
Mapping Class Groups
MSRI, Fall 2007

Day 9, November 1

November 26, 2007

Subgroups of mapping class groups

Here are three theorems about subgroups of mapping class groups. They are
due independently to Ivanov and to a combination of works of McCarthy and of
Birman/McCarthy/Lubotzky.

Let S be a finite type surface and let G be any subgroup of MCG(S).

Theorem 1 (The Tits Alternative for MCG). One of the following holds:

• G contains a free subgroup of rank ≥ 2.

• G contains a finitely generated abelian subgroup of finite index.

Theorem 2 (Classification of free abelian subgroups). If G ≈ ZK then there exists:

• a basis for G represented by Φ1, . . . ,ΦK ∈ Homeo+(S),

• an essential subsurface F ⊂ S with components

F = F1 ∪ · · · ∪ FK

such that for all k = 1, . . . , K:

• Φk

∣∣
S−Fk

= Id

• If Fk is an annulus then Φk

∣∣
Fk

is a nonzero power of a Dehn twist

• If Fk is not an annulus then Φk

∣∣
Fk

is pseudo-Anosov.
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Figure 1: The maximum number of componants of a suburface is 3g − 3 + p

Corollary. The rank of any free abelian subgroup of MCG(S) is at most

3 · genus(S)− 3 + #punctures(S)

which is the maximum number of components of an essential subsurface F of S.

When is the maximum rank 3g − 3 + p acheived?

• F = regular neighborhood of a pants decomposition.

• If an annulus A has two different 3-holed spheres on either side, can replace A
by a 4-holed sphere. (see figure)

• If an annulus A has the same 3-holed sphere on either side, can replace A by a
1-holed torus.

• In general, the maximum is acheived if and only if F has the following structure:

– Each component of F is an annulus, a one-holed torus, or a 4-holed sphere

– F has an annulus component parallel to each boundary curve of a one-holed
torus or 4-holed sphere component

– Each component of S − F is an annulus or 3-holed sphere.

Recall the classification of elements of MCG(S): every infinite order, irreducible
element is pseudo-Anosov.

Theorem 3 (Subgroup Trichotomy). For any subgroup G < MCG(S), one of the
following holds:

• G is finite

• There exists an essential curve system C which is a reducing system for each
element of G (by definition, G is reducible).

• G contains a pseudo-Anosov homeomorphism.



3

Figure 2: A subsurface F ⊂ S is maximal when we cannot enlage it by adding
a disjoint componant F ′ ⊂ S \ F (hence all complementary componants are 3-holed
spheres or annuli) and F cannot be enlarged by replacing a componant by a subsurface
consisting of more componants (so the componants of F are annuli, 1-holed tori and
4-holed spheres). The moves above show how one can replace sucha maximal surface
by one consisting only of annuly, without changing the number of componants. Thus,
the maximal rank is achieved by a surface consisting of disjoint annuly and the number
of componants of such a surface is 3g − 3 + p
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In other words: every infinite, irreducible subgroup contains a pseudo-Anosov
element.

Remark. This theorem has an important application in the study by Bestvina-
Fujiwara of the 2nd bounded cohomology of a subgroup G of MCG(S): either G
is virtually abelian or H2

b (G;Z) has uncountable dimension.

The proofs of these three theorems can be found among Ivanov’s book, McCarthy’s
thesis (published version), and the paper of Birman/Lubotzky/McCarthy. The tech-
niques for these three theorems are broadly the same, but different in detail.

Goal: Unify the proofs with the “Omnibus Subgroup Theorem” (joint w/ Michael
Handel) which has the above three theorems as quick corollaries.

Motivating statement of Omnibus Subgroup Theorem:

See how far we can go in proving the Subgroup Trichotomy Theorem without
knowing anything.

Suppose that G <MCG(S) is not finite order and does not have a simultaneous
reducing system. Want to produce a pseudo-Anosov element in G. G must have an
infinite order element, since it is not finite and MCG(S) is virtually torsion free.

Example: Suppose that φ ∈ G is a product of Dehn twists about curves in a
pants decomposition C.

There exists ψ ∈ G such that ψ(C) 6= C (because G is irreducible).
Let φ′ = ψφψ−1, a product of Dehn twists about the pants decomposition

C ′ = ψ(C) 6= C

Since C and C ′ are nonisotopic pants systems, some component of C crosses some
component of C ′. (see figure)

=⇒ ∃ connected subsurface F ⊂ S, invariant under φ and φ′, more complicated
than an annulus, and filled by components of C and C ′.

=⇒ φφ′
∣∣
F

is pseudo-Anosov, by a recipe due to Penner.
So φφ′ is “less simple” than φ.
General method of proof of the trichotomy theorem is by induction on the “sim-

plicity” of mapping classes in G.
Base case is the “least simple” case: when G contains a pseudo-Anosov mapping

class. In that case, DONE.
Putting off the details of the induction step, the Omnibus Subgroup Theorem

states the conclusion of the induction, for any subgroup.
It tells you about the “least simple” element of the subgroup.

Consider φ ∈ G.
Cφ = canonical reducing system
(6= ∅ ⇐⇒ φ is infinite order and reducible).
Nφ = regular neighborhood of Cφ.
Define Aφ, the active subsurface of φ, to be the union of the following:
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C

C ′

F

Figure 3: Given a multi-curve C, invariant under φ and C ′ invariant under φ′ which
intersect, one can find a subsurface F which they fill and which is invariant under
both φ and φ′.

• Components of S−Nφ on which the first return mapping class is pseudo-Anosov

• Components A of Nφ such that the components of S − Nφ on either side of A
have first return mapping class of finite order.

Features of the active subsurface Aφ:

• Aφ is an essential subsurface, in particular no two annulus components are
isotopic.

• No annulus component of Aφ is isotopic into Aφ.

• Aφ = ∅ if and only if φ has finite order

• Aφ = S if and only if φ is pseudo-Anosov.

Method of proof for subgroup trichotomy theorem: if there is an element φ such
that Aφ 6= S must find an element with a larger Aφ, then induct.

Statement of the Omnibus Subgroup Theorem: there is an element with maximal
Aφ.

Theorem 4 (Omnibus Subgroup Theorem (Handel-M)). Every subgroup contains an
element whose active subsurface is maximal.

More precisely, for every subgroup G <MCG(S) there exists φ ∈ G such that for
every ψ ∈ G, the subsurface Aψ is isotopic into the subsurface Aφ.

Today, and next time (3 weeks hence), will apply this theorem to prove the three
subgroup theorems earlier. Then prove the theorem.
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Proof of subgroup trichotomy.
Applying the theorem, choose φ ∈ G such that Aφ is maximal.

Case 1: Aφ = ∅.
Then for all ψ ∈ G, Aψ = ∅, so ψ has finite order.
Every element of G has finite order, and MCG(S) has a torsion free subgroup of

finite index, =⇒ G is finite. ♦

Case 2: Aφ = S. Then φ ∈ G is pseudo-Anosov. ♦

Case 3: Aφ 6= ∅, S.

=⇒ ∂Aφ 6= ∅.
For each ψ ∈ G, shall show that ψ(Aφ) is isotopic to Aφ,
=⇒ ∂Aφ is a reducing system for ψ.

Let φ′ = ψφψ−1, =⇒ Aφ′ = ψ(Aφ).
The subsurfaces Aφ,Aφ′ are homeomorphic.
By maximality of Aφ, may isotope Aφ′ so that

Aφ′ ⊂ int(Aφ)

But they are homeomorphic, and no annulus component of Aφ (resp. Aφ′) is isotopic
into Aφ (Aφ′).

=⇒ Aφ −Aφ′ is a collar neighborhood of ∂Aφ.
=⇒ Aφ,Aφ′ are isotopic.
=⇒ ∂Aφ is preserved by ψ. ♦

The Tits alternative in the pseudo-Anosov case.

We give the same proof as Ivanov and McCarthy. Once a subgroup is known
to be infinite order and irreducible, you have to get your hands dirty (the Omnibus
Subgroup Theorem will not help you here).

To prove the Tits alternative when the subgroup G contains a pseudo-Anosov
element, need three theorems about pseudo-Anosov mapping classes.

Theorem 5 (Source–sink dynamics). The action of a pseudo-Anosov mapping class
φ ∈MCG(S) on the sphere of projective measured foliations PMF has “source–sink”
or “north–south” dynamics:

∃ξ±φ ∈ PMF , such that ξ+
φ 6= ξ−φ and such that

∀η ∈ PMF ,

• If η 6= ξ+
φ then limn→+∞ φ

n(η) = ξ−φ

• If η 6= ξ−φ then limn→+∞ φ
−n(η) = ξ+

φ
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Figure 4: A pseudo-Anosov element acting on PMF

Theorem 6. If φ, ψ ∈ G are pseudo-Anosov then {ξ±φ } and {ξ±ψ } are either equal or
disjoint.

Given a group acting on a space, and a point x in the space, Stab(x) is the
subgroup of elements that fix x.

Theorem 7. For any pseudo-Anosov φ ∈MCG(S) with source and sink ξ±φ ∈ PMF ,

Stab(ξ−φ ) = Stab(ξ+
φ ) and this subgroup contains the infinite cyclic subgroup 〈φ〉 with

finite index.

This subgroup is the virtual centralizer of φ, consisting of all ψ ∈ MCG(S) such
that for some n 6= 0 we have φnψ = ψφn.

Sketch of proof of source–sink dynamics

• pseudo-Anosov homeomorphism φ.

• Using train tracks, find:

– neighborhood U+ of ξ+
φ in PMF which is attracted to ξ+

φ under iteration
of φ

– neighborhood U− of ξ−φ in PMF which is attracted to ξ−φ under iteration
of φ−1

This is an application of the Perron-Frobenius theorem.

• Note a corollary of this: ξ+
φ and ξ−φ are uniquely ergodic.
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• Let µ be an xy-structure for φ.

• For any measured foliation F , can pull F tight in the singular Euclidean metric
µ. Might squeeze leaves of F together, but so what?

• Show ∃δ > 0 such that

– if all leaves of F have |slope| < δ then F ∈ U+.

– if all leaves of F have |slope| > 1/δ then F ∈ U−.

• Suppose F 6= ξ−φ

• =⇒ F has no vertical leaves (unique ergodicity of ξ−φ ).

• =⇒ |slope(F)| bounded away from ∞ (compactness)

• =⇒ for sufficiently large n, |slope(φn(F))| < δ.

• =⇒ φn(F) converges to ξ+
φ as n→ +∞.


