Mapping Class Groups MSRI, Fall 2007 Day 10, November 29

December 6, 2007

Recap: three theorems about subgroups - Ivanov; McCarthy + Birman/McCarthy/Lubotzky

- \forall finite type surface S and subgroup $G < \mathcal{MCG}(S)$,
- **Tits Alternative** Either G contains F_n with $n \ge 2$, or G contains a finite index abelian subgroup.
- **Subgroup trichotomy** Either G is finite, or G has a reducing system, or $G \ni$ a pseudo-Anosov element.

Classification of abelian subgroups G abelian \implies

 \exists essential subsurface $F = F_1 \cup \cdots \cup F_K \subset S$ and $\Phi_1, \ldots, \Phi_K \in \text{Homeo}_+(S)$ s.t. $\Phi_k \mid S - F_k = \text{Id}$, and:

- $F_k = \text{annulus} \implies \Phi_k \mid F_k \text{ is a Dehn twist power}$
- $F_k \neq \text{annulus} \implies \Phi_k \mid F_k \text{ is pseudo-Anosov.}$
- G has a finite index subgroup in $\langle \Phi_1 \rangle \oplus \ldots \oplus \langle \Phi_K \rangle$ (See figure for example of where we need to pass to a finite index subgroup).

We are proving all three of these theorems as applications of a single Omnibus Subgroup Theorem (statement and application a little later; proof next time).

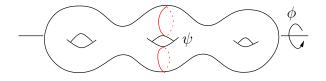


Figure 1: Suppose $G = \langle \phi, \psi \rangle$. ϕ has order 2 and ψ is a pseudo-Anosov on the twice punctured torus. $\langle \phi \rangle$ is an index 2 subgoup of G.

Last time:

- Started proof of Tits alternative when G contains a pseudo-Anosov element.
- Source–Sink dynamics: Action of a pseudo-Anosov $\phi \in \mathcal{MCG}(S)$ on $\mathbf{P}\mathcal{M}F$ has "source–sink" or "north–south" dynamics: $\exists \xi_{\phi}^{\pm} \in \mathbf{P}\mathcal{M}F$, such that $\xi_{\phi}^{+} \neq \xi_{\phi}^{-}$ and such that $\forall \eta \in \mathbf{P}\mathcal{M}F$,
 - If $\eta \neq \xi_{\phi}^+$ then $\lim_{n \to +\infty} \phi^n(\eta) = \xi_{\phi}^-$
 - If $\eta \neq \xi_{\phi}^{-}$ then $\lim_{n \to +\infty} \phi^{-n}(\eta) = \xi_{\phi}^{+}$

Next: Stabilizers of arational measured foliations

A rational foliation is one that contains closed leaves or a loop of saddle connections or a path of saddle connections between punctures. A foliation that is not rational is an arational foliation.

 \forall arational $\mathcal{F} \in \mathcal{M}F$ with projective class $\xi \in \mathbf{P}\mathcal{M}F$.

 $\operatorname{Stab}(\mathcal{F}) = \operatorname{stabilizer} \operatorname{of} \mathcal{F} \operatorname{under} \operatorname{action} \operatorname{of} \mathcal{MCG}(S) \operatorname{on} \mathcal{MF}$

 $\operatorname{Stab}(\xi) = \operatorname{stabilizer} \operatorname{of} \xi \text{ under action of } \mathcal{MCG}(S) \text{ on } \mathbf{P}\mathcal{M}F.$

Define the "log stretch" homomorphism

$$\operatorname{Stab}(\xi) \xrightarrow{\ell_{\xi}} \mathbf{R}$$
$$\psi(\mathcal{F}) = \exp(\ell_{\xi}) \cdot \mathcal{F}$$

Note that

$$\ker(\ell_{\xi}) = \operatorname{Stab}(\mathcal{F})$$

Theorem (Stretch Theorem). image(ℓ_{ξ}) is discrete and ker(Stab(ξ)) = Stab(\mathcal{F}) is finite.

 \implies Stab(ξ) is finite or virtually cyclic.

Proof that image(ℓ_{ξ}) is discrete:

• $\ell_{\xi}(\psi) \neq 0 \iff \psi$ is pseudo-Anosov and ξ =projective class of \mathcal{F}^{s}_{ψ} or \mathcal{F}^{u}_{ψ} (see foe example FLP)

 $\implies \lambda_{\psi} = \exp |\ell_{\xi}(\psi)|$ is the stretch factor.

- λ_{ψ} is the Perron-Frobenius eigenvalue of a non-negative integer matrix of bounded size.
- The set of such numbers is discrete.

Proof that $\operatorname{Stab}(\mathcal{F})$ is finite: (A piece of Thurston's original proof of the trichotomy for elements of $\mathcal{MCG}(S)$. Proof shows that $\operatorname{Stab}(\mathcal{F})$ is represented by a finite subgroup of $\operatorname{Homeo}_+(S)$.)

- Pick an actual measured foliation F in the class \mathcal{F} .
- May assume F has no saddle connections (collapse them if there are any; this uses that F is arational).
- With this assumption, F is unique up to isotopy (not just up to Whitehead equivalence).
- Each $\psi \in \operatorname{Stab}(\mathcal{F})$ is represented by $\Psi \in \operatorname{Homeo}_+(S)$ such that $\Psi(F) = F$ (preserving measure!)
 - because F is unique up to isotopy (Notice that if F' has saddle connections then $\psi(F')$ might not be isotopic to F'. See figure for an example).
- The action of Ψ on leaves of F depends only on ψ .
- Proof (pictures)
 - Suppose $\Psi, \Psi' \in \text{Homeo}_+(S)$ represent ψ , and $\Psi(F) = \Psi'(F) = F$, and L is a leaf.
 - Lift to universal cover $\widetilde{S} = \mathbf{H}^2$ so that $\widetilde{\Psi}, \widetilde{\Psi}'$ have same action on the boundary.

$$- \implies \Psi(\partial L) = \Psi'(\partial L)$$

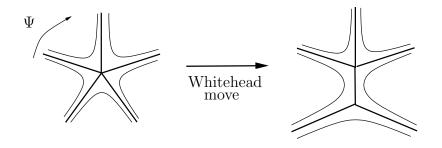


Figure 2: Suppose Ψ acts on F on the left by rotating its separatrices - F is preserved under Ψ , but the foliation on the right is not preserved by ϕ since it would not preserve the grouping of the branches.

 \diamond

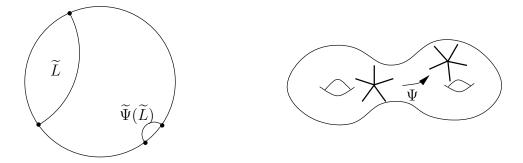


Figure 3: $\widetilde{\Psi}, \widetilde{\Psi}'$ take \widetilde{L} to the same leaf of \widetilde{F} since they act on $\partial \widetilde{S}$ in the same way. They also permute the separatrices and singularities in the same way.

$$- \implies \widetilde{\Psi}(\widetilde{L}) = \widetilde{\Psi}'(\widetilde{L})$$
$$- \implies \Psi(L) = \Psi'(L)$$

• Follows that $\operatorname{Stab}(\mathcal{F})$ acts on the singularities and the separatrices of F.

Remains to prove: If $\Psi(F) = F$ and if Ψ preserves the singularities and separatrices of F then Ψ is isotopic to the identity.

- Pick a singularity s, a sector at s, and a positive length transversal α in that sector. (PICTURE)
- For each $r \in (0, \text{measure}(\alpha)]$ let α_r be the subsegment of transverse measure r.
- Ψ preserves sectors, so $\Psi(\alpha)$ is in the same sector (PICTURE).
- Both α_r and $\Psi(\alpha_r)$ have transverse measure r, both have endpoint s, both are in the same sector at s.
- There exists r such that α_r and $\Psi(\alpha_r)$ are isotopic along leaves rel s.
- Alter Ψ by this isotopy.
- After this isotopy, $\Psi \mid \alpha_r = \text{Id.}$
- Using α_r , decompose S into rectangles (This uses the arationality of F every half leaf is dense).
- Ψ is the identity on each vertical side, preserves each horizontal side, and preserves each rectangle.
- Isotope Ψ to the identity on each horizontal side.
- Isotope Ψ to the identity on each rectangle.
- Ψ is now the identity.

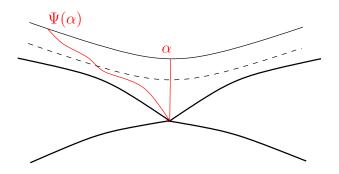


Figure 4: $\Psi(\alpha)$ is in the same sector as α but there might be some topology between α and $\Psi(\alpha)$ so choose a subsegment α_r where $\Psi(\alpha_r)$ is isotopic to α_r . Isotope Ψ to preserve α_r . Use the first return map of α_r to form a rectangle decomposition to conclude that Ψ is isotopic to the identity.

Corollaries to Stretch Theorem:

Given a pseudo-Anosov $\phi \in \mathcal{MCG}(S)$, notation: $\xi_{\phi}^{-} \in \mathbf{P}\mathcal{M}F$ is the source.

 $\xi_{\phi}^+ \in \mathbf{P}\mathcal{M}F$ is the sink.

 $\mathcal{F}_{\phi}^{-} = \mathcal{F}_{\phi}^{s} \in \mathcal{M}F$ is (the class of) the stable measured foliation, whose projective class is ξ_{ϕ}^{-}

 $\mathcal{F}_{\phi}^{+} = \mathcal{F}_{\phi}^{u} \in \mathcal{M}F$ is (the class of) the unstable measured foliation, whose projective class is ξ_{ϕ}^{+} .

NOTE: the stable and unstable measured foliations are *arational*, so the Stretch Theorem applies.

Corollary 1. For any pseudo-Anosov $\phi \in \mathcal{MCG}(S)$ with source ξ_{ϕ}^{-} and sink $\xi_{\phi}^{+} \in \mathbf{PMF}$ we have:

$$\operatorname{Stab}(\xi_{\phi}^{-}) = \operatorname{Stab}(\xi_{\phi}^{+})$$

Step 1: $\operatorname{Stab}(\xi_{\phi}^+)$ is virtually cyclic,

 $\implies \langle \phi \rangle < \operatorname{Stab}(\xi_{\phi}^+)$ has finite index.

- Step 2: Given $\psi \in \operatorname{Stab}(\xi_{\phi}^+)$, the mapping class $\psi \phi \psi^{-1}$ is pseudo-Anosov with source $\psi(\xi_{\phi}^-)$ and sink $\xi_{\phi}^+ \implies \langle \psi \phi \psi^{-1} \rangle < \operatorname{Stab}(\xi_{\phi}^+)$ has finite index.
- **Step 3:** The two mapping classes ϕ , $\psi^{-1}\phi\psi \in \text{Stab}(\xi_{\phi}^+)$ have expansion factors > 1 so have positive powers which are equal (since $\text{Stab}(\xi_{\phi}^+)$ is virtually cyclic)

$$(\psi\phi\psi^{-1})^m = \phi^n$$

Remark. In particular ϕ^n and $(\psi\phi\psi^{-1})^m$ have the same source.

Step 4: $\implies \phi, \psi^{-1}\phi\psi$ have the same source (because the source and sink of a pseudo-Anosov homeomorphism don't change under positive powers)

$$\psi(\xi_{\phi}^{-}) = \xi_{\phi}^{-}$$

Corollary 2. For any two pseudo-Anosov mapping classes $\phi_1, \phi_2 \in \mathcal{MCG}(S)$, the pairs $\xi_{\phi_1}^{\pm}$, $\xi_{\phi_2}^{\pm}$ are either equal or disjoint.

Proof. Assume they are not disjoint. Replacing ϕ_1 and/or ϕ_2 by its inverse, may assume $\epsilon^+ = \epsilon^+$

$$\begin{aligned} \zeta_{\phi_1} &- \zeta_{\phi_2} \\ \implies \phi_2 \in \operatorname{Stab}(\xi_{\phi_2}^+) = \operatorname{Stab}(\xi_{\phi_1}^+) = \operatorname{Stab}(\xi_{\phi_1}^-) \\ \implies \phi_2(\xi_{\phi_1}^-) = \xi_{\phi_1}^- \\ \implies \xi_{\phi_2}^- = \xi_{\phi_1}^- \text{ because of source-sink dynamics.} \end{aligned}$$

Proof of Tits Alternative with a pseudo-Anosov element. Suppose the subgroup G < $\mathcal{MCG}(S)$ has a pseudo-Anosov element ϕ .

 \diamond

Case 1: G preserves the subset ξ_{ϕ}^{\pm} (This is the case where G is virtually cyclic). The stablizer of this subset contains $\operatorname{Stab}(\xi_{\phi}^+)$ with index at most 2, which contains the infinite cyclic group $\langle \phi \rangle$ with finite index.

Case 2: G does not preserve the subset ξ_{ϕ}^{\pm} .

Choose ψ so that $\psi(\xi_{\phi}^{\pm}) \neq \xi_{\phi}^{\pm}$. By the corollary, $\psi(\xi_{\phi}^{\pm})$ and ξ_{ϕ}^{\pm} are disjoint. Let $\phi' = \psi \phi \psi^{-1}$, so $\xi_{\phi'}^{\pm} = \psi(\xi_{\phi}^{\pm})$ and ξ_{ϕ}^{\pm} are disjoint.

Play ping-pong: on a compact space, if two homeomorphisms have source-sink dynamics with disjoint source-sink pairs, then some powers freely generate an F_2 subgroup. \diamond

Recap: statement of Omnibus Subgroup Theorem

Consider $\phi \in G$. $\mathcal{C}_{\phi} = \text{canonical reducing system}$ $(\neq \emptyset \iff \phi \text{ is infinite order and reducible}).$ $N_{\phi} = \text{regular neighborhood of } \mathcal{C}_{\phi}.$ $\mathcal{A}_{\phi} = active \ subsurface \ of \ \phi, \ defined \ to \ be \ the \ union \ of:$

- Components of $S N_{\phi}$ on which the first return mapping class is pseudo-Anosov
- Components A of N_{ϕ} such that the components of $S N_{\phi}$ on either side of A have first return mapping class of finite order.

Features of the active subsurface \mathcal{A}_{ϕ} :

- \mathcal{A}_{ϕ} is an essential subsurface.
- No annulus component of \mathcal{A}_{ϕ} is isotopic into a distinct component.
- $\mathcal{A}_{\phi} = \emptyset$ if and only if ϕ has finite order
- $\mathcal{A}_{\phi} = S$ if and only if ϕ is pseudo-Anosov.

Theorem 3 (Omnibus Subgroup Theorem (Handel-M)). Every subgroup contains an element whose active subsurface is maximal.

More precisely, for every subgroup $G < \mathcal{MCG}(S)$ there exists $\phi \in G$ such that for every $\psi \in G$, the subsurface \mathcal{A}_{ψ} is isotopic into the subsurface \mathcal{A}_{ϕ} .

We shall refer to ϕ as a maximally active element of G.

Last time proved:

Omnibus Subgroup Theorem \implies Subgroup Trichotomy. **Important lemma in the proof:** If $\phi \in G$ is maximally active then $\psi(\mathcal{A}_{\phi}) = \mathcal{A}_{\phi}$ for all $\psi \in G$.

Corollary: If $\phi, \psi \in G$ are both maximally active then $\mathcal{A}_{\phi}, \mathcal{A}_{\psi}$ are isotopic. We may therefore define

 \mathcal{A}_G = active subsurface of the subgroup $G = \mathcal{A}_{\phi}$ for any maximally active $\phi \in G$. \mathcal{A}_G is well-defined up to isotopy.

Next: Reformulate and (very quickly) prove:

Omnibus Subgroup Theorem \implies Tits Alternative and Classification of Abelian Subgroups.

Definition: Given an infinite order, irreducible subgroup $G < \mathcal{MCG}(S)$ which has a pseudo-Anosov element, either:

- G is elementary meaning that G has a virtually cyclic pseudo-Anosov subgroup of finite index; or
- G is nonelementary meaning that G has an F_2 subgroup.

Given $G < \mathcal{MCG}(S)$ which is infinite order and reducible. $\implies \mathcal{A}_G$ is nonempty and proper.

G acts on the set of components F of \mathcal{A}_G and of $S - \mathcal{A}_G$.

Let G_0 = kernel of this action, a finite index subgroup of G that preserves each F.

Let $G_0 \to \mathcal{MCG}(F)$ be the restriction homomorphism. Denote its image by $G_0 \mid F$.

Let
$$G_1 = \bigcap_F \ker (G_0 \to \mathcal{MCG}(F) \to Out(H_1(F; \mathbb{Z}/3)))$$

 \implies $G_1 =$ finite index subgroup of G and $G_1 \mid F$ is torsion free for each F

List of special cases for $G_1 \mid F$:

- $F = \text{component of } S \mathcal{A}_G \implies G_1 \mid F \text{ is trivial (because it is finite and torsion free).}$
- F = nonannulus component of $\mathcal{A}_G \implies G_1 \mid F$ is irreducible.
 - if $G_1 \mid F$ is elementary then it is an infinite cyclic pseudo-Anosov subgroup.
 - if $G_1 \mid F$ is nonelementary then it contains an F_2 (by the special case of the Tits alternative).
- F = annulus component of $\mathcal{A}_G \implies G_1 \mid F$ is an infinite cyclic subgroup generated by a Dehn twist power.

Theorem 4 (Tits Alt. + Class. of Abel Subgps). *Exactly one of the following is true:*

- 1. There exists a nonannulus component F of \mathcal{A}_G such that the image of $G_1 \to \mathcal{MCG}(F)$ is nonelementary. $\implies G_1$ contains an F_2 subgroup.
- 2. For each nonannulus component F of \mathcal{A}_G the image of $G_1 \to \mathcal{MCG}(F)$ is elementary. $\implies G_1$ is free abelian and satisfies the conclusions of the Classification of Free Abelian Subgroups.

 \diamond

Proof of (1). The image of the homomorphism $G_1 \to \mathcal{MCG}(F)$ contains an F_2 . There is a homomorphic section from this F_2 back to G_1 .

Proof of (2). Follows immediately from the list of special cases for $G_1 \mid F$.