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Reducible mapping classes Review terminology:

• An essential curve γ on S is a simple closed curve γ such that:

– no component of S − γ is a disc with 0 or 1 puncture

• An essential curve system Γ on S is a pairwise disjoint union of essential curves.

– Components of Γ are allowed to be isotopic.

– Γ is pairwise nonisotopic if no two components are isotopic.

• An essential surface in S is a subsurface-with-boundary F ⊂ S such that:

– F is a closed subset

– ∂F is an essential curve system

– No two components of F are isotopic.

It is possible for an annulus component of F to be isotopic into one or two other
components.

Figure 1: This is an example of an essential surface. The boundary of the subsurface
may contain isotopic curves, but no two componants of the subsurface are isotopic.
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• MCG(S) acts on isotopy classes of

– essential curves;

– essential curve systems;

– essential subsurfaces

• φ ∈ MCG(S) is reducible if any of the following equivalent conditions are sat-
isfied:

– ∃ a (pairwise nonisotopic) essential curve system Γ whose isotopy class is
invariant under φ.

– Γ is a reduction system for φ.

– Can choose a representative Φ of φ such that Φ(Γ) = Γ.

– Can furthermore choose Φ so that Φ(N(Γ)) = N(Γ).

• For each component F of S −N(Γ) (We think of the interior of F as a punctured
surface):

– Least n ≥ 1 such that Φn(F ) = F is the first return time of F .

– The mapping class of Φn is a component mapping class of F .

Well-definedness of component mapping classes

• Slight problem:

– Γ only well-defined up to isotopy,

– S −N(Γ) only well-defined up to isotopy,

• Action of φ on set of isotopy classes of components of Γ (and of N(Γ)) is well-
defined

• Action of φ on set of isotopy classes of components of S −N(Γ) is well-defined.

• First return times are well-defined.

• First return mapping classes are well-defined up to “conjugacy-by-isotopy”.

Canonical reduction system

• Reduction systems for φ need not be unique (up to isotopy):

– A component mapping class might be reducible =⇒ the reduction system
can be enlarged.

– A reduction system might have more than one orbit under action of φ
=⇒ the reduction system can be shrunk (see figure).
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Figure 2: If on the depicted surface the map is a hyperelliptic involution then we can
remove the two thick blue curves to get a smaller reducing system.

Theorem 1. For each φ ∈ MCG(S) there is a reduction system Γ, possibly empty,
which is uniquely characterized up to isotopy by the following:

1. For each reduction system Γ′ for φ, each γ ∈ Γ, and each γ′ ∈ Γ′, 〈γ, γ′〉 = 0

2. Γ is maximal with respect to previous property.

Γ is also uniquely characterized up to isotopy by the following:

3. Each component mapping class is either finite order or irreducible - in fact,
pseudo-Anosov.

4. Γ is minimal with respect to the previous property.

Corollary: Γ 6= ∅ if and only if φ has infinite order and is not pseudo-Anosov.

Remarks

• Original source of (3) and (4) is hard to pin down. . .
appears in print in more than one place. . . probably first known to Thurston.

• (1) and (2) is in paper of Handel–Thurston.

• (1) and (2) is an analogue of the JSJ decomposition of a 3-manifold.

• The analogy is (no coincidence?) very strong: the canonical JSJ decomposition
of the mapping torus of φ corresponds exactly to the canonical reduction system
of φ.



4

Figure 3: If γ1 ∈ Γ intersects γ′1 ∈ Γ′ then can find a curve β1 = ∂N(γ1 ∪ γ′1)
which is disjoint from both and is still a reducing curve, and the automorphism
restricted to N(γ1 ∪ γ2) is periodic. Can continue this way to cut up the surface into
periodic/pseudo-Anosov pieces.

Reducible conjugacy invariants: The reduction graph

Let φ ∈MCG(S) be reducible and of infinite order. Define:
Γφ = {γi

∣∣ i = 1, . . . , I} = canonical reduction system.
{Fj

∣∣ j = 1, . . . , J} = components of S − Γφ.
Gφ = reduction graph:

• Vertex Vj for each component Fj of S −N(Γ),

– labelled with the integer genus(Fj)

– (valence of Vj will equal |∂Fj|)

• Edge Ei for each component γi of Γ

Let Stab(Γ) = {θ ∈MCG|θ(Γ) = Γ}.

Lemma 2. The labelled isomorphism type of Gφ is a conjugacy invariant of φ. ♦

Given reducible φ, φ′ ∈ MCG(S), assume Gφ, Gφ′ are isomorphic as labelled
graphs.

• Choose an isomorphism Gφ 7→ Gφ′ .

• Lift it to ψ ∈MCG(S) taking Γφ to Γφ′ (by the classification of surfaces)

• Both φ and φ′′ = ψ−1φ′ψ are in the subgroup

Stab(Γφ) <MCG(S)
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Figure 4: To a reduction system we associate a labeled graph with labels
(genus,punctures).

• TFAE:

1. φ, φ′ are conjugate in MCG(S)

2. φ, φ′′ are conjugate in MCG(S)

3. φ, φ′′ are conjugate in Stab(Γφ)

• Proof of 2 =⇒ 3: Recall that Γφ′′ = Γφ. If θφθ−1 = φ′′ then θΓφ = Γφ′′ = Γφ so
θ ∈ Stab(Γφ).

Structure of Stab(Γ)

Given essential curve system Γ = {γ1, . . . , γm}, let F1, . . . , Fk be components of
S −N(Γ).

1. Stab(Γ) acts on GΓ. Let Stab0(Γ) be the kernel:

1 → Stab0(Γ) → Stab(Γ) → (finite group) → 1

2. Stab0(Γ) acts (up to isotopy) on each Fi:

1 → T (Γ) → Stab0(Γ) →
k∏

i=1

MCG0(Fi) → 1

where MCG0 means punctures are fixed.

3. T (Γ) is a free abelian group having as basis the Dehn twists

τγ1 , . . . , τγm
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Each of these three items yields reducibility invariants.

1. Action on Gφ.

• φ has well-defined action on Gφ, preserving genus labels.

• Follows from:

– uniqueness of Γ,

– well-definedness up to isotopy of action on Γ

– and on S −N(Γ).

Fact. The conjugacy type of the φ action on Gφ is a conjugacy invariant. ♦

2. Action on components Fi of S −N(Γφ).

• For each vertex VF , augment its label with the conjugacy invariants of the first
return mapping class of F .

Fact. Gφ, with genus labels, action, and augmented labels, is a conjugacy invariant
of φ.

BUT, there is still hidden conjugacy information in the action on the components
. . .

Pairing punctures

• Each γ ∈ Γ corresponds to TWO punctures of S −N(Γ).

• Each puncture has a certain “identity” in the conjugacy invariants for the first
return mapping classes.

• The pairing of punctures, or more strictly speaking the pairing of their “iden-
tities” in the conjugacy invariants of first return mapping classes, is itself a
conjugacy invariant.

• Formally:

– Let D be the collection of unordered pairs of punctures of S −N(Γ), one
pair for each γ ∈ Γ.

– All pseudo-Anosov and finite order conjugacy classes, on the components
of S −N(γ), need to be lifted to conjugacy invariants in the group
MCG(S −N(γ), D).
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Figure 5: So far, the conjugacy invariants will not distinguish between to mapping
classes which are conjugate on each subsurface seperately (but not as homeomor-
phisms of the whole surface). Pairing the punctures gets rid of this discrepancy.

• Extra finite amount of bookkeeping: add finite amount of data to pseudo-
Anosov and to finite order conjugacy invariants . . .

• Call this the “puncture gluing” invariants.

Fact. Gφ, with previous action and labels, and with added information of puncture
gluing invariants, is a conjugacy invariant.

3. Twist invariants So far we can’t distinguish a Dehn twist from its square,
up to conjugacy.

• To each γ ∈ Γ we shall associate a twist invariant, a rational number

r(γ) ∈ Q

• For example, given a Dehn twist power τ k
γ we will have r(γ) = k.

• Note: ∂S −N(γ) = ∂
⋃J

j=1 Fj

• On each component c of each Fj there is a natural periodic set:

– All of c (if Fj is finite order)

– Endpoints of stable and unstable leaves
(if Fj is pseudo-Anosov)

• Choose product structure N(γi) = S1 × [0, 1]

• Require action of Φ on S1 × 0 and S1 × 1 to be either:

– Rigid rotation (on finite order boundary)

– Alternating source-sink with evenly spaced periodic points (on pseudo-
Anosov boundary)
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Figure 6: The order of the mapping class on the left is 4 and on the right 6. Thus
the orders of their conjugacy classes are 2 and 3. This yields a twist of a multiple of
1
6

in the middle curve.
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Figure 7: To find the twist parameter - lift to the universal cover and find the recip-
rocal of the slope of the image of a straight line.

• Lift (first return of) Φ to universal covering map

R× [0, 1] of S1 × [0, 1] = N(γi)

• Define the twist to be r(γ) = 1

slope of eΦ(0×[0,1])

Theorem 3. The following data gives a complete conjugacy invariant of a reducible
φ ∈MCG(S):

• Reduction graph Gφ

• Label for each vertex: genus

• Label for each vertex: conjugacy invariant of first return

• Label for each edge: puncture pairing data

• Label for each edge: twist

• Action of φ on Gφ
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Computing the conjugacy invariant

• Bestvina-Handel paper gives an algorithm for finding either:

– Invariant train track

– Reducing system

• Even in the finite order case, the algorithm will produce an invariant graph.

• When the algorithm finds a reducing system Γ, don’t stop:

– Obtain a graph having the reducing system Γ as a subgraph.

– Continue the algorithm, relative to Γ.

• Continue inductively through smaller and smaller subsurfaces

• In the end, on each subsurface, have either train track or invariant graph.

• Pseudo-Anosov invariants are computable from train track

• Finite order invariants are computable from invariant graphs

• Puncture pairing data: evident from incidence of reducing curves, train tracks,
invariant graphs.

• Also have: Extra branch coming off the side of each reducing curve.

• Twist: can compute using extra branches.


