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Reducible mapping classes Review terminology:

e An essential curve v on S is a simple closed curve ~ such that:
— no component of S — v is a disc with 0 or 1 puncture
e An essential curve system I' on S is a pairwise disjoint union of essential curves.

— Components of I are allowed to be isotopic.

— I is pairwise nonisotopic if no two components are isotopic.
e An essential surface in S is a subsurface-with-boundary F' C .S such that:

— F'is a closed subset
— OF is an essential curve system

— No two components of F' are isotopic.

It is possible for an annulus component of F' to be isotopic into one or two other
components.
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Figure 1: This is an example of an essential surface. The boundary of the subsurface
may contain isotopic curves, but no two componants of the subsurface are isotopic.



e MCG(S) acts on isotopy classes of

— essential curves;
— essential curve systems;

— essential subsurfaces

e ¢ € MCG(S) is reducible if any of the following equivalent conditions are sat-
isfied:

— J a (pairwise nonisotopic) essential curve system I' whose isotopy class is
invariant under ¢.

— I' is a reduction system for ¢.
— Can choose a representative ® of ¢ such that ®(I') =T
— Can furthermore choose ® so that ®(N(I')) = N(T').

e For each component F of S — N(I') (We think of the interior of F" as a punctured
surface):

— Least n > 1 such that ®"(F) = F is the first return time of F.

— The mapping class of ®" is a component mapping class of F.

Well-definedness of component mapping classes
e Slight problem:

— I" only well-defined up to isotopy,
— S — N(I) only well-defined up to isotopy,

Action of ¢ on set of isotopy classes of components of I' (and of N(I')) is well-
defined

Action of ¢ on set of isotopy classes of components of S — N(T") is well-defined.

First return times are well-defined.

First return mapping classes are well-defined up to “conjugacy-by-isotopy”.

Canonical reduction system

e Reduction systems for ¢ need not be unique (up to isotopy):
— A component mapping class might be reducible = the reduction system
can be enlarged.

— A reduction system might have more than one orbit under action of ¢
= the reduction system can be shrunk (see figure).
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Figure 2: If on the depicted surface the map is a hyperelliptic involution then we can
remove the two thick blue curves to get a smaller reducing system.

Theorem 1. For each ¢ € MCG(S) there is a reduction system ', possibly empty,
which is uniquely characterized up to isotopy by the following:

1. For each reduction system I for ¢, each v € I', and each ~" € T, (v,7') =0
2. T 1s mazimal with respect to previous property.
I' is also uniquely characterized up to isotopy by the following:

3. Fach component mapping class is either finite order or irreducible - in fact,
pseudo-Anosov.

4. T' is minimal with respect to the previous property.

Corollary: T' # 0 if and only if ¢ has infinite order and is not pseudo-Anosov.

Remarks

e Original source of (3) and (4) is hard to pin down. ..
appears in print in more than one place. .. probably first known to Thurston.

e (1) and (2) is in paper of Handel-Thurston.
e (1) and (2) is an analogue of the JSJ decomposition of a 3-manifold.

e The analogy is (no coincidence?) very strong: the canonical JSJ decomposition
of the mapping torus of ¢ corresponds exactly to the canonical reduction system

of ¢.



Figure 3: If 71 € T intersects v € I then can find a curve 8, = ON(y U~)
which is disjoint from both and is still a reducing curve, and the automorphism
restricted to N (73 U~s) is periodic. Can continue this way to cut up the surface into
periodic/pseudo-Anosov pieces.

Reducible conjugacy invariants: The reduction graph

Let ¢ € MCG(S) be reducible and of infinite order. Define:
Ly ={v ’ i=1,...,I} = canonical reduction system.

{F; ‘ j=1,...,J} = components of S —I'.

Gy = reduction graph:

e Vertex V; for each component F; of S — N(I'),

— labelled with the integer genus(F})
— (valence of V; will equal |0F}]|)

e Edge F; for each component ~; of I'
Let Stab(I') = {# € MCG|6(T") =T}.
Lemma 2. The labelled isomorphism type of G, is a conjugacy invariant of ¢.

Given reducible ¢,¢' € MCG(S), assume Gy, Gy are isomorphic as labelled
graphs.

e Choose an isomorphism G4 — Gy .
o Lift it to ¢ € MCG(S) taking I', to I'y (by the classification of surfaces)
e Both ¢ and ¢” = 1)~'¢'1) are in the subgroup

Stab(T,) < MCG(S)
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Figure 4: To a reduction system we associate a labeled graph with labels
(genus,punctures).

o TFAE:

1. ¢, ¢ are conjugate in MCG(S)
2. ¢,¢" are conjugate in MCG(S)
3. ¢,¢" are conjugate in Stab(L'y)

e Proof of 2 = 3: Recall that I'y» = T'y. If §¢0~! = ¢ then 6Ty, = Ty = T4 so
0 e Stab(F¢).

Structure of Stab(I)

Given essential curve system I' = {7y1,...,9m}, let F1,..., Fyx be components of
S — N(I).

1. Stab(I") acts on Gr. Let Staby(I') be the kernel:

1 — Staby(I') — Stab(I') — (finite group) — 1

2. Staby(I") acts (up to isotopy) on each F;:

k
1 — T(T') — Stabg(T') — [ [ MCGo(F)) — 1
=1

where MCG, means punctures are fixed.

3. T(T') is a free abelian group having as basis the Dehn twists

Tyis « ooy Tym



Each of these three items yields reducibility invariants.
1. Action on G,.

e ¢ has well-defined action on G4, preserving genus labels.
e Follows from:

— uniqueness of '
— well-definedness up to isotopy of action on I’
—and on S — N(I).

Fact. The conjugacy type of the ¢ action on G, is a conjugacy invariant. &

2. Action on components F; of S — N(I'y).

e For each vertex Vg, augment its label with the conjugacy invariants of the first
return mapping class of F.

Fact. G,, with genus labels, action, and augmented labels, is a conjugacy invariant

of ¢.

BUT, there is still hidden conjugacy information in the action on the components

Pairing punctures

e Each v € I" corresponds to TWO punctures of S — N(I').

e Each puncture has a certain “identity” in the conjugacy invariants for the first
return mapping classes.

e The pairing of punctures, or more strictly speaking the pairing of their “iden-
tities” in the conjugacy invariants of first return mapping classes, is itself a
conjugacy invariant.

e Formally:
— Let D be the collection of unordered pairs of punctures of S — N(I'), one
pair for each v € T'.

— All pseudo-Anosov and finite order conjugacy classes, on the components
of S — N(v), need to be lifted to conjugacy invariants in the group
MCG(S — N(v), D).



§C3

Figure 5: So far, the conjugacy invariants will not distinguish between to mapping
classes which are conjugate on each subsurface seperately (but not as homeomor-
phisms of the whole surface). Pairing the punctures gets rid of this discrepancy.

e Extra finite amount of bookkeeping: add finite amount of data to pseudo-
Anosov and to finite order conjugacy invariants ...

e (all this the “puncture gluing” invariants.

Fact. G,, with previous action and labels, and with added information of puncture
gluing invariants, is a conjugacy invariant.

3. Twist invariants So far we can’t distinguish a Dehn twist from its square,
up to conjugacy.
e To each v € I we shall associate a twist invariant, a rational number
r(7) € Q

For example, given a Dehn twist power 77 we will have r(v) = k.

Note: 05 — N(v) = GU;.Izl F;

On each component c of each Fj there is a natural periodic set:

— All of ¢ (if F;} is finite order)

— Endpoints of stable and unstable leaves
(if F; is pseudo-Anosov)

Choose product structure N(v;) = S* x [0,1]

Require action of ® on S! x 0 and S* x 1 to be either:

— Rigid rotation (on finite order boundary)

— Alternating source-sink with evenly spaced periodic points (on pseudo-
Anosov boundary)
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Figure 6: The order of the mapping class on the left is 4 and on the right 6. Thus
the orders of their conjugacy classes are 2 and 3. This yields a twist of a multiple of

% in the middle curve.
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Figure 7: To find the twist parameter - lift to the universal cover and find the recip-
rocal of the slope of the image of a straight line.

o Lift (first return of) ® to universal covering map

R x[0,1] of S'x[0,1]=N(v)

e Define the twist to be r(vy) =

1
slope of &(0x[0,1])
Theorem 3. The following data gives a complete conjugacy invariant of a reducible
¢ € MCG(S):
e Reduction graph G,
e Label for each vertex: genus

e Label for each verter: conjugacy invariant of first return

Label for each edge: puncture pairing data

Label for each edge: twist

Action of ¢ on G,



Computing the conjugacy invariant

Bestvina-Handel paper gives an algorithm for finding either:

— Invariant train track

— Reducing system
Even in the finite order case, the algorithm will produce an invariant graph.
When the algorithm finds a reducing system I', don’t stop:

— Obtain a graph having the reducing system I' as a subgraph.

— Continue the algorithm, relative to I'.
Continue inductively through smaller and smaller subsurfaces
In the end, on each subsurface, have either train track or invariant graph.
Pseudo-Anosov invariants are computable from train track
Finite order invariants are computable from invariant graphs

Puncture pairing data: evident from incidence of reducing curves, train tracks,
invariant graphs.

Also have: Extra branch coming off the side of each reducing curve.

Twist: can compute using extra branches.



