Mapping Class Groups MSRI, Fall 2007 Day 1, September 6

September 12, 2007

Theme for the course (if there is one):

• Hierarchical structure of mapping class groups

Topics:

- Conjugacy problem for mapping class groups
 - Thurston's trichotomy for mapping classes
 - Conjugacy invariants for reducible mapping classes reveal hierarchical structure.
- Subgroup theorems: Tits alternative, subgroup trichotomy, abelian subgroups.
 - New unifying proofs (joint with M. Handel) reveal hierarchical structure
- Results of Masur and Minsky on curve complexes
 - Hyperbolicity, Hierarchy paths
 - Quasi-distance formula
- ???

Prerequisites (to be reviewed briefly as needed):

- Basics of Teichmüller space
 - Geodesic laminations, measured foliations, compactification of Teichmüller space
 - Thurston's trichotomy for mapping classes.
- Source material:
 - Casson-Bleiler (including the unpublished 2nd volume)
 - Fathi-Laudenbach-Poenaru (translation available from Margalit's web site)

Mapping class group of the torus

•
$$T = S^1 \times S^1$$

•
$$\pi_1(T,p) \approx H_1(T;\mathbf{Z}) \approx \mathbf{Z}^2$$

• $\mathcal{MCG}(T) = \text{Homeo}_+(T)/\text{Homeo}_0(T)$

The action

$$\mathsf{Homeo}_+(T) \circlearrowleft H_1(T; \mathbf{Z}) \approx \mathbf{Z}^2$$

is trivial on $\mathsf{Homeo}_0(T)$ and so descends to an action

$$\mathcal{MCG}(T) \circlearrowleft H_1(T; \mathbf{Z}) \approx \mathbf{Z}^2$$

which induces a homomorphism

$$\mathcal{MCG}(T) \rightarrow \mathsf{Aut}(H_1(T; \mathbf{Z})) \approx \mathsf{SL}(2; \mathbf{Z})$$

• The linear action $SL(2; \mathbf{Z})$ on \mathbf{R}^2 preserves \mathbf{Z}^2 and descends to an action on T, inducing a homomorphism

$$SL(2; \mathbf{Z}) \to Homeo^+(T) \to \mathcal{MCG}(T)$$

Theorem (Algebraic structure of $\mathcal{MCG}(T)$). The above two homomorphisms

$$\mathcal{MCG}(T) \to \mathsf{SL}(2; \mathbf{Z})$$

$$\mathsf{SL}(2;\mathbf{Z}) o \mathcal{MCG}(T)$$

are inverse isomorphisms of each other.

Action on Teichmüller space. There is an action

 $\mathsf{Homeo}_+(T) \circlearrowleft \{\mathsf{conformal\ structures\ on\ } T\}$

obtained by pushing a conformal structure forward. This descends to an action

$$\mathcal{MCG}(T) = \frac{\mathsf{Homeo}_+(T)}{\mathsf{Homeo}_0(T)} \circlearrowleft \frac{\mathsf{conformal\ structures}}{\mathsf{Homeo}_0(T)}$$

$$= \frac{\mathsf{conformal\ structures}}{\mathsf{isotopy}}$$

$$= \mathcal{T}(T)$$

= Teichmüller space of T

By the Uniformization Theorem we have natural isomorphisms

$$\mathcal{T}(T) = \frac{\text{conformal structures}}{\text{isotopy}}$$

 $= \frac{\text{Euclidean structures}}{\text{homothety isotopic to identity}}$

 $= \frac{\text{Euclidean structures of area 1}}{\text{isometry isotopic to identity}}$

Picture of Teichmüller space:

- ullet Each Euclidean structure on T is obtained in a unique manner as follows:
 - Start with the standard action of ${f Z}^2$ on ${f R}^2$, with fundamental domain $[0,1] \times [0,1]$
 - Conjugate by an orientation preserving linear map $A \colon \mathbf{R}^2 \to \mathbf{R}^2$ which is the identity on the x-axis
 - Result is an isometric action of ${\bf Z}^2$ whose fundamental domain $A([0,1]\times [0,1])$ is a parallelogram in the upper half plane with one side being $[0,1]\times 0$.
- The upper right corner $A(1 \times 1)$, regarded as a parameter, gives an isomorphism

$$T(T) \approx \text{upper half plane}$$

• The isomorphism $\mathcal{MCG}(T) \approx \mathsf{SL}(2,\mathbf{Z})$ gives a commutative diagram of actions

$$\mathcal{MCG}(T)\circlearrowleft\mathcal{T}(T)$$
 SL $(2,\mathbf{Z})\circlearrowleft$ upper half plane

- This action is *not* faithful.
- Kernel is the center $\{\pm Id\} \approx \mathbb{Z}/2$.
- Induced action of the quotient group

$$\mathsf{PSL}(2;\mathbf{Z}) = \mathsf{SL}(2;\mathbf{Z}) / \pm \mathsf{Id} \circlearrowleft \mathcal{T}(T)$$
 is faithful.

• This group of transformations of $\mathcal{T}(T)$ is known as the modular group $\mathsf{Mod}(T)$.

Amalgamation structure of $\mathcal{MCG}(T) \approx SL(2; \mathbf{Z})$

- ullet Fundamental domain for $\mathcal{MCG}(T) \circlearrowleft \mathcal{T}(T)$. . .
- ullet Invariant tree au for the action . . .
- Peripheral lines (horocycles) and nonperipheral lines
 . . .
- Two vertex orbits, Red and Green:
 - Each Red vertex PSL(2; \mathbf{Z}) stabilizer $\mathbf{Z}/3$, and SL(2, \mathbf{Z}) stabilizer $\mathbf{Z}/6$.
 - Each Green vertex has PSL(2; \mathbf{Z}) stabilizer $\mathbf{Z}/2$ and SL(2, \mathbf{Z}) stabilizer $\mathbf{Z}/4$.

- One edge orbit:
 - Each edge has $PSL(2; \mathbf{Z})$ stabilizer 1, and $SL(2; \mathbf{Z})$ stabilizer the $\mathbf{Z}/2$ central subgroup.

Conclusion by Bass-Serre theory:

$$\mathsf{PSL}(2; \mathbf{Z}) \approx \mathbf{Z}/3 * \mathbf{Z}/2$$
$$\mathsf{SL}(2; \mathbf{Z}) \approx \mathbf{Z}/6 *_{\mathbf{Z}/2} \mathbf{Z}/4$$

Conjugacy classification in $PSL(2; \mathbb{Z})$ and $SL(2; \mathbb{Z})$:

- Trace is an conjugacy invariant in SL(2; Z).
- |Trace| is a conjugacy invariant in PSL(2; Z).
- The pre-image of each PSL(2; **Z**) conjugacy class is a pair of SL(2; **Z**) conjugacy classes, differing by the sign of the trace (except in the case of zero trace).
- Given $\phi \in \mathcal{MCG}(T) \approx SL(2; \mathbf{Z})$, we consider the following trichotomy:
 - $-|\mathrm{Tr}(\phi)|<2\iff \phi$ has finite order
 - $-|\text{Tr}(\phi)|=2\iff \phi$ fixes some simple closed curve
 - $-|\operatorname{Tr}(\phi)| > 2 \iff \phi \text{ is Anosov.}$

Case 1: Finite order. If $|Tr(\phi)| < 2$ then ϕ has finite order. There are finitely many such conjugacy classes.

Case 1a: $|Tr(\phi)| = 0$

- $\iff \phi$ has order 4, fixing some valence 2 vertex of τ , rotating $\mathcal{T}(T)$ by π around the fixed vertex.
- $\iff \phi$ leaves invariant some square Euclidean structure on T with rotational holonomy $\pi/4$ or $3\pi/4$. This angle is a *complete* conjugacy invariant.
- Two such conjugacy classes in SL(2; Z), and one in PSL(2; Z).
- Example: $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ has order 4, fixing the vertex i.

Case 1b: $|Tr(\phi)| = 1$

- $\iff \phi$ has order 3 or 6, fixing some valence 3 vertex of τ , rotating $\mathcal{T}(T)$ by $2\pi/3$ or $4\pi/3$ around the fixed vertex.
- \iff ϕ leaves invariant some hexagonal Euclidean structure on T with rotational holonomy $\pi/3$, $2\pi/3$, $4\pi/3$, $5\pi/3$. This angle is a *complete* conjugacy invariant. (The T(T) rotation angle equals 2 times the Euclidean rotational holonomy).
- Four such conjugacy classes in SL(2; Z), and two in PSL(2; Z).
- Example: $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$ has order 6, fixing the vertex $\frac{1}{2} + \frac{\sqrt{3}}{2}i$.

Case 2: $|Tr(\phi)| = 2$

- $\iff \phi$ fixes some rational number on $\mathbf{R} = \partial \mathcal{T}(T)$, which is the slope of the unique eigenvector of ϕ .
- $\bullet \iff \phi$ preserves some "horocycle" line in the tree au.
- $\iff \phi$ is a power of a Dehn twist, possibly multiplied by $-\mathrm{Id}\ (\phi\ \mathrm{could}\ \mathrm{be}\ \pm\mathrm{Id}).$
- $\iff \phi$ is conjugate to a matrix of the form $\pm \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$.
- Moreover, ϕ is conjugate to a *unique* matrix of the form $\pm \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$, and the integer n together with the sign of the trace are *complete* conjugacy invariants.

Case 3: Anosov. If $|Tr(\phi)| > 2$

- $\iff \phi$ fixes a pair of irrational numbers on $\mathbf{R} \cup \{\infty\} = \partial \mathcal{T}(T)$, one the slope of an expanding eigenvector, one the slope of a contracting eigenvector, with respective eigenvectors $\lambda > 1$, $\lambda^{-1} < 1$.
- $\iff \phi$ preserves a non-horocyclic line ℓ in the tree τ , and a fellow travelling geodesic γ in $\mathcal{T}(T)$, translating along γ a distance $\log(\lambda)$. (ideal endpoings of ℓ or of γ are the fixed points in $\partial \mathcal{T}(T)$

- $\iff \phi$ is represented by an Anosov homeomorphism of the torus: there exists
 - Euclidean structure μ on T
 - Pair of μ -orthogonal foliations, \mathcal{F}^u ("unstable" or "horizontal" foliation), and \mathcal{F}^s ("stable" or "vertical" foliation)
 - $-\lambda > 1$

such that

- $-\phi$ preserves \mathcal{F}^u , stretching leaves by factor λ
- ϕ compresses \mathcal{F}^s , compressing leaves by factor λ

Anosov conjugacy classification, method 1.

- ullet In au, consider the invariant line ℓ , oriented in the direction of translation . . .
- \bullet Each time ℓ passes a valence 3 vertex, it turns L or R \dots
- Get a bi-infinite sequence of L's and R's, on which ϕ acts.
- ullet Quotient of this sequence under ϕ action is an oriented loop of L's and R's of even length

$$(p_i \mid i \in \mathbf{Z}/2k), \quad p_i \in \{L, R\}$$

• This loop (up to cyclic permutation), and the trace, is a complete conjugacy invariant of ϕ .

- Set $M_L=\left(\begin{smallmatrix}1&1\\0&1\end{smallmatrix}\right)$ and $M_R=\left(\begin{smallmatrix}1&0\\1&1\end{smallmatrix}\right)$ (or the other way around. . . I'm not sure. . .).
- If $Tr(\phi) > 2$, the conjugacy class of ϕ is represented by the following positive matrices and no other positive matrices:

$$M_{p_1} \cdot M_{p_2} \cdot \ldots \cdot M_{p_{2k-1}} \cdot M_{p_{2k}}$$

$$M_{p_2} \cdot M_{p_3} \cdot \ldots \cdot M_{p_{2k}} \cdot M_{p_1}$$

and other cyclic conjugates

Next time: We use dynamical systems — the stable and unstable foliations — to give another description of the Anosov conjugacy classification, one which will generalize to all finite type surfaces.