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Recap: three theorems about subgroups - Ivanov; McCarthy + Bir-
man/McCarthy/Lubotzky

∀ finite type surface S and subgroup G <MCG(S),

Tits Alternative Either G contains Fn with n ≥ 2, or G contains a finite index
abelian subgroup.

Subgroup trichotomy Either G is finite, or G has a reducing system, or G 3 a
pseudo-Anosov element.

Classification of abelian subgroups G abelian =⇒
∃ essential subsurface F = F1 ∪ · · · ∪FK ⊂ S and Φ1, . . . ,ΦK ∈ Homeo+(S) s.t.
Φk

∣∣ S − Fk = Id, and:

• Fk = annulus =⇒ Φk

∣∣ Fk is a Dehn twist power

• Fk 6= annulus =⇒ Φk

∣∣ Fk is pseudo-Anosov.

• G has a finite index subgroup in 〈Φ1〉⊕ . . .⊕〈ΦK〉 (See figure for example
of where we need to pass to a finite index subgroup).

We are proving all three of these theorems as applications of a single Omnibus
Subgroup Theorem (statement and application a little later; proof next time).

φ

ψ

Figure 1: Suppose G =< φ, ψ >. φ has order 2 and ψ is a pseudo-Anosov on the
twice punctured torus. < φ > is an index 2 subgoup of G.
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Last time:

• Started proof of Tits alternative when G contains a pseudo-Anosov element.

• Source–Sink dynamics: Action of a pseudo-Anosov φ ∈MCG(S) on PMF has
“source–sink” or “north–south” dynamics:
∃ξ±φ ∈ PMF , such that ξ+

φ 6= ξ−φ and such that ∀η ∈ PMF ,

– If η 6= ξ+
φ then limn→+∞ φ

n(η) = ξ−φ

– If η 6= ξ−φ then limn→+∞ φ
−n(η) = ξ+

φ

Next: Stabilizers of arational measured foliations

A rational foliation is one that contains closed leaves or a loop of saddle con-
nections or a path of saddle connections between punctures. A foliation that is not
rational is an arational foliation.

∀ arational F ∈MF with projective class ξ ∈ PMF .

Stab(F) = stabilizer of F under action of MCG(S) on MF

Stab(ξ) = stabilizer of ξ under action of MCG(S) on PMF .

Define the “log stretch” homomorphism

Stab(ξ)
`ξ−→ R

ψ(F) = exp(`ξ) · F

Note that
ker(`ξ) = Stab(F)

Theorem (Stretch Theorem). image(`ξ) is discrete and ker(Stab(ξ)) = Stab(F)
is finite.

=⇒ Stab(ξ) is finite or virtually cyclic.

Proof that image(`ξ) is discrete:

• `ξ(ψ) 6= 0 ⇐⇒ ψ is pseudo-Anosov and ξ =projective class of F s
ψ or Fu

ψ (see
foe example FLP)
=⇒ λψ = exp |`ξ(ψ)| is the stretch factor.
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• λψ is the Perron-Frobenius eigenvalue of a non-negative integer matrix of bounded
size.

• The set of such numbers is discrete.

♦

Proof that Stab(F) is finite: (A piece of Thurston’s original proof of the trichotomy
for elements ofMCG(S). Proof shows that Stab(F) is represented by a finite subgroup
of Homeo+(S).)

• Pick an actual measured foliation F in the class F .

• May assume F has no saddle connections (collapse them if there are any; this
uses that F is arational).

• With this assumption, F is unique up to isotopy (not just up to Whitehead
equivalence).

• Each ψ ∈ Stab(F) is represented by Ψ ∈ Homeo+(S) such that Ψ(F ) = F
(preserving measure!)

– because F is unique up to isotopy (Notice that if F ′ has saddle connections
then ψ(F ′) might not be isotopic to F ′. See figure for an example).

• The action of Ψ on leaves of F depends only on ψ.

• Proof (pictures)

– Suppose Ψ,Ψ′ ∈ Homeo+(S) represent ψ, and Ψ(F ) = Ψ′(F ) = F , and L
is a leaf.

– Lift to universal cover S̃ = H2 so that Ψ̃, Ψ̃′ have same action on the
boundary.

– =⇒ Ψ̃(∂L̃) = Ψ̃′(∂L̃)

Whitehead
move

Ψ

Figure 2: Suppose Ψ acts on F on the left by rotating its separatrices - F is preserved
under Ψ, but the foliation on the right is not preserved by φ since it would not preserve
the grouping of the branches.
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L̃

Ψ̃(L̃)
Ψ

Figure 3: Ψ̃, Ψ̃′ take L̃ to the same leaf of F̃ since they act on ∂S̃ in the same way.
They also permute the separatrices and singularities in the same way.

– =⇒ Ψ̃(L̃) = Ψ̃′(L̃)

– =⇒ Ψ(L) = Ψ′(L)

• Follows that Stab(F) acts on the singularities and the separatrices of F .

Remains to prove: If Ψ(F ) = F and if Ψ preserves the singularities and sepa-
ratrices of F then Ψ is isotopic to the identity.

• Pick a singularity s, a sector at s, and a positive length transversal α in that
sector. (PICTURE)

• For each r ∈ (0,measure(α)] let αr be the subsegment of transverse measure r.

• Ψ preserves sectors, so Ψ(α) is in the same sector (PICTURE).

• Both αr and Ψ(αr) have transverse measure r, both have endpoint s, both are
in the same sector at s.

• There exists r such that αr and Ψ(αr) are isotopic along leaves rel s.

• Alter Ψ by this isotopy.

• After this isotopy, Ψ
∣∣ αr = Id.

• Using αr, decompose S into rectangles (This uses the arationality of F - every
half leaf is dense).

• Ψ is the identity on each vertical side, preserves each horizontal side, and pre-
serves each rectangle.

• Isotope Ψ to the identity on each horizontal side.

• Isotope Ψ to the identity on each rectangle.

• Ψ is now the identity.

♦
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α

Ψ(α)

Figure 4: Ψ(α) is in the same sector as α but there might be some topology between
α and Ψ(α) so choose a subsegment αr where Ψ(αr) is isotopic to αr. Isotope Ψ to
preserve αr. Use the first return map of αr to form a rectangle decomposition to
conclude that Ψ is isotopic to the identity.

Corollaries to Stretch Theorem:
Given a pseudo-Anosov φ ∈MCG(S), notation:
ξ−φ ∈ PMF is the source.

ξ+
φ ∈ PMF is the sink.

F−φ = F s
φ ∈MF is (the class of) the stable measured foliation, whose projective class

is ξ−φ

F+
φ = Fu

φ ∈ MF is (the class of) the unstable measured foliation, whose projective

class is ξ+
φ .

NOTE: the stable and unstable measured foliations are arational, so the Stretch
Theorem applies.

Corollary 1. For any pseudo-Anosov φ ∈ MCG(S) with source ξ−φ and sink ξ+
φ ∈

PMF we have:
Stab(ξ−φ ) = Stab(ξ+

φ )

Step 1: Stab(ξ+
φ ) is virtually cyclic,

=⇒ 〈φ〉 < Stab(ξ+
φ ) has finite index.

Step 2: Given ψ ∈ Stab(ξ+
φ ), the mapping class ψφψ−1 is pseudo-Anosov with source

ψ(ξ−φ ) and sink ξ+
φ

=⇒ 〈ψφψ−1〉 < Stab(ξ+
φ ) has finite index.

Step 3: The two mapping classes φ, ψ−1φψ ∈ Stab(ξ+
φ ) have expansion factors > 1

so have positive powers which are equal (since Stab(ξ+
φ ) is virtually cyclic)

(ψφψ−1)m = φn
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Remark. In particular φn and (ψφψ−1)m have the same source.

Step 4: =⇒ φ, ψ−1φψ have the same source (because the source and sink of a
pseudo-Anosov homeomorphism don’t change under positive powers)

ψ(ξ−φ ) = ξ−φ

Corollary 2. For any two pseudo-Anosov mapping classes φ1, φ2 ∈ MCG(S), the
pairs ξ±φ1

, ξ±φ2
are either equal or disjoint.

Proof. Assume they are not disjoint. Replacing φ1 and/or φ2 by its inverse, may
assume

ξ+
φ1

= ξ+
φ2

=⇒ φ2 ∈ Stab(ξ+
φ2

) = Stab(ξ+
φ1

) = Stab(ξ−φ1
)

=⇒ φ2(ξ
−
φ1

) = ξ−φ1

=⇒ ξ−φ2
= ξ−φ1

because of source-sink dynamics.
♦

Proof of Tits Alternative with a pseudo-Anosov element. Suppose the subgroup G <
MCG(S) has a pseudo-Anosov element φ.

Case 1: G preserves the subset ξ±φ (This is the case where G is virtually cyclic).

The stablizer of this subset contains Stab(ξ+
φ ) with index at most 2, which contains

the infinite cyclic group 〈φ〉 with finite index.

Case 2: G does not preserve the subset ξ±φ .

Choose ψ so that ψ(ξ±φ ) 6= ξ±φ .

By the corollary, ψ(ξ±φ ) and ξ±φ are disjoint.

Let φ′ = ψφψ−1, so ξ±φ′ = ψ(ξ±φ ) and ξ±φ are disjoint.
Play ping-pong: on a compact space, if two homeomorphisms have source-sink

dynamics with disjoint source-sink pairs, then some powers freely generate an F2

subgroup. ♦

Recap: statement of Omnibus Subgroup Theorem
Consider φ ∈ G.
Cφ = canonical reducing system
(6= ∅ ⇐⇒ φ is infinite order and reducible).
Nφ = regular neighborhood of Cφ.
Aφ = active subsurface of φ, defined to be the union of:

• Components of S−Nφ on which the first return mapping class is pseudo-Anosov

• Components A of Nφ such that the components of S − Nφ on either side of A
have first return mapping class of finite order.
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Features of the active subsurface Aφ:
• Aφ is an essential subsurface.
• No annulus component of Aφ is isotopic into a distinct component.
• Aφ = ∅ if and only if φ has finite order
• Aφ = S if and only if φ is pseudo-Anosov.

Theorem 3 (Omnibus Subgroup Theorem (Handel-M)). Every subgroup contains an
element whose active subsurface is maximal.

More precisely, for every subgroup G <MCG(S) there exists φ ∈ G such that for
every ψ ∈ G, the subsurface Aψ is isotopic into the subsurface Aφ.

We shall refer to φ as a maximally active element of G.

Last time proved:

Omnibus Subgroup Theorem =⇒ Subgroup Trichotomy.
Important lemma in the proof: If φ ∈ G is maximally active then ψ(Aφ) = Aφ

for all ψ ∈ G.
Corollary: If φ, ψ ∈ G are both maximally active then Aφ,Aψ are isotopic.
We may therefore define
AG = active subsurface of the subgroup G = Aφ for any maximally active φ ∈ G.
AG is well-defined up to isotopy.

Next: Reformulate and (very quickly) prove:

Omnibus Subgroup Theorem =⇒ Tits Alternative and Classification of Abelian
Subgroups.

Definition: Given an infinite order, irreducible subgroup G < MCG(S) which
has a pseudo-Anosov element, either:

G is elementary meaning that G has a virtually cyclic pseudo-Anosov subgroup of
fintie index; or

G is nonelementary meaning that G has an F2 subgroup.

Given G <MCG(S) which is infinite order and reducible. =⇒ AG is nonempty
and proper.

G acts on the set of components F of AG and of S −AG.
Let G0 = kernel of this action, a finite index subgroup of G that preserves each

F .
Let G0 →MCG(F ) be the restriction homomorphism.

Denote its image by G0

∣∣ F .

Let G1 =
⋂
F

ker
(
G0 →MCG(F ) → Out(H1(F ;Z/3))

)
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=⇒ G1 = finite index subgroup of G and
G1

∣∣ F is torsion free for each F

List of special cases for G1

∣∣ F :

• F = component of S−AG =⇒ G1

∣∣ F is trivial (because it is finite and torsion
free).

• F = nonannulus component of AG =⇒ G1

∣∣ F is irreducible.

– if G1

∣∣ F is elementary then it is an infinite cyclic pseudo-Anosov subgroup.

– if G1

∣∣ F is nonelementary then it contains an F2 (by the special case of
the Tits alternative).

• F = annulus component of AG =⇒ G1

∣∣ F is an infinite cyclic subgroup
generated by a Dehn twist power.

Theorem 4 (Tits Alt. + Class. of Abel Subgps). Exactly one of the following is
true:

1. There exists a nonannulus component F of AG such that the image of G1 →
MCG(F ) is nonelementary.
=⇒ G1 contains an F2 subgroup.

2. For each nonannulus component F of AG the image of G1 → MCG(F ) is
elementary.
=⇒ G1 is free abelian and satisfies the conclusions of the Classification of Free
Abelian Subgroups.

Proof of (1). The image of the homomorphism G1 →MCG(F ) contains an F2.
There is a homomorphic section from this F2 back to G1. ♦

Proof of (2). Follows immediately from the list of special cases for G1

∣∣ F . ♦


