
LECTURES ON GROMOV–WITTEN THEORY AND

CREPANT TRANSFORMATION CONJECTURE

Y.P. LEE

ABSTRACT. These are the pre-notes for the Grenoble Summer School lec-
tures June-July 2011. They aim to provide the students some background
in preparation for the conference. Nominally, only the basic knowledge
on moduli of curves covered in the first week is assumed, although I tac-
itly assume the students either have heard one thing or two about the
subjects, or are formidable learners. It is well-nigh impossible for a mere human to

learn GWT in a week. In fact, I only know of two persons who have done it.

Please help find the errors, typographical or mathematical. Without a
moment’s hesitation, I bet there are plenty.
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1. DEFINING GWI

The ground field is C. All cohomological degrees are Chow or “com-
plex” degrees, and dimensions are complex dimensions.

1.1. Moduli of stable maps. The main reference is [4].1

An n-pointed, genus g, prestable curve (C, x1, x2, . . . , xn) is a projective,
connected, reduced, nodal curve of arithmetic genus g with n distinct, non-
singular, ordered marked points.

Let S be an algebraic scheme. (A family of) n-pointed, genus g, prestable
curve over S is a flat projective morphism π : C → S with n sections

1The references of these pre-notes are mostly survey articles. For those interested in the
original papers, please ask the experts. We have many in the School!
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2 Y.P. LEE

x1, x2, . . . , xn, such that every geometric fiber is an n-pointed, genus g, prestable
curve defined above.

Let X be an algebraic scheme. A prestable map over S from n-pointed,
genus g curves to X is the following diagram

C f−−−→ X

π

y
S

such that π is described above and f is a morphism. Two maps fi : Ci → X
over S are isomorphic if there is an isomorphism g : C1 → C2 over S such
that f1 ◦ g ∼= f2.

A prestable map over C is called stable if it has no infinitesimal automor-
phism. A prestable map over S is called stable if the map on each geometric
fiber of π is stable.

Exercise 1.1. Prove that the stability condition is equivalent to the following:
For every irreducible component Ci ⊂ C,

(1) if Ci
∼= P1 and Ci maps to a point in X, then Ci contains at least 3

special (nodal and marked) points;
(2) if the arithmetic genus of Ci is 1 and Ci maps to a point, then Ci

contains at least 1 special point.

To form a moduli stack of finite type, one needs to fix another topological
invariant β := f∗([C]) ∈ NE(X) in addition to g and n, where NE(X)
stands for Mori cone of the numerical (or homological) classes of effective

1 cycles. Let Mg,n(X, β) be the moduli stack of the functor defined above.

Theorem 1.2 (Kontsevich (i), Pandharipande (ii)). The moduli Mg,n(X, β)

(i) is a proper separated Deligne–Mumford stack of finite type (over C), and
(ii) has a projective coarse moduli scheme.

1.2. Natural morphisms. As in moduli of curves, there are the forgetful
morphisms

fti : Mg,n+1(X, β)→ Mg,n(X, β),

forgetting the i-th marked point and stabilize. As you must have learned
in the First Week of the School, the above “set-theoretic” description can be
made functorial. In fact,

Exercise 1.3. ftn+1 : Mg,n+1(X, β) → Mg,n(X, β) is isomorphic to the univer-
sal curve. (This is similar to the case of curves.)

The evaluation morphisms

evi : Mg,n(X, β)→ X,

are the morphisms which send [ f : (C, x1, . . . , xn)→ X] to f (xi) ∈ X.
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The stabilization morphism

st : Mg,n(X, β)→ Mg,n

exists when Mg,n does. It assigns an (equivalence class of) stable curve

[(C̄, x̄1, . . . , x̄n)] to (that of) a stable map [ f : (C, x1, . . . , xn) → X]. Some
stabilization might be necessary to ensure the stability of the pointed curve
[(C̄, x1, . . . , xn)].

Exercise 1.4. Formulate the stabilization for the forgetful morphisms which
forgets one marked point. (Probably done in the first week already.)

Hint: In terms of families over S:

C̄ ֒→ ProjS

(
⊕∞

k=0π∗
((

ωC/S(∑
i

xi)
)⊗k
))

,

where ωC/S is the dualizing line bundle.

As in the case of moduli of curves, there are also gluing morphisms:

(1.1) ∑
β′+β′′=β

∑
n′+n′′=n

Mg1 ,n′+1(X, β′)×X Mg−g1,n′′+1(X, β′′)→ Mg,n(X, β),

and

(1.2)

Mg−1,n+2(X, β) ←−−− D −−−→ Mg,n(X, β).
y

y
X × X ←−−−

∆
X

Remark 1.5. The images of the gluing morphisms are in the “boundary” of
the the moduli. However, unlike the curve theory, the moduli are not of
pure dimension in general, and it doesn’t really make sense to talk about
the “divisors”. On the other hand, the virtual classes, which we will talk
about soon albeit in a superficial way, are compatible with the gluing mor-
phisms. Thus the gluing defines virtual divisors.

1.3. Gromov–Witten invariants and the axioms. Given a projective smooth
variety X, Gromov–Witten invariants (GWIs) for X are numerical invari-

ants constructed via the auxiliary moduli spaces/stacks Mg,n(X, β). They
are called invariants because they are (real) symplectic-deformation invariants
of X. We will say say nothing about symplectic perspective but to point
out that it does mean that GWIs are deformation invariant. Even though
the spaces are proper, of finite type, they are usually singular and badly be-
haved. In fact, they can be as badly behaved as any prescribed singularities.
(This is R. Vakil’s “Murphy’s Law”.)

However, these GWIs will behave mostly like they are defined via smooth
auxiliary spaces, thanks to the existence of and the functorial properties

enjoyed by the virtual fundamental classes [Mg,n(X, β)]vir. A good, concise
exposition of the construction of the virtual classes can be found in the first
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few pages of [7] and will not be repeated here.2 Instead, we will only state
some functorial properties (or axioms) these invariants, or equivalently the
virtual classes, have to satisfy.

One of the most important properties of the virtual class is the virtual
dimension (or expected dimension, or Riemann–Roch dimension...)

(1.3) vdim(Mg,n(X, β)) := −KX.β + (1− g)(dim X − 3) + n

and

[Mg,n(X, β)]vir ∈ Hvdim(Mg,n(X, β))).

The well-defined virtual dimension is called the grading axiom.
Before we go further, let’s see what these invariants look like. As for

Mg,n, there is a universal curve over Mg,n(X, β):

π : C → Mg,n(X, β),

which defines the ψ-classes ψi, i = 1, . . . n, as for the moduli of curves. The
most general GWI can be written as

(1.4)
∫

[Mg,n(X,β)]vir
∏

i

(ψki
i ev∗i (αi)) st∗(Ω),

where Ω ∈ H∗(Mg,n).

Convention 1.6. (i) The above “integral” or pairing between cohomology
and homology is defined to be zero if the total degree of cohomology is not
equal to the virtual dimension.

(ii) When the stabilization morphism is not defined, one can set st∗(Ω) =
1.

However, sometimes we are only concerned with the case when Ω = 1

〈τk1
(α1), . . . , τkn

(αn)〉g,n,β :=
∫

[Mg,n(X,β)]vir
∏

i

(ψki
i ev∗i (αi)).

These are generally called gravitational descendents. When ki = 0 for all i,
they are called primary invariants. As you can easily guess, the descendents are the “descendents”

of the primary fields. “Gravitation” is involved because ψ classes are the gravitational fields of the “topological

gravity”.

Proposition 1.7. As a matter of fact, the set invariants in (1.4) can be reduced to
a subset when all ki = 0, and 3g− 3 + n ≥ 0 (when the stabilization morphism
is defined).

Assuming this proposition, we can view GWIs as multi-linear maps

IX
g,n(β) : H∗(X)⊗n → H∗(Mg,n),

2Noted added: Due to a change of heart of one organizer, the construction of virtual
fundamental classes was covered in these lectures. However, due to the time constraint, I
will not be able to put that lecture into these notes.
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which will be called GW maps. This is the approach taken by Kontsevich,
Manin, Beherend etc.. Due to the symmetry of the marked points, Ig,n is
Sn-invariant up to a sign. When all the cohomology classes are algebraic
classes, there will be no sign. We will ignore the sign for simplicity.

Phrased this way, the existence of virtual classes implies that the GW
maps are constructed by correspondences via the virtual classes as kernels.
This is called the motivic axiom. In other words, motivic axiom says that
GWIs are constructed out of a virtual class.

Kontsevich–Manin [8] lists 9 axioms, so we have 7 more to go.
The Sn-covariance axiom says that permuting the marked points will not

change the invariants (up to a sign, which is ignored!)
The effectivity axiom says that if β is not an effective curve class, then the

corresponding GWI vanishes. This should be obvious as the corresponding
moduli stack is empty.

The fundamental class axiom says that for the forgetful morphisms: fti :

Mg,n+1(X, β)→ Mg,n(X, β), the virtual class pull-backs to virtual class

ft∗i ([Mg,n(X, β)]vir = [Mg,n+1(X, β)]vir.

Another is the mapping to a point axiom. Suppose β = 0, then it should be
easy to see that

Mg,n(X, 0) = Mg,n × X.

This is a smooth DM stack with dimension 3g− 3 + n + dim X. However
the virtual dimension is 3g− 3 + n + (1− g) dim X. Therefore, the virtual
class is not the fundamental class, even though it is smooth and fundamen-
tal class exists. In this case, there is an obstruction bundle

E∨ ⊗ TX → Mg,n × X,

where E∨ is the dual of the Hodge bundle, which as you all know has rank
g. The virtual class is

[Mg,n(X, 0)]vir = ctop(E∨ ⊗ TX) ∩ [Mg,n × X].

Note that the virtual class is the fundamental class when g = 0.
The next two axioms are the splitting axiom and genus reduction axiom,

collectively called gluing tails axiom.
Let φ be one of the gluing morphisms for moduli of curves, parallel to

those in (1.1) and (1.2). Let {Tµ} be a basis of H∗(X) (as a vector space) and

gµν :=
∫

X
TµTν is the matrix of Poincaré pairing. Let gµν be the inverse ma-

trix of gµν. From Kunneth formula we know that the class of the diagonal
in H∗(X × X) is ∑µ,ν gµνTµ ⊗ Tν.
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The axioms can be written as the following two equations:

φ∗(Ig,n,β ((⊗n
i=1)αi)) = ∑

β′+β′′=β
∑

n′+n′′=n
∑
µ,ν

Ig1 ,n′+1,β′

(
(⊗n′

i′=1αi′)⊗ Tµ

)
gµν Ig2 ,n′′+1,β′′

(
(⊗n

i′′=n′+1)αi′′ ⊗ Tν

)

φ∗(Ig,n,β ((⊗n
i=1)αi)) = ∑

µ,ν

Ig−1,n+2,β

(
(⊗n

i=1)⊗ Tµ ⊗ Tν

)
gµν.

Exercise 1.8. Rephrase these axioms in two different ways. First, in terms
of the numerical invariants. (Easy!) Second, use GW maps, but without
introducing the basis of H∗(X). (So that it can be applied to Chow groups.)

In the remaining subsection, we will introduce the last axiom and show
how to prove Proposition 1.7.

Exercise 1.9. Let ψ̄i := st∗(ψi) be the ψ-classes pulled-back from Mg,n. Con-

vince yourself that3

(ψi − ψ̄i) ∩ [Mg,n(X, β)]vir = [Di]
vir,

where Di is the virtual divisor on Mg,n(X, β) defined by the image of the
gluing morphism

∑
β′+β′′=β

M
(i)
0,2(X, β′)×X M0,n(X, β′′)→ Mg,n(X, β),

where the i-th marked point goes to M
(i)
0,2(X, β′) and the remaining n − 1

points to M0,n(X, β′′).

With this exercise, we can see that one can exchange ψ-classes with ψ̄-

classes, which are pulled-back from Mg,n, and the boundary divisors. The
GWI associated with boundary divisors can be written as GWI of lower
order classes, by the splitting and genus reduction axioms, and others. (Ex-
ercise: What is a good inductive order?)

To show Proposition 1.7, we still need to deal with the cases when g = 0
and n ≤ 2, or (g, n) = (1, 0), for which the stabilization morphisms, and
therefore the invariants, are not defined. We need the divisor axiom. Let D
be a divisor on X and ftn+1 be the forgetful morphism, then

∫

[Mg,n+1(X,β)]vir

n

∏
i=1

(ev∗i (αi)). st∗ f̄t
∗
n+1(Ω) . ev∗n+1([D])

=(
∫

β
D)
∫

[Mg,n(X,β)]vir

n

∏
i=1

(ev∗i (αi)). st∗(Ω).

Here and elsewhere, f̄t are the forgetful morphisms for moduli of curves.

3Some properties of virtual classes, which will be mentioned later, must be assumed. For
the time being, assume that the moduli are all connected, smooth, projective variety with
the correct dimension.
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Exercise 1.10. (i) Convince yourself that the divisor axiom holds. You will
need to use the fundamental class axiom. Then use the projection formula
for ftn+1.

(ii) Prove the divisor axiom for descendents

〈α1ψk1
1 , . . . , αnψkn

n , D〉g,n+1,β,

=
∫

β
D〈α1ψk1

1 , . . . , αnψkn
n 〉g,n,β, +

n

∑
i=1

〈α1ψk1
1 , . . . , D.αiψ

ki−1
i , . . . , αnψkn

n 〉g,n,β,,

(1.5)

where by convention ψ−1 := 0. You will need the virtual version of the com-
parison theorem for ψ classes under forgetful morphisms, as for curves,

(1.6) ψi = ft∗n+1(ψi) + Ei,

where

Ei = M
(i,n+1)
0,3 (X, 0)×X Mg,n(X, β) ⊂ Mg,n+1(X, β),

where i ≤ n and the i-th and n + 1-st points lie in the first moduli factor.
(iii) Prove that the divisor axiom will uniquely determine those GWIs

with 3g− 3 + n < 0.

Now, we have all the tools to prove Proposition 1.7. Remember what
you learned about the comparisons of ψ-classes with respect to forgetful
morphisms. They will be needed here.

Exercise 1.11. Prove Proposition 1.7.

Remark 1.12. The enumerative interpretation of GWIs is not always clear. Morally,
the primary invariant 〈α1, . . . , αn〉g,n,β should count the number of n-pointed
genus g curves in X with degree β, such that the i-th marked point lies in
the i-th cycle, (the Poincaré dual of) αi, all in general position. When genus
is zero, and X is homogeneous, e.g. projective, the above interpretation ac-
tually holds.

2. SOME GWT GENERATING FUNCTIONS AND THEIR STRUCTURES

2.1. Generating functions. It is often useful to form the generating func-
tions of GWIs. Indeed, most of the structures in GWT only reveal them-
selves in terms of generating functions. As Fulton said, this is a gift from physics. The rest

mathematicians might be able to figure out....

The first one is the genus g descendent potential. Recall the descendents
look like

〈τk1
(α1), . . . , τkn

(αn)〉g,n,β :=
∫

[Mg,n(X,β)]vir
∏

i

(ψki
i ev∗i (αi)).

At each marked point, the insertion can be α⊗ ψk for any k. Abstractly, we
can think of the insertion come from an infinite dimensional vector space

(2.1) Ht := ⊕∞
k=0H∗(X),
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with basis {Tµψk}, even though those vectors might have relations. (Think
of this as the “universal” space, independent of β, n etc.. The actual spaces

for insertions are quotients.) Let {tµ
k } be the dual coordinates and

t := ∑
µ,k

t
µ
k Tµψk

be a general vector in Ht. The genus g descendent potential is

Fg(t) := ∑
n,β

qβ

n!
〈⊗nt〉g,n,β := ∑

n,β

qβ

n!
〈 t, . . . , t︸ ︷︷ ︸

n insertions

〉g,n,β.

The variables {qβ}β∈NE(X) are called Novikov variables. Since NE(X) is a

cone, Novikov variables has a ring structure qβ1 qβ2 = qβ1+β2 . It is called the

Novikov ring.4

Convention 2.1. Denote Λ the Novikov ring of X. We will use H∗(X)[[q]] to
stand for H∗(X, Λ).

If we want to replace the ψ classes by ψ̄ classes, we will have to make
sure that the target of the stabilization morphism exists. Let

s := ∑
µ,k

sµTµ, t̄ := ∑
µ,k

t̄
µ
k Tµψ̄k.

The genus g ancestor potential is defined as

F̄g(t̄, s) := ∑
l,m,β

qβ

l! m!

∫

[Mg,l+m(X,β)]vir
t̄⊗l ⊗ s⊗m,

where the ψ̄ classes are pullbacks from the composition of stabilization and
forgetful morphisms:

Mg,l+m(X, β)→ Mg,l+m → Mg,l.

As remarked above, the indices of the summation, l, m, β, must ensure not
only the existence of Mg,m+l(X, β), but also of Mg,m. Who are the children of these

ancestors, I often wonder?

2.2. Quantum rings. The splitting axiom at genus zero, combined with the
permutation invariance of the invariants, give the associativity of the quan-
tum rings, as we will proceed to show. Consider the generating function of
genus zero primary invariants

F0(s) := ∑
n, β

qβ

n!
〈s⊗n〉0,n,β.

4To be more precise, I will have to say that Novikov ring is the formal completion of
the semigroup ring C[NE(X)] in the I-adic topology, where I ⊂ C[NE(X)] is the ideal
generated by nonzero elements in NE(X).
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Define a product structure ∗ on H∗(X)[[q]] by

Tµ ∗s Tν := ∑
δ, ǫ

(
∂

∂sµ

∂

∂sν

∂

∂sδ
F0(s)

)
gδǫTǫ.

Exercise 2.2. Show that ∗q=0 gives the usual intersection/cup product.

Exercise 2.3. Show that the associativity of the product ∗ is equivalent to the
following equation, often called WDVV equation after B. Dubrovin.

(
∂

∂sµ

∂

∂sν

∂

∂sa
F0(s)

)
gab

(
∂

∂sǫ

∂

∂sδ

∂

∂sb
F0(s)

)

=

(
∂

∂sµ

∂

∂sδ

∂

∂sa
F0(s)

)
gab

(
∂

∂sǫ

∂

∂sν

∂

∂sb
F0(s)

)
.

In other words, the function on the LHS is invariant under S4 action.

To show the associativity of the ∗, one can use the following composition
of stabilization and forgetful morphisms:

M0,n≥4(X, β)→ M0,4
∼= P1.

Then notice that the LHS of the WDVV equation corresponds to a virtual

boundary divisor in M0,n(X, β), which is the pullback of one of the bound-

ary point in M0,4 (capped with the virtual class), while the RHS correspond
to another. Since the point class in P1 are rational/homological equivalent
by definition, the invariants have to be equal, (assuming the axioms of the
virtual classes).

Exercise 2.4. Check the above statements. What are the axioms one has to
use?

This associative ring structure on H∗(X)[[q]] is often called the big quan-
tum cohomology, to distinguish itself from the small quantum cohomology,
where the ring structure is defined by ∗s=0, or better, by restricting s to the
divisorial coordinates. The “equivalence” can be seen from the following
exercise.

Exercise 2.5. Let X = Pr, and let

s = s01 + s1h + . . . + srhr ,

and s′ := s|s1=0. Verify that

Fg(s) = ∑
d,n

qdℓeds1

n!
〈s′⊗n〉0,n,dℓ.

What about a general X?
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2.3. Computing GWIs I: WDVV. Let X = P2. Let us proceed to find
genus zero primary invariants

〈α1, . . . , αn〉n,d = 〈α1, . . . , αn〉Xg=0,n,dℓ.

The insertion classes αj can be 1, h, h2 = pt.

Exercise 2.6. (i) Show, by the fundamental class axiom, if any αj = 1, the
invariant vanishes unless (n, d) = (3, 0).

(ii) Show, by mapping to a point axiom, that if d = 0, the invariant van-
ishes unless n = 3. (In this case, quantum cohomology is classical coho-
mology.)

If αj = h, this can be taken cared of by divisor axiom, as in Exercise 2.5.
So we only have to calculate GWIs of the following form

〈pt⊗
n〉n,d.

Now the virtual dimension, in this case equal to the actual dimension, is
3d + n− 1. In order for the above invariants not to vanish a priori, we have
to require the cohomological degree, which is 2n, to be equal to the virtual
dimension. That is, n = 3d− 1. Define

Nd := 〈pt⊗
3d−3〉n=3d−1,d.

Exercise 2.7. Prove that WDVV equations in Exercise 2.3 give the following
recursive equations for Nd:

(2.2) Nd = ∑
d1+d2=d,di>0

Nd1
Nd2

(
d2

1d2
2

(
3d− 4
3d1 − 2

)
− d3

1d2

(
3d− 4
3d1 − 1

))

By Remark 1.12, we know that N1 = 1, as there is exactly one line in X
through 2 points in general position.

It is easy to see now Nd are completely determined by (2.2) and the initial
condition N1 = 1.

This sounds great, until we realize that there are very few cases which
can be computed by WDVV alone. So let us look for something else.

2.4. Equivariant cohomology and localization. Suppose we have a T :=
C∗ acting on X, a smooth projective variety. Then the universal T-bundle

is5

ET := (C∞ \ {0}) → BT := P∞.

One can construct the associative X-bundle

(2.3) XT := X ×T ET → BT.

The equivariant cohomology of T is defined to be

H∗T(X) := H∗(XT).

5Actually, these are not algebraic schemes, so some kind of approximation is needed. It
was all worked out carefully by B. Totaro and Edidin–Graham (and others).
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In particular, if X is Spec C with trivial T action,

H∗T(Spec C, Z) = H∗(BT, Z) ∼= Z[z].

By (2.3), H∗(XT) has a natural Z[t]-module structure.
Given a (linearized) T-equivariant vector bundle E → X, one can form

the bundle πT : ET → XT. It is easy to see that at a fixed (geometric) point
in BT, πT is isomorphic to E → X. One can define the equivariant chern
classes to be

cT
k (E) := ck(ET) ∈ H∗T(X).

Next, we will need to know the localization. Let j : Xi →֒ X be the fixed
loci. Then the localization theorem(s) says that, for any α ∈ H∗(X),

∫

[X]
α = ∑

i

∫

[Xi]

i∗(α)

e(NXi |X)

where eNi
is the C∗-equivariant Euler class.

In fact, one can refine the above statement as follows.

Theorem 2.8 (Correspondence of residues). Suppose that µ : X → Y is a
C∗-equivariant map. let i : Xi →֒ X and j : Yj →֒ X be the fixed loci. Suppose
furthermore that Xik

’s are the only fixed components to map to Yj. Then

∑
k

(µ|Xik
)∗

(
i∗k (α)

e(Ni)

)
=

j∗µ∗(α)

e(Nj)
.

The usual localization is a summation of residues, with Y a point.

2.5. Computing GWIs II: localization. Arguably the most powerful tech-
nique in actual computation of GWIs is the localization. It is especially use-
ful when combined with suitable generating functions. Unfortunately, that
will in general require us to know some details of the construction of the
virtual classes. Therefore, I will only talk about the simplest case. In fact,
we won’t even do a lot of localization for that matter.

Let X = Pr. Define the big J-function of X to be a formal series in q and
z−1

Jbig := ∑
d

∑
n

qd

(n− 1)!
(ev1) ∗

(
ev∗2(s) . . . ev∗n(s)

z(z− ψ1)

)
∈ H∗(X),

where
1

z(z− ψ)
:= ∑

k

ψk

zk+2
.

Exercise 2.9. Prove that the data of all n-pointed GWIs, with at most one
descendent insertion are packed in the big J-function.

Let us now restrict the variables from s ∈ H∗(X) to s01 + s1h ∈ A0 ⊕ A1.
The big J-function specializes to the small J-function

Jsmall = e(s01+s1h)/z

(
1 + ∑

d≥1

qdeds1
evd
∗

1

z(z− ψ1)

)
,
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where evd : M0,1(X, d) → X is the evaluation morphism. By the same
understanding in Exercise 2.9, the small J-function is a generating function
of all one-pointed descendents on X.

Exercise 2.10. (i) Prove the comparison theorem produces the following

equation (string equation) of GWI:6

〈 α1

(z− ψ1)
, α2, . . . , αn, 1〉g,n+1,d = 〈 α1

z(z− ψ1)
, α2, . . . , αn〉g,n,d

(ii) Use the string equation you just proved and the divisor equation for
descendents (1.5) to show that the small J-function is of the above form.

Why J-function? There are more reasons than one. Firstly, it is often eas-
ier to compute, as we will see below. Secondly, when H∗(X) is generated
by divisor as in this case, there is a reconstruction theorem which reconstructs

all n-pointed genus zero descendents.7 Thirdly, it is intimately connected
to the Frobenius structure which we will discuss in the next section.

To compute J-function for the projective spaces, one has to introduce the
graph space

Gd := M0,0(X ×P1, (d, 1)).

At this moment, we only need to know that Gd is a smooth DM stack with
the correct dimension.

There is a “companion space” Pr
d, which is defined to be the (r + 1)-

tuples of homogeneous degree d polynomials in two variables z0, z1, con-
sidered as the homogeneous coordinates on P1.

Exercise 2.11. (i) Show that Pr
d is isomorphic to P(r+1)(d+1)−1. Furthermore,

it is naturally birational to Gd.
(ii) Let C∗ acting on Pr

d by (z0 : z1) 7→ (z0 : ηz1), with η ∈ C∗. Show that
the fixed loci are (d + 1) copies of Pr.

Now, let C∗ acts on P1, which induces an action on Gd. What are the
fixed loci?8

Exercise 2.12. Convince yourself that there are d + 1 components of the fixed

point loci, and they are the images of M0,1(X, d1)×X M0,1(X, d− d1) in Gd,
for d1 = 0, . . . , d. We use the convention that

M0,1(X, d)×X M0,1(X, 0) := M0,1(X, d).

Now, I have to quote the result of Alexander Givental and Jun Li, which
says that there is actually a C∗-equivariant birational morphism µ : Gd →
Pr

d. It is easy to see that in this case there is only one Nik
, which we denote

6It is also called the puncture equation (for topological gravity).
7I will not be able to tell you about the reconstruction. It can be found in [11].
8Gd is an orbifold, rather than a variety, but we will apply the localization here anyway,

as it works! Actually, it has been proved to work is a more accurate description.
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by Ni. Applying the correspondence of residues theorem to the case d1 = d,
we get

Gd
µ−−−→ Pr

dxi

xj

M0,1(Pr, d)
ev−−−→ Pr.

Exercise 2.13. Convince yourself that the lower horizontal morphism is ac-
tually the evaluation.

Now we will have to figure out the equivariant Euler classes of the nor-
mal bundles.

Exercise 2.14. (i) Show that e(Ni) = z(z − ψ), where z is the equivariant
parameter.

(ii) Show that e(Nj) = ∏
d
m=1(h + mz)r+1.

Well, this exercise might be a little too hard if you have never seen a sim-
ilar computation. So here are some hints. Ni is a rank two vector bundle,
as you can see from the dimension counting. That means we have two-
dimensional deformation space out of this fixed loci. The fixed locus con-
sists of nodal rational curves with a rational branch mapping to X× {0} of
degree (d, 0), connected to another P1 mapping to {x}×P1 of degree (0, 1).
The two deformation directions are: smoothing the node, and moving the
image of the node away from the fixed point {0} ∈ P1. The first one gives
the factor (z−ψ) and the second z. As for (ii), it should be straightforward!

Now apply the correspondence of residues with α = 1, we get

Theorem 2.15. The small J-function of the projective spaces

JPr
= e(s01+s1h)/z

(
1 +

∞

∑
d=1

qd 1

∏
d
m=1(h + mz)r+1

)
.

By Exercise 2.10, we now know all one-point descendents for projective
spaces. If you are interested to compute the n-pointed descendents, you
can get them by the reconstruction theorem in [11]. However, at this point I
can’t think of a good formulation of them, except in the P1 case, where one
has the formulation by Okounkov–Pandharipande in their curve trilogy.
There must be some integrable systems lurking behind.

3. GIVENTAL’S AXIOMATIC GWT AT GENUS ZERO

The main references are [9, 10]. This section will only be used in Sec-
tion 6.5. My guess is that it can be safely omitted without “serious con-
sequence” for the remaining school week. Higher genus treatment is in-
cluded as an appendix at the end.
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3.1. Axiomatic GWT. our task is to distill the essence of the “geometric”
GWT in an axiomatic framework, where no target variety is involved.

Let H be a vector space of dimension N with a distinguished element
1. Assume further that H is endowed with a nondegenerate symmetric
bilinear form, or metric, (·, ·). One can think of them as H = H∗(X) and
1 = 1 ∈ H0(X). The bilinear form is the Poincaré intersection pairing.

Let {Tµ} be a basis of H and T1 = 1. Let H denote the infinite dimen-

sional vector space H[z, z−1]] consisting of Laurent polynomials with coef-

ficients in H.9 Introduce a symplectic form Ω onH:

Ω( f (z), g(z)) := Resz=0〈 f (−z), g(z)〉,
where the symbol Resz=0 means to take the residue at z = 0.

There is a natural polarization H = Hq ⊕ Hp by the Lagrangian sub-

spaces Hq := H[z] and Hp := z−1H[[z−1]] which provides a symplectic
identification of (H, Ω) with the cotangent bundle T∗Hq with the natural
symplectic structure. Hq has a basis

{Tµzk}, 1 ≤ µ ≤ N, 0 ≤ k

with dual coordinates {qk
µ}. The corresponding basis for Hp is

{Tµz−k−1}, 1 ≤ µ ≤ N, 0 ≤ k

with dual coordinates {pk
µ}.

For example, if {Ti} be an orthonormal basis of H.10 An H-valued Laurent
formal series can be written in this basis as

. . . + (p1
1, . . . , pN

1 )
1

(−z)2
+ (p1

0, . . . , pN
0 )

1

(−z)

+ (q1
0, . . . , qN

0 ) + (q1
1, . . . , qN

1 )z + . . . .

In fact, {pi
k, qi

k} for k = 0, 1, 2, . . . and i = 1, . . . , N are the Darboux coordi-
nates compatible with this polarization in the sense that

Ω = ∑
i,k

dpi
k ∧ dqi

k.

The parallel between Hq and Ht, defined in (2.1), is evident. It is in fact
given by the following affine coordinate transformation, called the dilaton
shift,

t
µ
k = q

µ
k + δµ1δk1.

Definition 3.1. Let G0(t) be a (formal) function onHt. The pair (H, G0) is called
a (polarized) genus zero axiomatic theory if G0 satisfies three sets of genus zero
tautological equations: the Dilaton Equation (3.1), the String Equation (3.2)
and the Topological Recursion Relations (TRR) (3.3).

9Different completions of H are used in different places. This will be not be discussed
details in the present article. See [10] for the details.

10The distinguished element 1 is not in this basis, unless N = 1.
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∂G0(t)

∂t1
1

(t) =
∞

∑
k=0

∑
µ

t
µ
k

∂G0(t)

∂t
µ
k

− 2G0(t),(3.1)

∂G0(t)

∂t1
0

=
1

2
〈t0, t0〉+

∞

∑
k=0

∑
ν

tν
k+1

∂G0(t)

∂tν
k

,(3.2)

∂3G0(t)

∂tα
k+1∂t

β
l ∂t

γ
m

= ∑
µν

∂2G0(t)

∂tα
k ∂t

µ
0

gµν ∂3G0(t)

∂tν
0∂t

β
l ∂t

γ
m

, ∀α, β, γ, k, l, m.(3.3)

In the case of geometric theory, G0 = FX
0 It is well known that FX

0 satisfies
the above three sets of equations (3.1) (3.2) (3.3).

Exercise 3.2. (i) Check that FX
0 satisfies these three equations. They are sim-

ilar to the corresponding equations for moduli of curves.
(ii) Prove that the dilaton equation, when changed to the q-variables, is

the same as the Euler equation of G0(q)

∞

∑
k=0

∑
µ

q
µ
k

∂G0

∂q
µ
k

= 2G0(t).

It means that G0(q) is homogeneous of degree two.

3.2. Overruled Lagrangian cones. Givental [6] gives a beautiful geomet-
ric reformation of the polarized genus zero axiomatic theory in terms of
Lagrangian cones in H. The new formulation is independent of the polar-
ization. That is, it is formulated in terms of the symplectic vector space
(H, Ω), without having to specify a half dimensional space Hq such that
H ∼= T∗Hq.

The descendent Lagrangian cones are constructed in the following way.
Denote by L the graph of the differential dG0:

L = {(p, q) ∈ T∗Hq : p
µ
k =

∂

∂q
µ
k

G0} ⊂ T∗Hq.

11 L is therefore considered as a formal germ of a Lagrangian submanifold
in the space (H, Ω).

Theorem 3.3. (H, G0) defines a polarized genus zero axiomatic theory if the cor-
responding Lagrangian cone L ⊂ H satisfies the following properties: L is a
Lagrangian cone with the vertex at the origin of q such that its tangent spaces L
are tangent to L exactly along zL.

A Lagrangian cone with the above property is also called overruled (de-
scendent) Lagrangian cones.

11One might have to consider it as a formal germ at q = −z (i.e. t = 0) of a Lagrangian
section of the cotangent bundle T∗Hq = H in the geometric theory, due to the convergence

issues of G0.
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Remark 3.4. In the geometric theory, FX
0 (t) is usually a formal function in t.

Therefore, the corresponding function in q would be formal at q = −1z.
Furthermore, the Novikov rings are usually needed to ensure the well-
definedness of FX

0 (t).

3.3. Twisted loop groups. The main advantage of viewing the genus zero
theory through this formulation is to replace Ht by H where a symplectic
structure is available and the polarization becomes inessential. Therefore
many properties can be reformulated in terms of the symplectic structure Ω

and hence independent of the choice of the polarization. This suggests that
the space of genus zero axiomatic Gromov–Witten theories, i.e. the space
of functions G0 satisfying the string equation, dilaton equation and TRRs,
has a huge symmetry group.

Definition 3.5. Let L(2)GL(H) denote the twisted loop group which consists
of End(H)-valued formal Laurent series M(z) in the indeterminate z−1 satisfying
M∗(−z)M(z) = I. Here ∗ denotes the adjoint with respect to (·, ·).

The condition M∗(−z)M(z) = I means that M(z) is a symplectic trans-
formation onH.

Theorem 3.6. [6] The twisted loop group acts on the space of axiomatic genus
zero theories. Furthermore, the action is transitive on the semisimple theories of a
fixed rank N.

When viewed in the Lagrangian cone formulation, Theorem 3.6 becomes
transparent and a proof is almost immediate.

What is a semisimple theory? I won’t really define it here, but just say
that the (geometric) quantum cohomology algebra is called semisimple if it
is diagonalizable with nonzero eigenvalues. Since our quantum products
are all commutative, it is equivalent to saying that no element is nilpotent.

3.4. Saito (or Frobenius) manifolds. Well, it seems unavoidable that I have
to give a definition of the Frobenius manifolds.12 The notion was introduced
by B. Dubrovin.

Definition 3.7. An (even) complex Saito (or Frobenius) manifold consists of
four mathematical structures (H, g, A, 1):

• H is a complex manifold of dimension N.
• g := (·, ·) is a holomorphic, symmetric, non-degenerate bilinear form on

the complex tangent bundle TH.
• A is a holomorphic symmetric tensor

A : TH ⊗ TH ⊗ TH → OH.

12This might be another misnomer, probably worse than the term “Hilbert schemes”.
As everybody knows, Hilbert schemes should have been called “Grothendieck scheme”, and it was probably

Grothendieck’s self-effacing personality which contributed to establishing the term. The so-called Frobenius
manifolds should have been called the “(Kyoji) Saito manifolds”, in the same way P. Deligne
coined the term “Shimura varieties”.
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• 1 is a holomorphic vector field on H.

A and g together define a commutative product ∗ on TH by

(X ∗Y, Z) := A(X, Y, Z),

where X, Y, Z are holomorphic vector fields.
The above quadruple satisfies the following conditions:

(1) Flatness: g is a flat holomorphic metric.
(2) Potential: H is covered by open sets U, each equipped with a commuting

basis of g-flat holomorphic vector fields Xi, i = 1, . . . , N, and a holomor-
phic potential function Φ on U such that

A(Xi, Xj, Xk) = XiXjXk(Φ).

(3) Associativity: ∗ is an associative product.
(4) Unit: The identity 1 is a g-flat unit vector field.

In geometric GWT, H = H∗(X) and ∗ is the quantum product. The (non-
equivariant) GWT carries additional information, the grading and divisor
axiom. Neither Givental’s nor Dubrovin’s formulation includes the divisor
axiom and it makes sense. For example, if one wishes to think about gen-
eralized cohomology, like K-theory, the divisor axiom has to be the first to
go.

As for the grading, it can be translated to the conformal structure for Saito
manifolds. Since everything is holomorphic, we will omit the adjective.

Definition 3.8. Let E be a vector field on H and LE be the Lie derivative. E is
called the Euler vector field if the following three conditions are satisfied:

(1) LE(g) = (2− D)g for a constant D,
(2) LE(∗) = r∗ for a constant r,
(3) LE(1) = v1 for a constant v.

A conformal Saito manifold is a Saito manifold equipped with an Euler vector
field.

Remark 3.9. One can define a family of flat connection

∇z,X(Y) := ∇X(Y)− 1

z
X ∗Y,

where ∇ is the Levi-Civita connection of the metric g. The fundamental
solution matrix of ∇z,X is an N × N matrix, with (independent) solutions
as column vector. Then the row vector in the component of 1 is the big J-
function. If these are defined in the geometric setting, where the divisor ax-
iom holds, then the small J-function is the restriction of the big J-function
to the divisorial directions H1(X). These will be discussed in the next sub-
section.
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3.5. Relation between axiomatic and the Saito structures. Consider the
intersection of the cone L with the affine space −z + zHp. The intersection
is parameterized by τ ∈ H via its projection to −z + H along Hp and can
be considered as the graph of a function from H toH called the J-function:

τ 7→ zJ(−z, τ) = −z + τ + ∑
k>0

Jk(τ)(−z)−k.

Lemma 3.10. J-functions satisfy the following two properties.

(1) ∂J/∂τδ form a fundamental solution of the pencil of flat connections de-
pending linearly on z−1:

(3.4) z
∂

∂τλ

(
∂J

∂τδ

)
= ∑

µ

A
µ
δλ(τ)

(
∂J

∂τµ

)
.

(2) z∂J/∂τ1 = J. Equivalently (A
µ
1λ) is the identity matrix.

Corollary 3.11. (1) A
µ
δλ = A

µ
λδ.

(2) The multiplications on the tangent spaces Tτ H = H given by

φδ ∗ φλ = ∑
µ

A
µ
δλ(τ)φµ

define associative commutative algebra with the unit 1.

The above ∗-multiplication and the inherited inner product on H satis-
fies the Frobenius property

(a ∗ b, c) = (a, b ∗ c)

and satisfy the integrability (zero curvature) condition imposed by (3.4).
This is what a Saito structure is defined earlier. Note that the above for-
mulation is equivalent to Dubrovin’s original definition: One can use the

generating function F0 to show that in fact A
µ
δλ = ∑ gµν 〈φν, φδ, φλ〉(τ) and

therefore F0(τ, 0, 0, ...) satisfies the WDVV-equation.
Conversely, given a Saito structure one recovers a J-function by looking

for a fundamental solution matrix to the system

z
∂

∂τλ
S = φλ ∗ S

in the form of an operator-valued series

S = 1 + S1(τ)z−1 + S2(τ)z−2 + ...

satisfying
S∗(−z)S(z) = 1

Such a solution always exists and yields the corresponding J-function Jδ(z, τ) =
[S∗(z, τ)]δ1 and the Lagrangian cone L enveloping the family of Lagrangian

spaces L = S−1(z, τ)Hq and satisfies the Properties in Theorem 3.3 A choice
of the fundamental solution S is called a calibration of the Saito structure.
The calibration is unique up to the right multiplication S 7→ SM by ele-
ments M = 1 + M1z−1 + M2z−2 + ... of the “lower-triangular” subgroup
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in the twisted loop group. Thus the action of this subgroup on our class
of cones L changes calibrations but does not change Saito Structures (while

more general elements of L(2)GL(H), generally speaking, change Saito struc-
tures as well).

Summarizing the above, one has

Theorem 3.12. Given a Lagrangian cone satisfying conditions in Theorem 3.3 is
equivalent to given a (formal) germ of Saito manifold.

4. RELATIVE GWI AND DEGENERATION FORMULA

A good reference, I was told, is Jun Li’s ICTP notes [12].

4.1. Relative GWT. Let Y be a smooth projective variety and E a smooth
divisor in Y. In order to define the relative stable morphisms, some nota-
tions must be introduced.

Let P1 := PE(NE|Y ⊕ OE) be the P1-bundle over E. The bundle P1 → E

has two disjoint sections. One is PE(NE|Y) and the other is PE(OE). The

former has normal bundle N∨, and is called the zero section. The latter has
normal bundle N, and is called the infinity section.

By gluing l copies of P1, with the infinity section of the j-th copy glued
to the zero section of (j + 1)-st copy, we can form Pl, a singular variety. Call
the zero/infinity section of Pl to be the zero/infinity section of the first/last
copy of the P1-bundle. They are denoted E0 and E∞ respectively.

Define Yl by gluing Y with Pl on E and E0. Define the automorphism of
Yl to be

Aut(Yl) := (C∗)l,

with C∗ acting on the P1-fibers.
The “topological type” of the relative stable morphisms are encoded in

the following data:

Γ = (g, n, β, µ)

with µ = (µ1, . . . , µρ) ∈ Nρ a partition of the intersection number

(β.E) = |µ| :=
ρ

∑
i=1

µi.

In the language of combinatoric, |µ| is the size of µ and ρ the length. The cor-

responding moduli stack, which we will define now, is denoted MΓ(Y, E).
The geometric points of this stack correspond to morphisms

C
f→ Yl → Y,

where C is an (n, ρ)-pointed, genus g prestable curve such that

f ∗(E∞) =
ρ

∑
i=1

µiyi.
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Here the first n ordered points are denoted xi and the last unordered ρ points
are denoted yi. We will call xi the ordinary (or interior) marked points, and
yi the relative marked points. In addition, f must satisfy a predeformability
condition:

• The preimage of singular locus of Yl must lie on the nodes of C;
• for any such node p, the two branches of C at p map to different

irreducible components of Yl, and they have the same contact orders
with the singular divisor at p.

Two such relative morphisms f : C → Yl and f ′ : C′ → Yl are called
isomorphic, if there are isomorphisms of pointed curves g : C → C′ and
h ∈ Aut(Yl), such that f ′ = h ◦ f ◦ g. A relative morphism is called stable if
there is no infinitesimal automorphism.

Generalizing the above setting to the families, one gets a moduli functor
and hence the corresponding moduli stack of stable relative morphisms,

which is what we denoted MΓ(Y, E). I assume that you will find this gen-
eralization more or less obvious except possibly the predeformability con-
dition. Let

C f−−−→ X −−−→ X× S

π

y
S

be a family of relative morphisms over S. Denote Spec(A) the (étale/formal)
neighborhood of a point s ∈ S, then

C|Spec(A)
∼= Spec

(
A[u, v]

(uv− λ1)

)
, X |Spec(A)

∼= Spec

(
A[x, y, z1, z2, ...]

(xy− λ2)

)
.

The map f in these local coordinates is of the following form:

x 7→ η1um, y 7→ η2vm,

with ηi units in A[u, v]/(uv− λ1) and no restriction on zi.
Now, we will take this on faith, as we have always been anyway, that

there is a well-defined virtual class for each MΓ(Y, E). For A ∈ H∗(Y)⊗n

and ε ∈ H∗(E)⊗ρ, the relative invariant of stable maps with topological
type Γ (i.e. with contact order µi in E at the i-th contact point) is

〈A | ε, µ〉(Y,E)
Γ :=

∫

[MΓ(Y,E)]virt
ev∗Y A ∪ ev∗E ε

where evY : MΓ(Y, E) → Yn, evE : MΓ(Y, E) → Eρ are evaluation mor-
phisms on marked points and contact points respectively.

For relative GWT, the slight generalization to invariants with discon-
nected domain curves, which we distinguish by • on the upper right corner,
is necessary for applications. If Γ = ∐π Γπ , the relative invariants

〈A | ε, µ〉•(Y,E)
Γ := ∏π

〈A | ε, µ〉(Y,E)
Γπ

are defined to be the product of the connected components.
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Remark 4.1. Some authors prefer to use the ordered ρ points. The moduli
there become finite covers of ours, and the differences can be easily ac-
counted for by combinatorial factors.

4.2. Degeneration formula. Even though we might not a priori be inter-
ested in the relative invariants, the following situation automatically leads
us to them.

Let π : W → A1 be a double point degeneration. That is, π is a flat

family, Wt are smooth for t 6= 0,13 and the central fiber W0 is a union A ∪ B
with A and B smooth, intersecting transversally. We know that GWT of Wt

are all isomorphic, as GWIs are deformation invariant. So in some sense
GWT of W0 “must” be equal to GWT of Wt. This is when the degeneration
formula applies.

Let us describe the degeneration formula in the case of the deformation

to the normal cone.14 Let X be a smooth variety and Z ⊂ X be a smooth
subvariety. Let W → A1 be its deformation to the normal cone.. That is, W
is the blow-up of X ×A1 along Z × {0}. Denote t ∈ A1 the deformation
parameter. Then Wt

∼= X for all t 6= 0 and W0 = Y1 ∪Y2 with

φ = Φ|Y1
: Y1 → X

the blow-up along Z and

p = Φ|Y2
: Y2 := PZ(NZ/X ⊕O)→ Z ⊂ X

the projective completion of the normal bundle. Y1 ∩Y2 =: E = PZ(NZ/X)
is the φ-exceptional divisor which consists of “the infinity part” of the pro-
jective bundle PZ(NZ/X ⊕O).

Since the family W → A1 is a degeneration of a trivial family, all coho-
mology classes α ∈ H∗(X, Z)⊕n have global liftings and the restriction α(t)
on Wt is defined for all t. Let ji : Yi →֒W0 be the inclusion maps for i = 1, 2.
Let {ei} be a basis of H∗(E) with {ei} its dual basis. {eI} forms a basis of
H∗(Eρ) with dual basis {eI} where |I| = ρ, eI = ei1 ⊗ · · · ⊗ eiρ

. The degener-

ation formula expresses the absolute invariants of X in terms of the relative
invariants of the two smooth pairs (Y1, E) and (Y2, E):

(4.1) 〈α〉Xg,n,β = ∑
I

∑
η∈Ωβ

Cη

〈
j∗1 α(0)

∣∣∣ eI , µ
〉•(Y1,E)

Γ1

〈
j∗2 α(0)

∣∣∣ eI , µ
〉•(Y2,E)

Γ2

.

Here η = (Γ1, Γ2, Iρ) is an admissible triple which consists of (possibly dis-
connected) topological types

Γi = ∐
|Γi|
π=1

Γπ
i

with the same partition µ of contact order under the identification Iρ of
contact points. The gluing Γ1 +Iρ Γ2 has type (g, n, β) and is connected. In

13One can shrink A1 if necessary.
14Or, degeneration to the normal cone, if you prefer.
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particular, ρ = 0 if and only if that one of the Γi is empty. The total genus gi,
total number of marked points ni and the total degree βi ∈ NE(Yi) satisfy
the splitting relations

g = g1 + g2 + ρ + 1− |Γ1| − |Γ2|,
n = n1 + n2,

β = φ∗β1 + p∗β2.

The constants Cη = m(µ)/|Aut η|, where m(µ) = ∏ µi and Aut η =
{ σ ∈ Sρ | ησ = η }. (When a map is decomposed into two parts, an
(extra) ordering to the contact points is assigned. The automorphism of the
decomposed curves will also introduce an extra factor. These contribute
to Aut η.) We denote by Ω the set of equivalence classes of all admissible
triples; by Ωβ and Ωµ the subset with fixed degree β and fixed contact order
µ respectively.

In general, the degeneration formula applies to the more general setting

of double point degeneration.15 I trust that you can work out the form of
the general degeneration formula, which is very similar to (4.1). However,
in the general case, the cohomology classes in a fiber might not lift to the
family, so the “families of classes” α(t) have to be part of the initial data.
We will not use it explicitly and won’t say anything more. The interested
parties can go ahead and read it in [12].

Question 4.2. Can one generalize Givental’s axiomatic framework to the relative

setting, and furthermore incorporate the degeneration formula?16

5. ORBIFOLDS AND ORBIFOLD GWT

A good reference for this section is [1]. By orbifolds, we mean smooth
separated Deligne–Mumford stacks of finite type over C.

5.1. Chen–Ruan cohomology. Let X be an orbifold. Its inertia stack IX is
the fiber product

IX −−−→ X
y ∆

y

X
∆−−−→ X × X,

where ∆ is the diagonal morphism. One can think of a point of IX as a pair
(x, g), where x ∈ X and g ∈ Autx(X). There is an involution

I : IX → IX

which sends (x, g) to (x, g−1).

15This has recently been generalized to even more general situation using log geometry.
16I have posted this question to many, but never to a group of eager students. So I am

hopeful....
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The orbifold cohomology group of X is defined to be the cohomology
group of IX:

H∗CR(X) := H∗(IX).

For each component Xj of IX, we can assign a rational number, called
the age. Pick a geometric point (x, g) in the component. g acts on vec-
tor space TxX cyclically and decompose it into eigenspaces Vj with eigen-

values exp(i2π
j
r ). The age of the component is defined to be ∑j

j
r dim Vj.

The Chen–Ruan grading of the H∗CR(X) is shifted by the age. That is, if

α ∈ Hk(Xj) ⊂ H∗(IX), then

degCR(α) := k + age(Xj).

The Poincaré pairing is defined by

α1 ⊗ α2 7→
∫

IX
α1 ∪ I∗(α2).

Note that the pairing vanishes unless ∑j degCR(αj) = dim X.

Example 5.1. Weighted projective stack Pw is the stack quotient

Pw :=
[(

Ar+1 \ 0
)

/C∗
]

,

where C∗ acts with weights (−w0,−w1, . . . ,−wr). Components of the iner-
tia stack are indexed by

F = { k

wj
|0 ≤ k < wj and 0 ≤ j ≤ r},

such that
IPw = ∐ f∈FP(V f )

with

V f :={(z0, . . . , zr) ∈ Ar+1|zj = 0 unless wj f ∈ Z}
P(V f ) =

[(
V f \ 0

)
/C∗

]
,

such that P(V f ) is the locus of points of Pw with isotropy group containing

ei2π f .
The involution I maps the component P(V f ) to the component P(V〈− f 〉),

where
〈− f 〉 := (− f )− ⌊(− f )⌋

is the fractional part of − f .

Exercise 5.2. Let X = [Y/G] be a global quotient of a smooth projective
variety Y by a finite group G. Show that

IX = ∐(g)[Y
g / C(g)],

where the disjoint union runs over conjugacy classes and C(g) denotes the
centralizer of g.
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5.2. orbifold GWT. I will have to be even more evasive here. The moduli
for stable morphisms to orbifolds and their virtual classes exist and enjoy
similar properties (axioms) of GWT. The only significant revisions are:

1. The domain curves allow stacky structures as well. They are call
twisted curves. Basically, an n-pointed twisted curve is a connected one di-
mensional orbifold such that

• its coarse moduli scheme is an n-pointed prestable curve;
• its stacky structures only happen at the marked points and at the

nodes;
• those stacky structures are cyclic quotient, étale locally like [A1/µr];
• it has balanced cyclic quotient stack structures at nodes, étale locally

like [
Spec

C[x, y]

(xy)
/µr

]
,

where ζ ∈ µr acts as

ζ : (x, y) 7→ (ζx, ζ−1y).

2. An n-pointed twisted stable map f must be representable. Roughly, f
sends automorphisms of x to those of f (x), and representability means that
it is injective. Naturally, we require that the induced morphism f̄ at the
level of coarse moduli schemes is stable in the sense defined earlier.

3. The definition of the evaluation morphisms also need some adjust-
ments. Given a twisted stable map f , each marked point xi determines a
geometric point ( f (xi), g), where f is defined as follows/ Near xi the curve
is isomorphic to [A1/µr]. Since f is representable, it determines an injective
homomorphism µr → Aut f (xi). Since we work over C, µr has a preferred

generator ζ = ei2π/r. g is then the image of this generator under the above
injective homomorphism. Therefore, it seems that we have a well-defined
evaluation morphism to the inertia stack from each marked point. How-
ever, the above definition doesn’t work in families! There are ways around
it, fortunately, as were explained by Abramovich–Graber–Vistoli. For our
purpose, we will pretend that the above evaluation morphisms actually
work.

4. In general the moduli are disconnected and the virtual dimension of
the components are different. On the substack of twisted stable morphisms
where the evaluation of the j-th marked point maps Xj, the virtual dimen-
sion

vdim(Mg,n(X, β)) := −KX.β + (1− g)(dim X− 3) + n−∑
j

age(Xj).

With the above revisions, one can then define the orbifold GWT as be-
fore.

Exercise 5.3. Check that a similar grading axiom holds for orbifold GWT by
the virtual dimension formula given above.
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Similarly, we can define the quantum rings for orbifolds. I have coyly
avoided talking about the “classical cup product” in this case, as the “right”
definition of that is to use the degree zero restriction of the quantum ring.
Cf. Exercise 2.2. The latter is called Chen–Ruan product.

Remark 5.4. We don’t have nearly as well-developed tools in computing
orbifold GWIs. All the tools in the scheme case are applicable, but they are
not nearly as powerful. Check out however the progress by Corti et. al..

6. CREPANT TRANSFORMATION CONJECTURE

The main references are [2, 3].

6.1. K-equivalence aka crepant transformation. Let X and X′ be two smooth

varieties, or Deligne–Mumford stacks (orbifolds). We say they are K-equivalent17

if there are birational morphisms φ : Y → X and φ′ : Y → X′ such that
φ∗KX ∼ φ∗KX (linearly equivalence of divisors). We also say they are
crepant equivalent, or the birational transformation from one to the other

crepant transformation.18

Why is K-equivalence relevant to GWT? Let us consider the functoriality
of GWI. Since the cohomology theories are supposed to be functorial with
respect to pullbacks, one can ask: “Is quantum cohomology functorial with
respect to pullbacks?” Let us see how the functoriality can possibly hold.

Let φ : Y → X be a morphism. To get GWIs, we need αi ∈ H∗(X) and
β ∈ NE(Y). Then one can check whether it is possible at all that

〈⊗φ∗αi〉Yg,n,β
?
= 〈⊗αi〉Xg,n,φ∗β?

This can only happen if the virtual dimension of Mg,n(Y, β) is the same as

Mg,n(X, φ∗β), since the cohomology degrees are the same. Then a quick
look into (1.3) should tell us that, in general, it implies that dim Y = dim X
and KY.β = KX.φ∗β. This leads us “naturally” to K-equivalence (crepant
transformation). The statement of functoriality for the K-equivalence is/will
be known as the crepant transformation conjecture, which we will explain.

But, you remember K-equivalence will never happen between birational
morphisms (blowing-ups) of smooth varieties, following from the blowing-
up formula for canonical divisors. See e.g. Hartshorne. However, it does
happen for the birational maps, or transformations, X 99K X′. The most
common cases of K-equivalence have the following diagram

X
ψ

fflffl
?

?

?

?

?

?

?

X′
ψ′

­­~
~

~

~

~

~

~

~

X̄

17The term was introduced by C.L. Wang and independently by V. Batyrev.
18I was told that the word “crepant” was introduced by M. Reid as “no dis-crepancy”.
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which include the flops and crepant resolutions. I will call it K-equivalence
of flopping type, until I hear a better suggestion. In fact, for general K-
equivalence, I don’t know if CTC should hold. For K-equivalence of flop-
ping type, there is a much better chance that CTC will hold as we will see
soon. In any case, all proven (nontrivial) examples of CTC are of this type.

6.2. Flops. Let me first say what a flop is. ψ must be a flopping contraction,
which means that it is proper, birational, small in the sense of Mori (i.e. the
exceptional locus has codimension at least two in X) such that X̄ a normal
variety, and KX is numerically ψ-trivial.

We will only be discussing the ordinary Pr flops. Since we require both
X and X′ to be smooth, this class of flops seem to provide fertile ground
for testing ideas. First, let us understand a little better of the geometry of
ordinary flops.

Recall that ψ : X → X̄ is the flopping contraction. Let ψ̄ : Z → S be the
restriction map on the exceptional loci. Assume that

(i) ψ̄ equips Z with a Pr-bundle structure ψ̄ : Z = PS(F)→ S for some
rank r + 1 vector bundle F over a smooth base S,

(ii) NZ/X |Zs
∼= OPr(−1)⊕(r+1) for each ψ̄-fiber Zs, s ∈ S.

It is not hard to see that the corresponding ordinary Pr flop f : X 99K X′ ex-
ists under the above two conditions. It can be constructed by first blowing
up Z in X. That is, φ : Y := BLZ X → X. The exceptional divisor for φ is E a
Pr ×Pr-bundle over S. Then one blows down E along another fiber direc-
tion φ′ : Y → X′, with exceptional loci ψ̄′ : Z′ = PS(F′) → S for F′ another

rank r + 1 vector bundle over S and also NZ′/X′ |ψ̄′−fiber
∼= OPr(−1)⊕(r+1).19

We start with the following elementary lemma.

Lemma 6.1. Let p : Z = PS(F) → S be a projective bundle over S and V → Z
a vector bundle such that V|p−1(s) is trivial for every s ∈ S. Then V ∼= p∗F′ for

some vector bundle F′ over S.

Proof. Recall that Hi(Pr,O) is zero for i 6= 0 and H0(Pr,O) ∼= C. By the
theorem on Cohomology and Base Change we conclude immediately that
p∗O(V) is locally free over S of the same rank as V. The natural map be-
tween locally free sheaves p∗p∗O(V) → O(V) induces isomorphisms over
each fiber and hence by the Nakayama Lemma it is indeed an isomorphism.
The desired F′ is simply the vector bundle associated to p∗O(V). ˜

Now apply the lemma to V = OPS(F)(1)⊗ NZ/X , and we conclude that

NZ/X
∼= OPS(F)(−1)⊗ ψ̄∗F′.

Therefore, on the blow-up φ : Y = BlZX → X,

NE/Y = OPZ(NZ/X)(−1).

19The reason that one can perform this blowing-down operation is an elementary calcu-
lation in the Mori theory, which I gleefully omit.
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From the Euler sequence which defines the universal sub-line bundle we
see easily that OPZ(L⊗F)(−1) = φ̄∗L ⊗ OPZ(F)(−1) for any line bundle L
over Z. Since the projectivization functor commutes with pull-backs, we
have

E = PZ(NZ/X) ∼= PZ(ψ̄∗F′) = ψ̄∗PS(F′) = PS(F)×S PS(F′).

For future reference we denote the projection map Z′ := PS(F′) → S by
ψ̄′ and E → Z′ by φ̄′. The various sets and maps are summarized in the
following commutative diagram.

E = PS(F)×S PS(F′) ⊂ Y
φ̄

ttii

i

i

i

i

i

i

i

i

i

i

i

i

i

i

φ̄′

))T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Z = PS(F) ⊂ X

ψ̄
**U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

Z′ = PS(F′)

ψ̄′
uujj

j

j

j

j

j

j

j

j

j

j

j

j

j

j

S ⊂ X̄

with normal bundle of E in Y being

NE/Y = OPZ(NZ/X)(−1) = OPZ(OZ(−1)⊗ψ̄∗F′)(−1)

= φ̄∗OPS(F)(−1)⊗OPZ(ψ̄∗F′)(−1)

= φ̄∗OPS(F)(−1)⊗ φ̄′∗OPS(F′)(−1).

The upshot is that an ordinary Pr flop is locally, nearly the exceptional
loci, determined by two rank r + 1 vector bundles over a smooth variety S.

Remark 6.2. Notice that the bundles F and F′ are uniquely determined up
to a twisting by a line bundle. Namely, the pair (F, F′) is equivalent to
(F⊗ L, F′ ⊗ L∗) for any line bundle L on S.

An ordinary flop is called simple if S is a point. In this case, Z ∼= Z′ ∼= Pr

and E ∼= Pr ×Pr.

Theorem 6.3. For an ordinary Pr flop f : X 99K X′, the graph closureF := [Γ̄ f ]
(induces a correspondence which) identifies the Chow motives. In particular, F
preserves the Poincaré pairing on cohomology groups.

It is important to me that CTC has to specify the identification of H∗(X)
and H∗(X′) in the very beginning. Furthermore, this identification only
makes geometric sense if it comes from some sort of correspondence, like
above, or of Fourier–Mukai type. With this in mind, we can state the CTC
as follows.

Conjecture 6.4 (CTC for ordinary flops). GWT is invariant under ordinary
flops, after an analytic continuation, determined by F , over the Novikov variable

qℓ corresponding to the rational curve contracted by ψ.
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The important thing here is that CTC is completely determined by F .

That includes, in particular, the analytic continuation.20 Therefore, GWT
of X′ is uniquely determined by GWT of X, and vice versa, once we knowF . This is deterministic point of view. There is no variable to tweak, no
parameter to unwind. Unlike the Standard Model in physics, there are at least 19 “free” parameters!

In this case X and X′ both have one contracted curve ℓ and ℓ′, andF (ℓ) = −ℓ′. Therefore, the analytic continuation should take qℓ to q−ℓ′ .
However, the Novikov variable would only makes sense for effective curve

classes: q−ℓ′ does not make sense naively. Therefore, one has to prove that
the generating functions, when summing over all degrees, should be an-
alytic functions in these variables. Otherwise, CTC wouldn’t make sense.
One may think that there is a “master function”, analytic in ∈ P1, such
that the GW generating functions of X and of X′ are series expansions at

= 0 and = ∞, with local expansion variables qℓ and qℓ′ respectively.

Example 6.5.

∑
d=0

qdℓ =
1

1− qℓ
.

Now set qℓ to be q−ℓ′ on the RHS and re-expand at qℓ′ = 0:

1

1− q−ℓ′ =
qℓ′

qℓ′ − 1
= − ∑

d′=1

qd′ℓ′ .

Theorem 6.6. CTC for ordinary flops holds for simple flops in all genera, and
genus zero in general.

The analytic continuation is strictly necessary here. However, in some
cases, the analytic continuation is “trivial”, as in the case of Mukai flops,
when the GWIs associated with the flopping curve vanish.

A contraction (ψ, ψ̄) : (X, Z) → (X̄, S) is of Mukai type if Z = PS(F) →
S is a projective bundle under ψ̄ and NZ/X = T∗Z/S. The corresponding

algebraic flop f : X 99K X′ exists and its local model can be realized as a
slice of an ordinary flop. But, we will not pursue this...

Theorem 6.7. Let f : X 99K X′ be a Mukai flop. Then X and X′ are diffeomor-
phic, and have isomorphic Hodge structures and full Gromov–Witten theory. In
fact, any local Mukai flop is a limit of isomorphisms and all quantum corrections
attached to the extremal ray vanish.

These results are joint works with H.W. Lin and C.L. Wang.

6.3. crepant resolution. If X is smooth, and X̄ has only Gorenstein quotient
singularity, such that ψ∗KX̄ = KX, then we say that ψ is a crepant resolution.

20This is where we deviate most significantly from the formulation of Bryan–Graber. We
ask an even stronger form than their formulation requires.
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X̄ has another “resolution” by an orbifold X′. That is, the “coarse moduli
scheme” of X′ is X̄. The Gorenstein property means that the isotropy group
at any point of X′ acts trivially on KX′ .

First note that ψ here is very different from the flop case. While for flops,
ψ is by definition small, here ψ must be divisorial (contracting divisors).
This can be seen by the following simple argument. Since X̄ has only quo-
tient singularities, it must be Q-factorial. Suppose ψ is small. Take an ample
divisor A on X then ψ∗ψ∗(A) = A. On the other hand, any pullback divisor
cannot be ample. We then have a contradiction, which means that ψ must
be divisorial.

CTC is often named crepant resolution conjecture (CRC) in this special case.
Originally, the idea that functoriality should happen in this case comes
from physics. Y. Ruan was the first to formulate a mathematical state-
ment of CRC, which was then refined and expanded by many others. The
most important observation, by Coates, Corti, Iritani, Tseng, is that the hard
Lefschetz property does not hold in general for orbifolds, and hence, one
should not expect the strong functoriality to hold in general. So one has 2
choices: Either one can work in the subcategory the HL orbifolds, or one
has to be content with weak(er) functoriality.

What is the hard Lefschetz property? Since X̄ is projective, it has a very
ample divisor ω. One can use ω on X′ and ask whether the multiplicative
operator by ω, denoted Lω, satisfies the usual hard Lefschetz property:

Lk
ω : H

(n−k)/2
CR (X′)

∼=→ H
(n+k)/2
CR (X′).

J. Fernandez proves that this is equivalent to the following condition.

Definition 6.8. An orbifold X′ satisfies the hard Lefschetz (HL) condition if the
involution I : IX′ → IX′ preserves the age.

Let ℓi be the curves contracted by ψ. The strong version of CTC:

Conjecture 6.9. Suppose that the orbifold X′ satisfies the HL condition, and X̄
admits a crepant resolution by X. There exists a graded linear isomorphism F :
H∗(X) → H∗CR(X′) and specific algorithm of specializing the Novikov variables

qℓi = ci, such that the ancestor potential of X will be equal to that of X′ after F ,

and analytic continuations on qℓi before specializing them.

Remark 6.10. Firstly, the generating function should be analytic in qℓi ’s, in
order for the specialization to make sense. (A priori, it is only a formal

function in Novikov variables.) Then the specialization of qℓi should be
consistent with the F . For example, if F (ℓi) = ηi is an “orbifold point
class” of CR degree one, ηi can be represented as a root of unity to which

qℓi should specialize. There are tricky issues of the (different) analytic continuations which we will not

discuss, because I don’t know much about them.

How canF be determined? As we learned in the scheme case, it should
come from some kind of correspondence. In the case of orbifolds, the cor-
respondence should look simpler in K-theory, so it is useful to take that
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perspective. Why? For example, the K-theory of [Y/G] is nothing but the
G-equivariant K-theory on Y. The Riemann–Roch, on the other hand, will

take K([Y/G]) to H∗CR([Y/G]), as discovered by Tetsuro Kawasaki.21 There-
fore the inertia stack I[Y/G] must be involved in the cohomology theory
and an easy correspondence in K-theory can “descend” to a complicated-
looking one in cohomology theory.

Remark 6.11. H. Iritani finds convincing evidences of this folklore belief. As
expected, that is also a good way to determine the specialization. Unfortunately,

I don’t understand very well of his theories, but one can ask him during the conference week.

6.4. HLK. But there are other K-equivalences of the flopping type which
might possess the strong form of CTC. For example, one can study the flops
for orbifolds. That is, both X and X′ are orbifolds. It would be too stringent
to require both X and X′ satisfy HL condition. Once one thinks about this,
one thing should be immediately clear: One only needs the neighborhoods
of the exceptional loci to satisfy HL condition! I will call this HLK condition. I

started to talk about this notion since 200722 but it did not take hold until
H. Iritani subsequently proposed an (independent) generalization of this
notion. In any case, the HL condition is definitely too stringent for any
comparison of orbifolds. HLK, or Iritani’s generalization, I think, is the
right notion.

Note that the orbifold flops do not really fit into (the narrowly defined)
CRC as ψ are small. However, one can still talk about CTC. Two groups have

been working on that, independently and along different directions: Bohui Chen and co. are one; Cadman, Jiang and

myself is another.

6.5. When HLK doesn’t hold. So far, we have been talking about the case
when HLK holds. There are vast cases when HLK doesn’t hold, but there
are still interesting things one can say about the (weak) functoriality. This
has been worked out by CCIT and Ruan in the following form [3] in the
setting of crepant resolution. That is, X′ is an orbifold and X̄ its coarse
moduli scheme. ψ : X → X̄ is a crepant resolution. Recall that ψ contracts
divisors.

Conjecture 6.12. There is a degree-preserving C[z, z−1]]-linear symplectic iso-
morphism F : HX → HX′ and a choice of analytic continuations of LX and LX′

such thatF (LX) = LX′ . Furthermore, F satisfies

(1) F (1X) = 1X′ .
(2) F preserves the ring structure for the contracted divisors of ψ and ψ′ (dual

to ℓ and ell′).
(3) F (H+

X )⊕H−X′ = HX′ .
(4) F (φµ) does not involve Novikov variables.

21It is fair to say that Kawasaki was the first one to point out, in 1979, that the orbifold
cohomology groups must be the cohomology of inertia stacks.

22For example in a KIAS conference in 2008.
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Remark 6.13. The second condition does not “fit” into CTC for flops, as the
flopping contractions are small.

6.6. How to prove CTC (for ordinary flops)? How to prove CTC in the
HLK case? Well, one obvious way, of course, is to compute both sides and
then, perhaps after tweaking a few parameters, identify them. I have noth-
ing to say about it. What I am particularly interested in is when neither
side can be computed explicitly, even in principle. An ordinary flop with
an arbitrary base manifold S present such a challenge, so I will use it as a
guiding example.

Now X and X′ are birational. Naively, one may wish to “decompose”
the varieties into the neighborhoods of exceptional loci and their comple-
ments. As the latter’s are obviously isomorphic, one is reduced to study
the local case. The degeneration formula provides a rigorous formulation
of the above naive picture. Hence, it is enough to prove CTC for projective
local models, which are related by the same type of crepant transforma-
tions. Of course, there is an issue about the relative invariants and absolute
invariants. Those have to be worked out as well.

If the local models are computable, one might be able to compute both
sides and check. In the case of ordinary flops, the local models are de-
termined by a pair of arbitrary vector bundles F, F′ of rank r + 1 over an
arbitrary base S. There is no hope of computing it explicitly as there is no
explicit geometry even for the local models, which are double projective
bundles. Nevertheless, one can take the following steps.

First, by suitable degeneration, one can reduce the statement to the spe-

cial case when F and F′ are split bundles.23

Then one can use localization theorem. Note that there is a torus T action
on the double projective bundles. The fixed loci are sections of S. So the
GWIs of the local models are in principle reducible to GWIS of S. This
localization formulation has been worked out by J. Brown (and Givental).

APPENDIX A. QUANTIZATION AND HIGHER GENUS AXIOMATIC THEORY

A.1. Preliminaries on quantization. To quantize an infinitesimal symplec-
tic transformation, or its corresponding quadratic hamiltonians, we recall
the standard Weyl quantization. A polarization H = T∗Hq on the sym-
plectic vector space H (the phase space) defines a configuration space Hq.
The quantum “Fock space” will be a certain class of functions f (h̄, q) onHq

(containing at least polynomial functions), with additional formal variable
h̄ (“Planck’s constant”). The classical observables are certain functions of
p, q. The quantization process is to find for the classical mechanical sys-
tem onH a “quantum mechanical” system on the Fock space such that the

23Actually, by blowing up and blowing down, one can reduce further to the case when
(all line bundle factors in) F and F′ are globally generated. However, this step isn’t used in
the proof.
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classical observables, like the hamiltonians h(q, p) on H, are quantized to

become operators ĥ(q,
∂

∂q
) on the Fock space.

Let A(z) be an End(H)-valued Laurent formal series in z satisfying

(A(−z) f (−z), g(z)) + ( f (−z), A(z)g(z)) = 0,

then A(z) defines an infinitesimal symplectic transformation

Ω(A f , g) + Ω( f , Ag) = 0.

An infinitesimal symplectic transformation A of H corresponds to a qua-

dratic polynomial24 P(A) in p, q

P(A)( f ) :=
1

2
Ω(A f , f ).

Choose a Darboux coordinate system {qi
k, pi

k}. The quantization P 7→ P̂
assigns

1̂ = 1, p̂i
k =
√

h̄
∂

∂qi
k

, q̂i
k = qi

k/
√

h̄,

p̂i
k p

j
l = p̂i

k p̂
j
l = h̄

∂

∂qi
k

∂

∂q
j
l

,

p̂i
kq

j
l = q

j
l

∂

∂qi
k

,

q̂i
kq

j
l = qi

kq
j
l/h̄,

(A.1)

In summary, the quantization is the process

A 7→ P(A) 7→ [P(A)
inf. sympl. transf. 7→ quadr. hamilt. 7→ operator on Fock sp..

It can be readily checked that the first map is a Lie algebra isomorphism:
The Lie bracket on the left is defined by [A1, A2] = A1A2 − A2A1 and the
Lie bracket in the middle is defined by Poisson bracket

{P1(p, q), P2(p, q)} = ∑
k,i

∂P1

∂pi
k

∂P2

∂qi
k

− ∂P2

∂pi
k

∂P1

∂qi
k

.

The second map is not a Lie algebra homomorphism, but is very close to
being one.

Lemma A.1.

[P̂1, P̂2] = \{P1, P2}+ C(P1, P2),

where the cocycle C, in orthonormal coordinates, vanishes except

C(pi
k p

j
l , qi

kq
j
l) = −C(qi

kq
j
l , pi

k p
j
l) = 1 + δijδkl.

24Due to the nature of the infinite dimensional vector spaces involved, the “polynomi-
als” here might have infinite many terms, but the degrees remain finite.
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Example A.2. Let dim H = 1 and A(z) be multiplication by z−1. It is easy to
see that A(z) is infinitesimally symplectic.

P(z−1) =− q2
0

2
−

∞

∑
m=0

qm+1pm

\P(z−1) =− q2
0

2
−

∞

∑
m=0

qm+1
∂

∂qm
.

(A.2)

Note that one often has to quantize the symplectic instead of the infin-
itesimal symplectic transformations. Following the common practice in
physics, define

(A.3) [eA(z) := e
[A(z),

for eA(z) an element in the twisted loop group.

A.2. τ-function for the axiomatic theory. Let X be the space of N points
and HN pt := H∗(X). Let Ti be the delta-function at the i-th point. Then
{Ti}N

i=1 form an orthonormal basis and are the idempotents of the quantum
product

Ti ∗ Tj = δijTi.

The genus zero potential for N points is nothing but a sum of genus zero
potentials of a point

F
N pt
0 (t1, . . . , tN) = F

pt
0 (t1) + . . . + F

pt
0 (tN).

In particular, the genus zero theory of N points is semisimple.
By Theorem 3.6, any semisimple genus zero axiomatic theory T of rank

N can be obtained from HN pt by action of an element OT in the twisted
loop group. By Birkhoff factorization, OT = ST(z−1)RT(z), where S(z−1)
(resp. R(z)) is a matrix-valued function in z−1 (resp. z).

In order to define the axiomatic higher genus potentials GT
g for the semisim-

ple theory T, one first introduces the “τ-function of T”.

Definition A.3. [5] Define the axiomatic τ-function as

(A.4) τT
G := ŜT(R̂Tτ

N pt
GW ),

where τ
N pt
GW is defined as

τX
GW := e∑

∞
g=0 h̄g−1FX

g .

Define the axiomatic genus g potential GT
g via the formula

(A.5) τT
G =: e∑

∞
g=0 h̄g−1GT

g .

Remarks. (i) It is not obvious that the above definitions make sense. The

function ŜT(R̂TτN pt) is well-defined, due to some finiteness properties of
τpt, called the (3g− 2)-jet properties [5]. The fact that log τT

G can be written
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as ∑
∞
g=0 h̄g−1(formal function in t) is also nontrivial. The interested readers

are referred to the original article [5] or [10] for details.
(ii) What makes Givental’s axiomatic theory especially attractive are the

facts that

(a) It works for any semisimple Frobenius manifolds, not necessarily
coming from geometry.

(b) It enjoys properties often complementary to the geometric theory.

APPENDIX B. DEGENERATION ANALYSIS FOR SIMPLE FLOPS

As mentioned earlier, the local models for simple flops are double pro-
jective bundles over projective spaces, and are toric. So at least in principle,
they are computable. In this section, we explain in details how to reduce a
statement of CTC to the local models.

B.1. The degeneration analysis. Given an ordinary flop f : X 99K X′, we
apply degeneration to the normal cone to both X and X′. Then Y1

∼= Y′1
∼= Y

and E = E′, by the definition of ordinary flops. The following notations will
be used

Y := BlZX ∼= Y1
∼= Y′1, Ẽ := PZ(NZ/X ⊕O), Ẽ′ := PZ′(NZ′/X′ ⊕O).
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Y Y

Ẽ Ẽ′

Z′Z

Ẽ

Y

E E′

Ẽ′

Y

•
0

•
0

flop

E ∼= E′

W0 Wt
∼= X W ′0 W ′t ∼= X′

Degeneration to the normal cone for ordinary flops.

Remark B.1. For simple Pr flops, Y2
∼= PPr(O(−1)⊕(r+1) ⊕O) ∼= Y′2. How-

ever the gluing maps of Y1 and Y2 along E for X and X′ differ by a twist
which interchanges the order of factors in E = Pr × Pr. Thus W0 6∼= W ′0
and it is necessary to study the details of the degenerations. In general, f

induces an ordinary flop f̃ : Y2 99K Y′2 of the same type which is the local
model of f .

B.2. Liftings of cohomology insertions. Next we discuss the presentation
of α(0). Denote by ι1 ≡ j : E →֒ Y1 = Y and ι2 : E →֒ Y2 = Ẽ the natural
inclusions. The class α(0) can be represented by (j∗1 α(0), j∗2 α(0)) = (α1, α2)
with αi ∈ H∗(Yi) such that

(B.1) ι∗1α1 = ι∗2α2 and φ∗α1 + p∗α2 = α.

Such representatives are called liftings which are by no means unique. The
flexibility on different choices will be useful.

One choice of the lifting is

(B.2) α1 = φ∗α and α2 = p∗(α|Z),
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since they satisfy the conditions (B.1): (α1, α2) restrict to the same class in E
and push forward to α and 0 in X respectively. More generally:

Lemma B.2. Let α(0) = (α1, α2) be a choice of lifting. Then

α(0) = (α1 − ι1∗e, α2 + ι2∗e)

is also a lifting for any class e in E of the same dimension as α. Moreover, any two
liftings are related in this manner. In particular, α1 and α2 are uniquely determined
by each other.

Proof. The first statement follows from the facts that

ι∗1ι1∗e = (e.c1(NE/Y))E = −(e.c1(NE/Ẽ))E = −ι∗2 ι2∗e

and −φ∗ι1∗e + p∗ι2∗e = 0 (since φ ◦ ι1 = p ◦ ι2 = φ̄ : E → Z).
For the second statement, let (α1, α2) and (a1, a2) be two liftings. From

φ∗(α1 − a1) = −p∗(α2 − a2) ∈ H∗(Z),

we have that φ∗φ∗(α1 − a1) is a class in E. Hence α1 − a1 = ι1∗e for e ∈
H∗(E). It remains to show that if (a1, a2) and (a1, ã2) are two liftings then
a2 = ã2. Indeed by (B.1), ι∗2(a2 − ã2) = 0. Hence by Lemma B.3 below
z := a2 − ã2 ∈ i∗H∗(Z). By (B.1) again z = p∗z = p∗(a2 − ã2) = 0. ˜

For an ordinary flop f : X 99K X′, we compare the degeneration ex-
pressions of X and X′. For a given admissible triple η = (Γ1, Γ2, Iρ) on the
degeneration of X, one may pick the corresponding η′ = (Γ′1, Γ′2, I ′ρ) on the

degeneration of X′ such that Γ1 = Γ′1. Since

φ∗α− φ′∗Fα ∈ ι1∗H
∗(E) ⊂ H∗(Y),

Lemma B.2 implies that one can choose α1 = α′1. This can be done, for
example, by modifying the choice of (B.2) j∗1 α(0) = φ∗α and j′∗1 Fα(0) =
φ′∗Fα by adding suitable classes in E to make them equal. The above pro-
cedures identify relative invariants on the Y1 = Y = Y′1 from both sides
term by term, and we are left with the comparison of the corresponding
relative invariants on Ẽ and Ẽ′. The following simple lemma is useful.

Lemma B.3. Let Ẽ = PZ(N ⊕ O) be a projective bundle with base i : Z →֒ Ẽ
and infinity divisor ι2 : E = PZ(N) →֒ Ẽ. Then the kernel of the restriction map
ι∗2 : H∗(Ẽ)→ H∗(E) is i∗H∗(Z).

Proof. i∗H∗(Z) obviously lies in the kernel of ι∗2. The fact it is the entire
kernel can be seen, for example, by a dimension count. ˜

The ordinary flop f induces an ordinary flop

f̃ : Ẽ 99K Ẽ′

on the local model. Moreover f̃ may be considered as a family of simple

ordinary flops f̃t : Ẽt 99K Ẽ′t over the base S, where t ∈ S and Ẽt is the fiber
of Ẽ → Z → S etc.. Denote again by F the cohomology correspondence
induced by the graph closure. Then
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Proposition B.4 (Cohomology reduction to local models). Let f : X 99K X′

be a Pr flop over base S with dim S = s. Let α ∈ H∗(X) with liftings α(0) =
(α1, α2) andFα(0) = (α′1, α′2). Then

α1 = α′1 ⇐⇒ Fα2 = α′2.

Proof. Let α ∈ H2l(X) with l ∈ 1
2N. If l > dim Z = r + s then α|Z = 0. By

(B.2) and Lemma B.2, all liftings take the form α(0) = (α− ι1∗e, ι2∗e) andFα(0) = (α− ι′1∗e
′, ι′2∗e

′) for e, e′ being classes in E. In this case the proof
is trivial since F is the identity map on H∗(E). So we may assume that
l ≤ r + s.

(⇒) From the contact order condition ι∗2α2 = ι∗1α1 = ι′∗1 α′1 = ι′∗2 α′2 and the

fact that f̃ is an isomorphism outside Z, we get

ι′∗2 (Fα2 − α′2) = F ι∗2α2 − ι′∗2 α′2 = ι∗2α2 − ι′∗2 α′2 = 0.

ThusFα2 − α′2 = i′∗z
′ for some z′ ∈ H2(l−(r+1))(Z′) (where i′ : Z′ →֒ Ẽ′) by

Lemma B.3 and the fact that codimẼ′Z
′ = r + 1.

For simple flops, s = 0 and then l − (r + 1) ≤ s− 1 < 0. So z′ = 0 and

we are done. In general we restrict the equation to each fiber f̃t : Ẽt → Ẽ′t.
Since Γ̄ f̃ |t = Γ̄ f̃t

, by the case of simple flops we get (Fα2 − α′2)|Ẽ′t = 0 for

all t ∈ S. That is, z′ is a class supported in the fiber of p′ : Z′ → S. But then
codimẼ′z

′ ≥ s + r + 1 > l, which implies that z′ = 0.
(⇐) For ease of notations we omit the embedding maps of E into Y, Ẽ and

Ẽ′. By (B.2) and Lemma B.2 we have α1 = φ∗α− e1 and α′1 = φ′∗Fα− e′1
for some classes e1, e′1 in E. Thus α′1 = α1 − e for some class e in E. By
Lemma B.2 again α(0) has a lifting (α1− e, α2 + e) = (α′1, α2 + e) and by the
first part of this proposition we must haveF (α2 + e) = α′2. By assumptionFα2 = α′2, henceF e = 0 and then e = 0. ˜

Remark B.5. Proposition B.4 (with cohomology groups replaced by Chow
groups) leads to a proof of equivalence of Chow motives under ordinary
flops. One has to establish the equivalence of Chow groups for simple
flops, which is not too difficult. The degeneration to the normal cone then
allows us to reduce the general case to the local case and then to the local
simple case.

B.3. Reduction to relative local models. First notice that A1(Ẽ) = ι2∗A1(E)
since both are projective bundles over Z. We then have

φ∗β = β1 + β2

by regarding β2 as a class in E ⊂ Y. Indeed φ∗(β1 + β2) = φ∗β1 + p∗β2 = β
and

((β1 + β2).E)Y = (β1.E)Y − (β2.E)Ẽ = |µ| − |µ| = 0

(where NE/Ẽ
∼= N∗E/Y is used). These characterize the class φ∗β.
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We consider only the case g = 0. Define the generating series

〈A | ε, µ〉(Ẽ,E) := ∑
β2∈NE(Ẽ)

1

|Aut µ| 〈A | ε, µ〉(Ẽ,E)
β2

qβ2 .

and the similar one with possibly disconnected domain curves

〈A | ε, µ〉•(Ẽ,E) := ∑
Γ; µΓ=µ

1

|Aut Γ| 〈A | ε, µ〉•(Ẽ,E)
Γ qβΓ

.

Proposition B.6. To prove F 〈α〉X ∼= 〈Fα〉X′ (for all α), it is enough to show
that

(B.3) F 〈A | ε, µ〉(Ẽ,E) ∼= 〈FA | ε, µ〉(Ẽ′,E)

for all A, ε, µ.

Proof. For the n-point function 〈α〉X = ∑β∈NE(X)〈α〉Xβ qβ, the degeneration

formula gives

〈α〉X = ∑
β∈NE(X)

∑
η∈Ωβ

∑
I

Cη〈α1 | eI , µ〉•(Y1,E)
Γ1

〈α2 | eI , µ〉•(Y2,E)
Γ2

qφ∗β

= ∑
µ

∑
I

∑
η∈Ωµ

Cη

(
〈α1 | eI , µ〉•(Y1,E)

Γ1
qβ1

) (
〈α2 | eI , µ〉•(Y2,E)

Γ2
qβ2

)
.

To simplify the generating series, we consider also absolute invariants
〈α〉•X with possibly disconnected domain curves as before. Then by com-
paring the order of automorphisms,

〈α〉•X = ∑
µ

m(µ) ∑
I

〈α1 | eI , µ〉•(Y1,E)〈α2 | eI , µ〉•(Y2,E).

To compare F 〈α〉•X and 〈Fα〉•X′ , by Proposition B.4 we may assume
that α1 = α′1 and α′2 = Fα2. This choice of cohomology liftings identifies
the relative invariants of (Y1, E) and those of (Y′1, E′) with the same topo-
logical types. It remains to compare

〈α2 | eI , µ〉•(Ẽ,E) and 〈Fα2 | eI , µ〉•(Ẽ′,E).

We further split the sum into connected invariants. Let Γπ be a connected
part with the contact order µπ induced from µ. Denote P : µ = ∑π∈P µπ a
partition of µ and P(µ) the set of all such partitions. Then

〈A | ε, µ〉•(Ẽ,E) = ∑
P∈P(µ)

∏
π∈P

∑
Γπ

1

|Aut µπ | 〈A
π | επ , µπ〉(Ẽ,E)

Γπ qβΓπ

.

If one fixes the above data in the summation of (B.3), then the only in-

dex to be summed over is βΓπ
on Ẽ. This reduces the problem to 〈Aπ |

επ , µπ〉(Ẽ,E). ˜
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Remark B.7. Here is a brief comment on the termF 〈α2 | eI , µ〉(Ẽ,E) = ∑
β2∈NE(Ẽ)

1

|Aut µ| 〈α2 | eI , µ〉(Ẽ,E)
β2

qF β2 .

Since Ẽ is a projective bundle, NE(Ẽ) = i∗NE(Z) ⊕Z+γ with γ the fiber
line class of Ẽ → Z. The point is that, for β2 ∈ NE(Ẽ) it is in general not
true thatF β2 ≡ β2 (in E) is effective in Ẽ′.

Indeed, for simple ordinary flops, let γ = δ′, δ = γ′ be the two line
classes in E ∼= Pr × Pr. It is easily checked that ℓ ∼ δ − γ in Ẽ. Hence
ℓ = −ℓ′ and γ = γ′ + ℓ′ and

β2 = d1ℓ + d2γ = (d2 − d1)ℓ
′ + d2γ′.F β2 ∈ NE(Ẽ′) if and only if d2 ≥ d1. Therefore,

〈α2 | eI , µ〉(Ẽ,E) = 〈Fα2 | eI , µ〉(Ẽ′,E)

cannot possibly hold term by term. Analytic continuations are in general
needed.

B.4. Relative to absolute. Recall that we are now in the local relative case,
with X = Ẽ. We shall combine a method of Maulik and Pandharipande to
further reduce the relative cases to the absolute cases with at most descen-
dent insertions along E. Following them, we call the pair

(ε, µ) = {(ε1, µ1), · · · , (ερ, µρ)}
with ε i ∈ H∗(E), µi ∈ N a weighted partition, a partition of contact orders
weighted by cohomology classes in E.

Proposition B.8. For an ordinary flop Ẽ 99K Ẽ′, to proveF 〈A | ε, µ〉 ∼= 〈FA | ε, µ〉
for any A and (ε, µ), it is enough to show thatF 〈A, τk1

ε1, . . . , τkρ
ερ〉Ẽ ∼= 〈FA, τk1

ε1, . . . , τkρ
ερ〉Ẽ

′

for any possible insertions A ∈ H∗(Ẽ)⊕n, kj ∈ N ∪ {0} and ε j ∈ H∗(E). (Here

we abuse the notations and denote ι2∗ ε ∈ H∗(Ẽ) by the same symbol ε.)

The rest of this subsection is devoted to the proof of this proposition
which proceeds inductively on the triple (|µ|, n, ρ) in the lexicographical
order with ρ in the reverse order. Given 〈α1, . . . , αn | ε, µ〉, since ρ ≤ |µ|, it
is clear that there are only finitely many triples of lower order. The propo-
sition holds for those cases by the induction hypothesis.

We apply degeneration to the normal cone for Z →֒ Ẽ to get W → A1.
Then W0 = Y1 ∪ Y2 with π : Y1

∼= PE(OE(−1,−1) ⊕ O) → E a P1 bundle
and Y2

∼= Ẽ. Denote by E0 = E = Y1 ∩Y2 and E∞
∼= E the zero and infinity

divisors of Y1 respectively. The idea is to analyze the degeneration formula

for 〈α1, . . . , αn, τµ1−1ε1, . . . , τµρ−1ερ〉Ẽ. We follow the procedure used in the
proof of Proposition B.6 to split the generating series of invariants with
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possibly disconnected domain curves, according to the contact order. For
β = d1ℓ + d2γ ∈ NE(Ẽ), c1(Ẽ).β = d2c1(Ẽ).γ, hence by the virtual dimen-
sion counting d2 is uniquely determined for a given generating series with
fixed cohomology insertions.

α2

α1

Ẽ Ẽ′

E ∼= E′

Y1
∼= Y′1

α′2

α′1

Z Z′

Degeneration to normal cone for local models.

We observe that during the splitting of β’s, the “main terms” with the
highest total contact order only occur when the curve classes in Y1 are fiber
classes. Indeed, let (β1, β2) be a splitting of β. Since

NE(Y1) = Z+δ + Z+γ̄ + Z+γ and NE(Y2) = Z+ℓ + Z+γ

(γ̄ is the fiber class of Y1), we have

(β1, β2) = (aδ + bγ + cγ̄, dℓ + eγ)

subject to

a, b, c, d, e ≥ 0, a + d = d1, c = d2

and the total contact order condition

e = (β2.E)Ẽ = (β1.E)Y1
= −a− b + c.

In particular, e ≤ d2 with e = d2 if and only if that a = b = 0. In this case
β1 = d2γ̄ and the invariants on (Y1, E) are fiber class integrals.

It is sufficient to consider (ε1, . . . , ερ) = eI = (ei1 , . . . , eiρ
). Since ε i|Z = 0,

one may choose the cohomology lifting ε i(0) = (ι1∗ ε i, 0). This ensures
that insertions of the form τk ε must go to the Y1 side in the degeneration
formula.

Lemma B.9. For a general cohomology insertion α ∈ H∗(Ẽ), the lifting can be
chosen to be α(0) = (a, α) for some a.

Proof. α(0) may be chosen as (φ∗α, p∗(α|Z)). Since (α− p∗(α|Z)).Z = 0, the
class e := α− p∗(α|Z) can be taken to be supported in E. Then Lemma B.2
implies that α(0) can be modified to be (φ∗α− e, α). ˜

¿From α(0) = (a, α) andFα(0) = (a′,Fα), Lemma B.3 implies that a =
a′. As before the relative invariants on (Y1, E) can be regarded as constants
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underF . Then

〈α1, . . . , αn, τµ1−1ei1 , . . . , τµρ−1eiρ
〉•Ẽ = ∑

µ′
m(µ′)×

∑
I′
〈τµ1−1ei1 , . . . , τµρ−1eiρ

| eI′ , µ′〉•(Y1,E)〈α1, . . . , αn | eI′ , µ′〉(Ẽ,E) + R,

where R denotes the remaining terms which either have total contact order
smaller than d2 or have number of insertions fewer than n on the (Ẽ, E) side
or the invariants on (Ẽ, E) are disconnected ones.

For the main terms, we claim that the total contact order d2 = |µ′| equals

|µ| = ∑
ρ
i=1 µi. This follows from the dimension counting on Ẽ and (Ẽ, E).

Indeed let D = c1(Ẽ).β + dim Ẽ− 3. For the absolute invariant on Ẽ,

∑
n

j=1
deg αj + |µ| − ρ + ∑

ρ

j=1
(deg eij

+ 1) = D + n + ρ,

while on (Ẽ, E) (notice that now c1(Ẽ).β2 = d2c1(Ẽ).γ = c1(Ẽ).β),

∑
n

j=1
deg αj + ∑

ρ′

j=1
deg ei′j

= D + n + ρ′ − |µ′|.

Hence (eI , µ) appears as one of the (eI′ , µ′)’s and |µ| = |µ′| = d2.
In particular, R isF -invariant by induction. Moreover,

deg eI − deg eI′ = ρ− ρ′.

We will show that the highest order term in the sum consists of the single
term

C(µ)〈α1, . . . , αn | eI , µ〉(Ẽ,E)

where C(µ) 6= 0.
For any (eI′ , µ′) in the highest order term, consider the splitting of weighted

partitions

(eI , µ) = ∐
ρ′

k=1
(eIk , µk)

according to the connected components of the relative moduli of (Y1, E),
which are indexed by the contact points of µ′ by the genus zero assumption
and the fact that the invariants on (Ẽ, E) are connected invariants.

Since fiber class invariants on P1 bundles can be computed by pairing
cohomology classes in E with GW invariants in the fiber P1, we must have

deg eIk + deg ei′k ≤ dim E to get non-trivial invariants. That is

deg eIk = ∑j
deg eik

j
≤ dim E− deg ei′k ≡ deg ei′k

for each k. In particular, deg eI ≤ deg eI′ , hence also ρ ≤ ρ′.
The case ρ < ρ′ is handled by the induction hypothesis, so we assume

that ρ = ρ′ and then deg eIk = deg ei′k
for each k = 1, . . . , ρ′. In particular

Ik 6= ∅ for each k. This implies that Ik consists of a single element. By

reordering we may assume that Ik = {ik} and (eIk , µk) = {(eik
, µk)}.
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Since the relative invariants on Y1 are fiber integrals, the virtual dimen-
sion for each k (connected component of the relative virtual moduli) is

2µ′k + dim Y1 − 3 + 1 + (1− µ′k)

= (µk − 1) + (deg eik
+ 1) + (dim E− deg ei′k

).

Together with deg eik
= deg ei′k

this implies that

µ′k = µk, k = 1, . . . , ρ.

¿From the fiber class invariants consideration and

deg eik
+ deg ei′k = dim E,

eik
and ei′k must be Poincaré dual to get non-trivial integral over E. That is,

ei′k
= eik

for all k and (eI′ , µ′) = (eI , µ). This gives the term we expect for

with C(µ) a nontrivial fiber class invariant. The proof of Proposition B.8 is
complete.

The functional equations for these special absolute invariants with de-
scendents will be handled in §5.

B.5. Examples. We consider simple Pr flops for r ≤ 2 in general and for
r ≥ 3 under nefness constraint on KX.

If β = dℓ, the invariant depends only on Z, α|Z and NZ/X . In particular

〈α〉Xg,n,dℓ
= 〈p∗(α|Z)〉Ẽg,n,dℓ

.

Thus we consider β 6= dℓ. Let αi ∈ H2li(X). By the divisor axiom, we may
assume that li ≥ 2 for all i.

For η = (Γ1, Γ2, Iρ) associated to (g, n, β), let d, dΓ1
and dΓ2

be the virtual
dimension (without marked points) of stable morphisms into X and rela-
tive stable morphisms into (Y1, E), (Y2, E) respectively. We have l1 + · · ·+
ln = d + n. Moreover, since dim E = 2r, the degeneration formula implies
that d = dΓ1

+ dΓ2
− 2rρ.

We assume that the summand given by η is not zero. Since β 6= dℓ and
A1(Y2) is spanned by ℓ and a fiber line γ, we see that β1 6= 0 and Γ1 6= ∅.

If ρ = 0 then Γ2 = ∅ by connectedness, and this gives the blow-up term

〈α̃〉Yg,n,φ∗β .

So we assume that ρ 6= 0. By reordering, we may assume that in the degen-
eration expression αi appears in the Y1 part for 1 ≤ i ≤ m and αi appears
in the Y2 part for m + 1 ≤ i ≤ n. By transversality, the corresponding rel-
ative invariant is non-trivial only if 2 ≤ li ≤ r for m + 1 ≤ i ≤ n. If r = 1
this simply means that all αi’s appear in Y1. In the following we abuse the
notation by writing |µ| as µ.

Theorem B.10 (A. Li-Ruan). For simple P1 flops of threefolds with β 6= dℓ,

〈α〉Xg,n,β = 〈α̃〉Yg,n,φ∗β = 〈Fα〉X′g,n,F β .
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That is, there are no degenerate terms and hence no analytic continuations are
needed for non-exceptional curve classes.

Proof. If r = 1, then (KX.p∗β2) = 0, d = −(KX.β) and

(KY.β1) = (φ∗KX.β1) + (E.β1) = (KX.φ∗β1) + µ

= (KX.(β− p∗β2)) + µ = (KX.β) + µ.

So
dΓ1

= −(KY.β1) + ρ− µ = d + (ρ− 2µ).

If ρ 6= 0 then dΓ1
< d. Since li ≥ 2, we may assume that αi’s are disjoint

from Z, hence they must all contribute to the Y1 part. This forces that ρ = 0
and the result follows. ˜

For simple P2 flops, non-trivial degenerate terms do occur even for n ≤ 3
and g = 0. Let vi := |Γi| be the number of connected components.

Lemma B.11. For Ẽ = PZ(N ⊕O) of a pair Z ⊂ X,

c1(Ẽ) = (rk N + 1)E + p∗c1(X)|Z.

Proof. Indeed, from 0 → O → O(1) ⊗ p∗(N ⊕ O) → TẼ/Z → 0 we get

c1(TẼ/Z) = (rk N + 1)E + p∗c1(N), so the formula follows from c1(Ẽ) =
c1(TẼ/Z) + p∗c1(Z). ˜

Proposition B.12. For simple P2 flops, let n ≤ 3 and αi ∈ H2li(X) with li ≥ 2
for i = 1, . . . , n. Consider β 6= dℓ and an admissible triple η with ρ 6= 0. Then
v1 = ρ = µ, v2 = 1 and li = 2 for all i.

Proof. Since c1(Y2) = 4E (by Lemma B.11), we find that

dΓ2
= 4(E.β2) + 2v2 + ρ− µ

= 3µ + ρ + 2v2.

So dΓ2
− 4ρ = 3(µ− ρ) + 2v2 ≥ 2.

For one-point invariants, l1 = d + 1 = dΓ1
+ 3(µ− ρ) + 2v2 + 1 ≥ dΓ1

+ 3.
It forces that α1 contributes in Y2, hence l1 = 2 and d = 1. But dΓ1

≥ 0
implies that d ≥ 2, hence a contradiction.

For two-point invariants, from l1 + l2 = d + 2 = dΓ1
+ 3(µ− ρ) + 2v2 +

2 ≥ dΓ1
+ 4 and the fact that αi contributes to the Y2 part in the degeneration

formula only if li = 2, similar argument shows that the only non-trivial
case is that l1 = l2 = 2 and both α1 and α2 contribute in Y2. Moreover the
equality holds hence that µ = ρ, v2 = 1 and dΓ1

= 0.
We now consider three-point invariants. From

l1 + l2 + l3 = d + 3 = dΓ1
+ (dΓ2

− 4ρ) + 3 ≥ dΓ1
+ 5,

if only α3 contributes to Y2 then l1 + l2 ≥ dΓ1
+ 3 > dΓ1

+ 2 leads to trivial
invariant. If α2 and α3 contribute to Y2, then l1 ≥ dΓ1

+ 1. This leads to
non-trivial invariant only if equality holds. That is, µ = ρ and v2 = 1.

The remaining case is that li = 2, αi contributes in Y2 for all i = 1, 2, 3.
We have µ = ρ, v2 = 1, d = 3, dΓ1

= 1, dΓ2
= 4ρ + 2. ˜
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To summarize, notice that the weighted partitions associated to the rela-
tive invariants on the Y2 = Ẽ part are of the form (µ1, . . . , µn) = (1, . . . , 1)
and deg αi = 2 for all i, thus they are of the lowest order with fixed |µ|.
They can be reduced to absolute invariants readily.

For β2 = d1ℓ + d2γ, we see that d2 = µ = ρ and so

dΓ2
= 4d2 + 2

is independent of d1. Also d2 is uniquely determined by the cohomology
insertions. The presence of degenerate terms with degree β2 for all large d1

indicates the necessity of analytic continuations.

The same conclusion holds for r ≥ 3 if we impose the nefness of KX. We
state the result in a slightly more general form:

Proposition B.13. Let φ : Y → X be the blow-up of X along a smooth center Z
of dimension r and codimension r′ + 1 with KX nef and r ≤ r′ + 1. Then Cη 6= 0
only if g1 = 0, v1 = µ = ρ 6= 0 and µ1 ≡ 1, v2 = 1.

The proof is entirely similar and we omit it.
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