Mapping Class Groups

MSRI, Fall 2007
Day 1, September 6

September 12, 2007

Theme for the course (if there is one):

- Hierarchical structure of mapping class groups

Topics:

- Conjugacy problem for mapping class groups
- Thurston's trichotomy for mapping classes
- Conjugacy invariants for reducible mapping classes reveal hierarchical structure.
- Subgroup theorems: Tits alternative, subgroup trichotomy, abelian subgroups.
- New unifying proofs (joint with M. Handel) reveal hierarchical structure
- Results of Masur and Minsky on curve complexes
- Hyperbolicity, Hierarchy paths
- Quasi-distance formula
- ???

Prerequisites (to be reviewed briefly as needed):

- Basics of Teichmüller space
- Geodesic laminations, measured foliations, compactification of Teichmüller space
- Thurston's trichotomy for mapping classes.
- Source material:
- Casson-Bleiler (including the unpublished 2nd volume)
- Fathi-Laudenbach-Poenaru (translation available from Margalit's web site)

Mapping class group of the torus

- $T=S^{1} \times S^{1}$
- $\pi_{1}(T, p) \approx H_{1}(T ; \mathbf{Z}) \approx \mathbf{Z}^{2}$
- $\operatorname{MCG}(T)=\mathrm{Homeo}_{+}(T) / \mathrm{Homeo}_{0}(T)$
- The action

Homeo $_{+}(T) \circlearrowleft H_{1}(T ; \mathbf{Z}) \approx \mathbf{Z}^{2}$
is trivial on $\operatorname{HomeO}_{0}(T)$ and so descends to an action

$$
\mathcal{M C \mathcal { G }}(T) \circlearrowleft H_{1}(T ; \mathbf{Z}) \approx \mathbf{Z}^{2}
$$

which induces a homomorphism

$$
\mathcal{M C G}(T) \rightarrow \operatorname{Aut}\left(H_{1}(T ; \mathbf{Z})\right) \approx \operatorname{SL}(2 ; \mathbf{Z})
$$

- The linear action $\operatorname{SL}(2 ; \mathbf{Z})$ on \mathbf{R}^{2} preserves \mathbf{Z}^{2} and descends to an action on T, inducing a homomorphism

$$
\operatorname{SL}(2 ; \mathbf{Z}) \rightarrow \operatorname{Homeo}^{+}(T) \rightarrow \mathcal{M C G}(T)
$$

Theorem (Algebraic structure of $\mathcal{M C G}(T)$). The above two homomorphisms

$$
\mathcal{M C G}(T) \rightarrow \mathrm{SL}(2 ; \mathbf{Z})
$$

$$
\mathrm{SL}(2 ; \mathbf{Z}) \rightarrow \mathcal{M C G}(T)
$$

are inverse isomorphisms of each other.

Action on Teichmüller space. There is an action

Homeo $_{+}(T) \circlearrowleft\{$ conformal structures on $T\}$
obtained by pushing a conformal structure forward. This descends to an action

$$
\begin{aligned}
\mathcal{M C G}(T)=\frac{\text { Homeo }_{+}(T)}{\text { Homeo }_{0}(T)} & \circlearrowleft \frac{\text { conformal structures }}{\text { Homeo }_{0}(T)} \\
& =\frac{\text { conformal structures }}{\text { isotopy }} \\
& =\mathcal{T}(T) \\
& =\text { Teichmüller space of } \top
\end{aligned}
$$

By the Uniformization Theorem we have natural isomorphisms

$$
\mathcal{T}(T)=\frac{\text { conformal structures }}{\text { isotopy }}
$$

$=\frac{\text { Euclidean structures }}{\text { homothety isotopic to identity }}$
$=\frac{\text { Euclidean structures of area } 1}{\text { isometry isotopic to identity }}$

Picture of Teichmüller space:

- Each Euclidean structure on T is obtained in a unique manner as follows:
- Start with the standard action of \mathbf{Z}^{2} on \mathbf{R}^{2}, with fundamental domain $[0,1] \times[0,1]$
- Conjugate by an orientation preserving linear map $A: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ which is the identity on the x-axis
- Result is an isometric action of Z^{2} whose fundamental domain $A([0,1] \times[0,1])$ is a parallelogram in the upper half plane with one side being $[0,1] \times 0$.
- The upper right corner $A(1 \times 1)$, regarded as a parameter, gives an isomorphism

$$
\mathcal{T}(T) \approx \text { upper half plane }
$$

- The isomorphism $\mathcal{M C G}(T) \approx \operatorname{SL}(2, \mathbf{Z})$ gives a commutative diagram of actions

$\mathcal{M C G}(T) \circlearrowleft \mathcal{T}(T)$
$\mathrm{SL}(2, \mathbf{Z}) \circlearrowleft$ upper half plane

- This action is not faithful.
- Kernel is the center $\{ \pm \mathrm{Id}\} \approx \mathrm{Z} / 2$.
- Induced action of the quotient group

$$
\operatorname{PSL}(2 ; \mathbf{Z})=\operatorname{SL}(2 ; \mathbf{Z}) / \pm \operatorname{Id} \circlearrowleft \mathcal{T}(T)
$$

is faithful.

- This group of transformations of $\mathcal{T}(T)$ is known as the modular group $\operatorname{Mod}(T)$.

Amalgamation structure of $\mathcal{M C G}(T) \approx \operatorname{SL}(2 ; \mathbf{Z})$

- Fundamental domain for $\mathcal{M C G}(T) \circlearrowleft \mathcal{T}(T) \ldots$
- Invariant tree τ for the action ...
- Peripheral lines (horocycles) and nonperipheral lines
- Two vertex orbits, Red and Green:
- Each Red vertex PSL(2; Z) stabilizer Z/3, and $\operatorname{SL}(2, \mathbf{Z})$ stabilizer $\mathbf{Z} / 6$.
- Each Green vertex has PSL(2; Z) stabilizer Z/2 and SL(2, Z) stabilizer Z/4.
- One edge orbit:
- Each edge has PSL(2; Z) stabilizer 1, and $\operatorname{SL}(2 ; \mathbf{Z})$ stabilizer the $\mathbf{Z} / 2$ central subgroup.

Conclusion by Bass-Serre theory:

$$
\begin{aligned}
\operatorname{PSL}(2 ; \mathbf{Z}) & \approx \mathrm{Z} / 3 * \mathbf{Z} / 2 \\
\mathrm{SL}(2 ; \mathbf{Z}) & \approx \mathrm{Z} / 6 * \mathrm{Z} / 2 \mathrm{Z} / 4
\end{aligned}
$$

Conjugacy classification in $\operatorname{PSL}(2 ; \mathbf{Z})$ and $S L(2 ; \mathbf{Z})$:

- Trace is an conjugacy invariant in $\operatorname{SL}(2 ; \mathbf{Z})$.
- |Trace| is a conjugacy invariant in $\operatorname{PSL}(2 ; \mathbf{Z})$.
- The pre-image of each $\operatorname{PSL}(2 ; \mathbf{Z})$ conjugacy class is a pair of $\operatorname{SL}(2 ; \mathbf{Z})$ conjugacy classes, differing by the sign of the trace (except in the case of zero trace).
- Given $\phi \in \operatorname{MCG}(T) \approx \operatorname{SL}(2 ; \mathbf{Z})$, we consider the following trichotomy:
$-|\operatorname{Tr}(\phi)|<2 \Longleftrightarrow \phi$ has finite order
$-|\operatorname{Tr}(\phi)|=2 \Longleftrightarrow \phi$ fixes some simple closed curve
$-|\operatorname{Tr}(\phi)|>2 \Longleftrightarrow \phi$ is Anosov.

Case 1: Finite order. If $|\operatorname{Tr}(\phi)|<2$ then ϕ has finite order. There are finitely many such conjugacy classes.

Case 1a: $|\operatorname{Tr}(\phi)|=0$

- $\Longleftrightarrow \phi$ has order 4 , fixing some valence 2 vertex of τ, rotating $\mathcal{T}(T)$ by π around the fixed vertex.
- $\Longleftrightarrow \phi$ leaves invariant some square Euclidean structure on T with rotational holonomy $\pi / 4$ or $3 \pi / 4$. This angle is a complete conjugacy invariant.
- Two such conjugacy classes in SL(2; $\mathbf{Z})$, and one in PSL(2; Z).
- Example: $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ has order 4, fixing the vertex i.

Case 1b: $|\operatorname{Tr}(\phi)|=1$

- $\Longleftrightarrow \phi$ has order 3 or 6 , fixing some valence 3 vertex of τ, rotating $\mathcal{T}(T)$ by $2 \pi / 3$ or $4 \pi / 3$ around the fixed vertex.
- $\Longleftrightarrow \phi$ leaves invariant some hexagonal Euclidean structure on T with rotational holonomy $\pi / 3,2 \pi / 3$, $4 \pi / 3,5 \pi / 3$. This angle is a complete conjugacy invariant. (The $\mathcal{T}(T)$ rotation angle equals 2 times the Euclidean rotational holonomy).
- Four such conjugacy classes in SL(2; $\mathbf{Z})$, and two in PSL(2; Z).
- Example: $\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$ has order 6 , fixing the vertex $\frac{1}{2}+\frac{\sqrt{3}}{2} i$.

Case 2: $|\operatorname{Tr}(\phi)|=2$

- $\Longleftrightarrow \phi$ fixes some rational number on $\mathbf{R}=\partial \mathcal{T}(T)$, which is the slope of the unique eigenvector of ϕ.
- $\Longleftrightarrow \phi$ preserves some "horocycle" line in the tree τ.
- $\Longleftrightarrow \phi$ is a power of a Dehn twist, possibly multiplied by -Id (ϕ could be \pm Id).
- $\Longleftrightarrow \phi$ is conjugate to a matrix of the form $\pm\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)$.
- Moreover, ϕ is conjugate to a unique matrix of the form $\pm\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)$, and the integer n together with the sign of the trace are complete conjugacy invariants.

Case 3: Anosov. If $|\operatorname{Tr}(\phi)|>2$

- $\Longleftrightarrow \phi$ fixes a pair of irrational numbers on $\mathbf{R} \cup$ $\{\infty\}=\partial \mathcal{T}(T)$, one the slope of an expanding eigenvector, one the slope of a contracting eigenvector, with respective eigenvectors $\lambda>1, \lambda^{-1}<1$.
- $\Longleftrightarrow \phi$ preserves a non-horocyclic line ℓ in the tree τ, and a fellow travelling geodesic γ in $\mathcal{T}(T)$, translating along γ a distance $\log (\lambda)$. (ideal endpoings of ℓ or of γ are the fixed points in $\partial \mathcal{T}(T)$
- $\Longleftrightarrow \phi$ is represented by an Anosov homeomorphism of the torus: there exists
- Euclidean structure μ on T
- Pair of μ-orthogonal foliations, \mathcal{F}^{u} ("unstable" or "horizontal" foliation), and \mathcal{F}^{s} ("stable" or "vertical" foliation)
$-\lambda>1$
such that
- ϕ preserves \mathcal{F}^{u}, stretching leaves by factor λ
- ϕ compresses \mathcal{F}^{s}, compressing leaves by factor λ

Anosov conjugacy classification, method 1.

- In τ, consider the invariant line ℓ, oriented in the direction of translation ...
- Each time ℓ passes a valence 3 vertex, it turns L or R...
- Get a bi-infinite sequence of L's and R's, on which ϕ acts.
- Quotient of this sequence under ϕ action is an oriented loop of L's and R's of even length

$$
\left(p_{i} \mid i \in \mathbf{Z} / 2 k\right), \quad p_{i} \in\{L, R\}
$$

- This loop (up to cyclic permutation), and the trace, is a complete conjugacy invariant of ϕ.
- Set $M_{L}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $M_{R}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ (or the other way around...I'm not sure...).
- If $\operatorname{Tr}(\phi)>2$, the conjugacy class of ϕ is represented by the following positive matrices and no other positive matrices:

$$
\begin{aligned}
& M_{p_{1}} \cdot M_{p_{2}} \cdot \ldots \cdot M_{p_{2 k-1}} \cdot M_{p_{2 k}} \\
& M_{p_{2}} \cdot M_{p_{3}} \cdot \ldots \cdot M_{p_{2 k}} \cdot M_{p_{1}}
\end{aligned}
$$

and other cyclic conjugates

Next time: We use dynamical systems - the stable and unstable foliations - to give another description of the Anosov conjugacy classification, one which will generalize to all finite type surfaces.

