · · · +

qn−1

1 − qn−1
)(

1

1 − q1ec1(l1)
) · · · (

1

1 − qn−1ec1(ln−1)
),

which is equal to the RHS of (11).
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Q. E. D.

Since πn : M0,n → M0,n−1 is a proper morphism of smooth varieties, we can apply
the Grothendieck-Riemann-Roch theorem to any holomorphic line bundle α :

ch(πn∗(α))Td(M0,n−1) = πn∗(ch(α)Td(M0,n)). (13)

Proposition 1 can be restated as:

G(q1, · · · , qn)|qn=0 = (1 +
n−1∑
i=1

qi

1 − qi

)G(q1, · · · , qn−1). (14)

Proposition 2. On M0,n the generating function (2) satisfies the following identity:

∑
I⊂{1,···,n}

(−1)|I|
∏
i∈I

1

(1 − qi)
G(q)|{qi=0,∀i∈I} = 0. (15)

Proof. The above identity reads:

∫
M0,n

Td(M0,n)(
n∏

i=1

(
1

1 − qiec1(Li)
−

1

1 − qi

)) = 0.

Since dimC(M0,n) = n−3 < n, the identity follows from the fact that (1−qec)−1−(1−qi)
−1

is divisible by c and dimension counting.
Q. E. D.

Now G(q1, · · · , qn) with (at least) one qi = 0 was calculated in Proposition 1 as
(constant)G(q1, · · · , qn−1), which is known by induction hypothesis. Combining (14) and
(15) we have

G(q1, · · · , qn)

=
n∑

j=1

(1 +
∑
i6=j

qi

1 − qi

)
n−3

n∏
i=1

1

1 − qi

−
∑
j<k

(1 +
∑

j 6=i6=k

qi

1 − qi

)
n−3

n∏
i=1

1

1 − qi

+ · · · · · ·+ (−1)
n−1

n∏
i=1

1

1 − qi .

Thus we are left to prove the combinatorial identity (ai := qi

1−qi
) :

(1 +
n∑

i=1

ai)

n−3

=
n∑

j1=1

(1 +
∑
i6=j1

ai)
n−3

−
∑

j1<j2

(1 +
∑

j1 6=i6=j2

ai)
n−3

+ · · ·+ (−1)
n−1

1,
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which is easily verified by elementary algebra. For example it is the finite difference version
of the identity:

∂n

∂x1 · · ·∂xn

(1 + x1 + x2 + · · ·+ xn)n−3 = 0

at (0, 0, · · · , 0).

Remarks :

(i) The formulas of Euler characteristics (coefficient of G(q1, · · · , qn)) are rather compli-
cated. It is remarkable that they can be packed in a very elegant generating function.

(ii) As we have mentioned in the introduction, there are some evidences which support
our guess on the vanishing of Hi(M0,n,

⊗
Ldi

i ) for i ≥ 1. First, in the case of M0,4 and

M0,5 it can be explicitly computed. Second, if the line bundle
⊗n

i=1 L⊗di

i consists of only
n − 1 bundles, i.e. some di = 0, then the vanishing of higher cohomology groups can be
proved by the same arguments in the proof of proposition 2 and simple spectral sequence
argument. Even in the case when some di = 1 it can be proved by the same method
(some modifications are necessary) plus the residue theorem. But when min{di} ≥ 2 the
computation becomes very complicated and we don’t know how to proceed.

(iii) The above proof is based on a suggestion by A. Givental. Our original proof was done
by a ”term by term” argument, i. e. computing the correlation functions instead of the
generating function itself. In fact we can derive a reduciton formula relating the correlation
functions (1) on M0,n in terms of those on M0,n−1, similar to the derivation [DW] of the
correlation functions (4) in the theory of two-dimensional gravity. Not surprisingly we
have to deal with very complicated combinatorial identities and cancellation process. One
of the improvement of the present proof is that we derive the generating functions directly,
and therefore drastically reduce the complexity of combinatorial identities.
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