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5. Penrose Tiling

The pentagon does not tile the plane. Roger Penrose, who is a famous
cosmologist, wondered how close can you come to filling the plane with
pentagons. In answering his question, he came up with three sets of
prototiles with the property that any tiling of the plane using just these
prototiles is always non-periodic. In fact, his tilings have remarkable self
symmetry whose diffraction pattern has five-fold symmetry, suggesting
that they are models for quasicrystals.



6. Penrose’s densest packing by pentagons



7. Penrose’s first aperiodic tiling



8. Penrose’s second aperiodic tiling by kites and darts.



9. Penrose’s third aperiodic tiling by thick and thin rhombs.



10. Sir Roger Penrose

Figure: Roger Penrose on tiles

In 1957, Penrose finished his PhD at
Cambridge under Hodge and Todd. He
worked at Birbeck College London and
eventually moved to Oxford in 1973. He
was knighted in 1994. He developed
topological methods in cosmology, invented
twistors and collaborated with Hawking on
gravitational collapse. He discovered his
nonperiodic tiling in 1974 when trying to
find the densest packing of the plane by
regular pentagons.

Penrose saw M. C. Escher’s art at a
conference and sent him a picture of a
nonending staircase. Escher used the tiling
in one of his pattern paintings.



11. Periodic Tiling

In 1619, Johannes Kepler created the first list of all the Archimedean
Tilings, tilings that can be created from sets of regular polygons. Here is
an example using just squares and triangles. The fundamental region is
indicated in red. The fundamental region is translated by the vectors of
the lattice whose coordinates are

w = kv1 + `v2

where v1 and v2 are independent vectors and k and ` are integers.



12. Examples of nonperiodic tilings

Figure: Nonperiodic tiling by triangles

One can tile the plane by
right isosceles triangles
simply by subdividing the
sqares in the standard lattice
by SW to NE diagonals.
Taking the other diagonal in
one square breaks the
translation invariance and
produces a nonperiodic tiling.



13. Ulam’s nonperiodic tiling

Figure: Spiraling numbers

Ulam used the same right
triangular tiles. Start by
numbering the squares in the
grid by spiraling about the
center square. Color the
prime squares red.



14. Ulam’s nonperiodic tiling -

Figure: Ulam’s nonperiodic tiling.

Ulam put the diagonals in
SW to NE in the white
squares and the other way in
the red. The result is
another nonperiodic tiling.



15. Examples of nonperiodic tilings - -

Figure: Nonperiodic star tiling by rhombuses

Here is a way to make a
nonperiodic tiling with
rhombus tiles.

As we have seen, the triangle
and rhombuses may tile the
plane periodically or
nonperiodically. The
remarkable discovery in the
last fifty years is that there
are tiles that admit infinitely
many tilings of the plane, yet
no such tiling is periodic. A
set of tiles with this property
are called aperiodic.



16. Wang Tiles

In 1961, Hao Wang studied tiling by unit squares whose edges were
colored. Wang tiles must be placed edge-to-edge; colors on contiguous
edges must match and only translations (no rotations or reflections) of
the prototiles are allowed. Wang’s problem was to find a procedure to
decide whether a given set of prototiles will tile just by placing tiles so
that abutting edges are of the same color. This question relates symbolic
logic and the study of Turing machines. Wang conjectured that if the
tiles can tile the plane, then they can do so periodically.

Robert Berger’s 1966 Harvard thesis in applied mathematics showed that
Wang’s conjecture is false: there is a set of 20,426 Wang prototiles that
tiles only nonperiodically.



17. Penrose’s Rhombs

In 1974 Penrose proposed two
rhombic prototiles whose angles are
72◦, 108◦ or 36◦, 144◦ and whose
sides are decorated with red and
green arrows. The tiles are to be
assembled so that the color and
direction of the arrows match for
neighboring tiles.

Theorem (Penrose)

Every tiling of the plane by these
rhombs satisfying the matching rule
in non-periodic.



18. Penrose’s rhombs with arrows.



19. Penrose’s Rhombs

Of course,
without the
matching rule the
rhombs may be
assembled into a
fundamental
region which can
be repeated to
make a periodic
tiling.



20. Penrose’s rhombs are related to the pentagon



21. Another way of displaying the matching rule

If you replace colored arrows by blue and red arcs, the matching rule is to
extend the colored arcs continuously.



22. Another way of displaying the matching rule -



23. Quasiperiodic Tiling in Darb-i Imam shrine in Isfahan, Iran, 1453



24. Bowties, Hexagons and Decagons are Girih prototiles



25. Cromwell’s decorated rhombs to mimic Islamic tiling



26. Girih Prototiles of Lu and Steinhardt



27. Relating Girih Prototiles to Kites and Darts



28. Half-rhombs and Deflation

Penrose tiles can be subdivided into smaller Penrose tiles such that the
resulting pattern is a Penrose tiling. This process is calles deflation. It
may be used to produce a simple computer program to draw the tiling.

Consider half-rhombs. The result is a 36◦ − 72◦ − 72◦ acute triangle
called “A” and a 36◦ − 108◦ − 36◦ obtuse triangle called “B.” Drawing
the colors and arrows of the half rhombs recaptures the rhombic tiling.



29. Tiling by halfrhombs



30. Subdividing Half-rhombs

Each of these half-rhombs may be subdivided into two or three smaller
half rhombs.

Side lengths of the new half rhombs are
1

φ
=

√
5− 1

2
≈ 0.618034 of the

original. φ =
1 +
√

5

2
≈ 1.618034 is called the golden ratio.



31. Programming Penrose tiles

One starts with a half-rhomb, say A. Then one calls the subdivision
recursively to a certain depth and then prints the colored halfrhombs and
edges. Here is an entire elementary program written in R:



32. Subdivision Depth 1



33. Subdivision Depth 2



34. Subdivision Depth 3



35. Subdivision Depth 4



36. Subdivision Depth 5



37. Subdivision Depth 6



38. Subdivision Depth 7



39. Subdivision Depth 8



40. Clip the pattern to a rectangle inside the triangle



41. Existence of a tiling of the whole plane

Subdividing the original tile with unit sides makes a finer and finer tiling.

The lengths of the sides have decreased by a factor of φ =
1 +
√

5

2
, the

golden ratio each step. By scaling the n-th subdivision up by a factor of
φn makes unit sided tiles filling in larger and larger triangles which cover
larger and larger disks. The existence of the tiling of the plane follows
from the theorem.

Theorem (Extension Theorem)

Let S be any finite set of prototiles, each of which is a closed topological
disk. If S tiles over arbitrarily large circular disks D, then S admits a
tiling over the plane.

The proof of this theorem depends on some notions from Math 3220.
One selects a subsequence of tilings covering larger and larger disks that
converges on compact subsets to a tiling of the plane.



42. Non-periodicity of Penrose’s rhombic tiles

While we’re at it, let us argue that this Penrose tiling is non-periodic. Let
us prove that the ratio of obtuse half-rhombs to acute half-rhombs is
irrational. Then the tiling could not have been periodic because if it
were, then there would be finitely many obtuse and acute half-rhombs in
a fundamental region and the ratio would be rational. The asymptotic
ratio on larger and larger triangles would be the same as this ratio on the
fundamental region.

Theorem

In the Penrose tiling constructed above, the asymptotic ratio of obtuse to
acute half-rhombs is φ, the golden ratio.

We give a proof using standard arguments from Math 3210.

Thus there are φ times more thick rhombs than thin rhombs in the
penrose tiling!



43. Proof of the ratio.

Proof. Let an be the number of acute half-rhombs and bn the number
of obtuse half-rhombs in the nth stage of the subdivided triangle. We
have a1 = 1 and b1 = 0. Subdividing an acute half-rhomb yields one
acute and one obtuse half-rhomb at the next stage. Similarly, subdividing
an obtuse half-rhomb yields two obtuse and one acute half-rhomb. Thus
we get the recursion

an+1 = an + bn

bn+1 = an + 2bn.

Hence the ratio

rn+1 =
bn+1

an+1
=

an + 2bn

an + bn
=

1 + 2bn
an

1 + bn
an

=
1 + 2rn
1 + rn

so r1 = b1
a1

= 0 implies r2 = 1. All other rn’s are positive also.



44. Proof of the ratio -

Note that the sequence is increasing. We show increments are positive.
Arguing by induction, for the base case, r2 = 1 > r1 = 0. Assuming the
induction hypothesis that the increment is positive for n > 1, the next
increment is also positive

rn+2 − rn+1 =
1 + 2rn+1

1 + rn+1
− 1 + 2rn

1 + rn

=
(1 + rn)(1 + 2rn+1)− (1 + rn+1)(1 + 2rn)

(1 + rn+1)(1 + rn)

=
(1 + rn + 2rn+1 + 2rnrn+1)− (1 + rn+1 + 2rn + 2rn+1rn)

(1 + rn+1)(1 + rn)

=
rn+1 − rn

(1 + rn+1)(1 + rn)
> 0.



45. Proof of the ratio - -

The sequence is also bounded above:

rn+1 =
1 + 2rn
1 + rn

≤ 2 + 2rn
1 + rn

= 2.

But a bounded monotone increasing sequence is convergnt. Thus
r = lim

n→∞
rn exists.

Taking the limit of both sides of the recursion as n→∞,

r =
1 + 2r

1 + r

which implies r = φ.



46. Penrose’s kites and darts are related to the pentagon



47. Kites and Darts

Penrose’s kites and darts tiling and the rhombic tiling are closely related.
In fact, if the half-rhombs are colored like this



48. Kites and Darts -



49. Inflation

The subdivision may be done in reverse for any Penrose tiling of the
plane by rhombs. The half-rhombs in any tiling fit uniquely into one of
the following patches.

The result is a coarser tiling in pure red and green for which the
matching conditions also hold. The new side lengths are stretched by a
factor φ. The coarser tiling by rhombs is called the inflated tiling.



50. Inflation -



51. Aperiodicity of Penrose rhombs.

Theorem (Penrose)

Any tiling of the plane by Penrose rhombs is non-periodic.

Proof. If any tiling of the plane by Penrose rhombs were periodic, then
the entire tiling would coincide with the translation of itself by a finite
length. Then the inflated tiling by rhombs, being uniquely determined,
would have to be periodic with the same period as well. But the rhombs
in the inflated tiling are larger by a linear factor φ. By inflating each
inflation, one obtains a hierarchy of tilings by exponentially larger and
larger rhombs. The size of the tiles is eventually much larger than the
length of the translation. It is therefore impossible that the original
translation be a symmetry of that inflated tiling.



52. Sphinx tile



53. Sphinx nonperiodic tiling



54. Penrose tiles talk at long distances

Because a Penrose tiling of the plane has the hierarchical inflation
structure, one cannot just start from a seed and attach Penrose tiles
arbitrarily and hope that the tiling will grow without bound. Tiles have
to be consistent with the inflation structure.

Consider the following strip taken from a tiling of the plane.



55. Strip is part of tiling of plane.



56. Change one tile and the tiling does not continue to the whole plane.

Change one tile at the end of the strip. The tiling cannot be continued
beyond the spade. We indicate the green arrow vertex of the rhomb with
a green dot.



57. Continuing the tiling to the plane is impossible.

It is impossible to continue tiling at the 72◦ angle at the green spade. It
must be filled by one thick or two thin rhombs. But the arrows can’t be
matched.



58. Nicolaas Govert de Bruijn

Figure: de Bruijn 1918-2012

After graduating from Leiden U. in
1941, de Bruijn was made assistant
to the Math. Dept. at TU Delft so
avoided Nazi forced labor.

In 1943 he completed his PhD at
the Vrije U in Amsterdam writing
about modular forms. He also
worked for Philips Research
company doing optimal control. In
1952 he moved to Amsterdam U
where he was asked to teach a
course in applied mathematics and
developed a famous text on
asymptotic methods. In 1960 he
moved to TU Eindhoven.

Trained as a pure mathematician,
de Bruijn worked also in several
areas of applied math ranging from
optimization, combinatorics and
automated proof.



59. The ”Up” part in De Bruijn’s Updown Generation

Start with a red obtuse halfrhomb,
choose a halfrhomb that contains it.

It fits in, say, an obtuse gray
halfrhomb in the B1 position. The
gray halfrhomb fits in the acute lime
halhrhomb in the B3 position. The
lime halfrhomb fits in the acute
magenta halfrhomb in the A2

position. We get a sequence
B1,B3,A2,A2,A2,A1,B3, . . .



60. The ”Down” part in De Bruijn’s Updown Generation

Use deflation to subdivide the n-th
halfrhomb n times. The result is a tiling
Tn of a neighborhood of the original red
halfrhomb.

The sequence can be chosen arbitrarily,
except that A1, B1 or B2 must be
followed by B1, B2 or B3 and A2 or B3

must be followed by A1 or A2. The
tilings are “eventually constant” so
converge to a tiling of the plane.

For most “good” sequences, Tn fills up
the plane. The red tile may remain at
the edge of all Tn for exceptional
sequences. There are many uncountably
many “good” sequences. It turns out
there are uncountably many tilings.



61. De Bruijn’s Pentagrid method.

Opposite sides of a rhomb are
parallel. We may form a ribbon
by attaching rhombs along
opposite sides. There are five
directions taken by sides, so
there are five families of ribbons
that do not intersect, determined
by the side directions.

de Bruijn discovered that the
pattern may be reconstructed
from families of parallel lines,
called the pentagrid.



62. De Bruijn’s Pentagrid method. -

Figure: de Bruijn’s Pentagrid

Let γ0, . . . , γ4 be real numbers
satisfying γ0 + · · ·+ γ4 = 0. We
consider five grids in the plane

{x ∈ R2 : x · vj + γj ∈ Z},

where for j = 0, . . . , 4,

vj =
(
cos(2πj/5), sin(2πj/5)

)
is a unit vector.



63. De Bruijn’s Pentagrid method. - -

Figure: Skeleton curves through
midpoints of edges

Figure: Corresponding Pentagrid



64. De Bruijn’s Pentagrid method. - -

The grids are regular if no point of R2 belongs to more than two of the
five grids. Almost all choices of γ0, . . . , γ4 make a regular pentagrid.

Given such γ0, . . . , γ4 real numbers, we associate five integers
K0(x), . . . ,K4(x) where, using the ceiling function d•e (least integer n
such that • ≤ n),

Kj(x) = dvj · x + γje. (1)

K0(x), . . . ,K4(x) are “pentagrid coordinates of a rhombus in the tiling.”
The vertices of the rhombuses are given by

f (x) =
4∑

j=0

Kj(x)vj , as x runs through all points of R2.

f (x) is constant on regions between the grid lines.



65. Pentagrid coordinates



66. De Bruijn’s Pentagrid method. - - -

Let r and s be integers such that 0 ≤ r < s ≤ 4 and kr , ks ∈ Z. The
point x0 determined by the equations

vr · x + γr = kr , vs · x + γs = ks

is the intersection point of a line in the r -th grid and the s-th grid. In a
small neighborhood of x0, f (x) takes the values of four vertices of a
rhomb. e.g., if r = 0, s = 1 the four vertices correspond to(

K0(x0), . . . ,K4(x0)
)

+
(
ε1, ε1, 0, 0, 0

)
where ε1, ε2 ∈ {0, 1}.

Thus the intersection points of the pentagrid lines correspond to rhombs.
The regions between the grid lines correspond to vertices, whose
positions are given by f (x).



67. De Bruijn’s Pentagrid method. - - - -

Theorem (de Bruijn 1981)

The rhombuses corresponding to a regular or singular pentagrid form a
tiling of the plane by Penrose’s rhombic prototiles. An orientation and
color for the sides can be determined from the pentagrid such that the
Penrose matching conditions hold.

Every Penrose tiling of the plane comes from a regular or singular
pentagrid.

Not all pentagrid coordinates k0, . . . , k4 occur in a tiling. de Bruijn gives
a geometric interpretation of the ones that do.



68. Index of a vertex and how to color the rhombs.

In a regular pentagrid, for x ∈ R2 we rewrite (1)

Kj(x) = vj · x + γj + λj(z). (2)

where 0 ≤ λj(z) < 1. Since the pentagrid is regular, at most two of the
λ0(z), . . . , λ4(x) are equal to zero, hence

0 < λ0(z) + · · ·+ λ4(x) < 5.

On the other hand, since we assumend
∑

j γj = 0, thus∑4
j=0 Kj(z) =

(∑4
j=0 vj

)
· x +

∑4
j=0 γj +

∑4
j=0 λj(z) =

∑4
j=0 λj(z)

The left side is an integer between zero and five. This quantity defines
the index of a vertex

Ind(z) =
∑4

j=0 Kj(z) ∈ {1, 2, 3, 4}

Every vertex in the rhombic tiling may be represented as

k0v0 + · · ·+ k4v4

where integers kj satisfy
∑4

j=0 kj ∈ {1, 2, 3, 4}.



69. Index of a vertex and how to color the rhombs. -

In fact, an index may be assigned to any Penrose tiling. If we move a
point along the edge of a rhobus, the index increases by one in the
directions v0, . . . , v4 and deacreases by one in the directions
−v0, . . . ,−v4.

Hence, a thick rhombus either has index values 1 and 3 at the 72◦ angles
and 2 at the 108◦ angles, or 2 and 4 at the 72◦ angles and 3 at the 108◦

angles. A thin rhombus either has index values 1 and 3 at the 144◦

angles and 2 at the 36◦, or 2 and 4 at the 144◦ and 3 at the 36◦. Edges
connecting a point of index 3 to a point of index 2 are colored red, edges
connecting a 1 to a 2 or a 3 to a 4 are green. Green arrows point from 2
to 1 or from 3 to 4. Orienting red edges is similar but a bit more involved.



70. Index of a vertex and how to color the rhombs. - -



71. Wieringa rhomb.

Figure: Wieringa rhomb

R. M. A. Wieringa noticed that the
thick and thin rhombs are in fact
projections of a single rhomb in 3d.
Take a rhomb whose short diagonal
equals the short diagonal of the thick
rhomb and whose long diagonal is the
long diagonal of the thin rhomb.

Using the x and y coordinates of the
tiling and half of the index as the
z-coordinate gives a faceted surface of
thickness 3 called a Wieringa roof.

Note that the endpoints of the short
diagonal of the thick rhomb and the
endpoints of the long diagonal of the
thin rhomb always have the same index.



72. Wire frame Wieringa roof of previous tiling



73. Computation of projection.

The cosines can be computed. If s and c denote sine and cosine of
θ = 72◦, then

1 = e5θi = (c + is)5 = c5 + 5c4si − 10c3s2 − 10c2s3i + 5cs4 + s5i .

Using s2 = 1− c2, the imaginary part is

0 = 5c4s − 10c2s3 + s5

= s
[
5c4 − 10c2(1− c2) + (1− 2c2 + c4)

]
= s

[
16c4 − 12c2 + 1

]
so

c2 = 12±
√
144−64
32 = 3±

√
5

8 .

But cos 72◦ < cos 60◦ = .5 so we take the “−”. In fact

c2 = 3−
√
5

8 =
(√

5−1
4

)2
.



74. Computation of projection. -

Using the double angle formula

cos 72◦ = cos2 36◦ − sin2 36◦ = 2 cos2 36◦ − 1

Thus

cos2 36◦ = 1
2 (1 + cos 72◦) = 1

2

(
1 +

√
5−1
4

)
= 3+

√
5

8 =
(
1+
√
5

4

)2
.

Let’s compute the length of the long diagonals of D1 of the thick rhomb
and D2 of the thin rhomb, assuming the side has unit length.

D2
1 = (1 + cos 72◦)2 + sin2 72◦ = 2 + 2 cos 72◦ = 2 +

√
5−1
2 = 3+

√
5

2

D2
2 = (1 + cos 36◦)2 + sin2 36◦ = 2 + 2 cos 36◦ = 2 + 1+

√
5

2 = 5+
√
5

2

Corner to corner on the thick rhomb has a run of D1 and a rise of 1 so
that

1 + D2
1 = 1 + 3+

√
5

2 = 5+
√
5

2 = D2
2 .

Thus the Pythagorean Theorem holds: the hypotenuse D2, the diagonal
of the Weiringa rhomb projects to horizontal, the D1 diagonal of the
thick rhomb. The other direction is similar.



75. Computation of projection. - -

Let’s compute the length of the short diagonals of d1 of the thick rhomb
and d2 of the thin rhomb.

d2
1 = (1− cos 72◦)2 + sin2 72◦ = 2− 2 cos 72◦ = 2−

√
5−1
2 = 5−

√
5

2

d2
2 = (1− cos 36◦)2 + sin2 36◦ = 2− 2 cos 36◦ = 2− 1+

√
5

2 = 3−
√
5

2

Corner to corner on the thin rhomb has a run of d2 and a rise of 1 so that

1 + d2
2 = 1 + 3−

√
5

2 = 5−
√
5

2 = d2
1 .

Thus the Pythagorean Theorem holds: the hypotenuse d1, the diagonal
of the Weiringa rhomb projects to horizontal, the d2 diagonal of the thick
rhomb.



76. Computation of projection. - - -

The Wieringa rhombus acute angle satisfies

tan2 α
2 =

d2
1

D2
2

=
5−
√

5

5 +
√

5
, 1− tan2 α

2 =
2
√

5

5 +
√

5

so that by the double angle formula,

tan2 α =
4 tan2 α

2(
1− tan2 α

2

)2 =

4(5−
√
5)

5+
√
5

20
(5+
√
5)2

=
(5−

√
5)(5 +

√
5)

5
= 4.

Thus tanα = 2 and α = 63.43495◦.



77. Colored in version to show facets



78. Wieringa roof found on the internet



79. Projection of lattice points from R5

de Bruijn 1981 noticed that the vertices of the Penrose tiling is a
projection of lattice points in R5 to a certain two plane. Divide five
dimensional space into unit cubes in the standard way (vertices are
points with integral coordinates). Corresponding to five integers
k0, . . . , k4 is an open cube given by the set of all points (z0, . . . , z4) with

k0 < z0 < k0, . . . , k4 < z4 < k4.

Consider the two dimensional plane Π given by the three real equations

4∑
j=0

zj = 0,
4∑

j=0

(zj − γj)v2j = 0. (3)

Theorem (de Bruijn)

The vertices of tiling produced by a regular pentagrid with parameters
γ0, . . . , γ4 are the points

∑4
j=0 kjvj where (k0, . . . , k4) runs through all

elements of Z5 whose open cube has nonempty intersection with the
plane Π given by (3).



80. Schematic in R2



81. Projection of lattice points from R5 -

Writing cj = cos(2πj/5) and
sj = sin(2πj/5), the five
directions vectors are
v0 = (1, 0), v1 = (c1, s1),
v2 = (c2, s2),
v3 = (c3, s3) = (c2,−s2) and
v4 = (c4, s4) = (c1,−s1).

For a point (x , y) in the pentagrid,
equations (2) become

kj = cjx + sjy + γj + λj

where 0 ≤ λj < 1 so the cube at
(k0, . . . , k4) meets the parameterized plane

z0
z1
z2
z3
z4

 = x


1
c1
c2
c2
c1

+ y


0
s1
s2
−s2
−s1

+


γ0
γ1
γ2
γ3
γ4


A little more careful argument says it meets
the open cube.



82. Projection of lattice points from R5 - -

In other words, the vectors
z0 − γ0
z1 − γ1
z2 − γ2
z3 − γ3
z4 − γ4

 are in the subspace spanned by




1
c1
c2
c2
c1

 ,


0
s1
s2
−s2
−s1




and thus are perpendicular to the vectors


1
1
1
1
1

 ,


1
c2
c1
c1
c2

 ,


0
s2
−s1
s1
−s2


 =




1
1
1
1
1

 ,


1
c2
c4
c6
c8

 ,


0
s2
s4
s6
s8






83. Projection of lattice points from R5 - - -

We check the only non-obvious inner product between the first and

second (cosine) vectors. Recall that c1 =
√
5−1
4 so by the double angle

formula c2 = 2c2
1 − 1 = 1

(√
5−1
4

)2
− 1 = −1−

√
5

4 . Thus

1 + 4c1c2 = 1 + 4
(
−1+

√
5

4

)(
−1−

√
5

4

)
= 1 + 4

(
1−5
16

)
= 0.

Thus, because
∑4

j=0 γj = 0 we have

0 =
4∑

j=0

(zj − γj) =
4∑

j=0

zj = 0

and

0 =
4∑

j=0

(zj − γj)v2j

which proves tiling vertices coming from the pentagrid correspond to
(k0, . . . , k4) for open cubes meeting the plane. The argument also works
the other way around, proving the theorem.



84. Infinitely many Penrose tilings

Which pentagrids give distinct tilings? Translating the pentagrids by z0
yields the same tiling. If γ∗0 , . . . , γ

∗
4 are parameters for another pentagid

then they produce a shifted pentagrid if f (z) = f ∗(z + z0). i.e., if there
is a vector z0 such that

z0 · vj + γj − γ∗j ∈ Z, for all j = 0, . . . , 4.

The vertices of the tiling depend only on the vector in (3),

ξ =
∑4

j=0 γjv2j ,

thus it determines whether the tilings are translates.

Theorem (de Bruijn)

Let γ0, . . . , γ4 and γ∗0 , . . . , γ
∗
4 parameterize regular pentagrids. The

tilings they determine are equal if and only if ξ = ξ∗.
The tilings are shift equivalent if and only if

ξ − ξ∗ =
∑4

j=0 njvj , for some (n0, . . . , n4) ∈ Z5 with
∑4

j=0 nj = 0.



85. Infinitely many Penrose tilings -

Almost all choices of γ0, . . . , γ4 gave regular pentagrids, thus

R =
{
ξ ∈ R2 : ξ correspond to a regular pentagrid

}
consist of almost all points of R2.

Since there are only countably many points in the ideal P ∈ R2, where

P =


4∑

j=0

njvj : (n0, . . . , n4) ∈ Z5 with
4∑

j=0

nj = 0.

 ,

then there are uncountably many equivalence classes of R/P, none of
whose tiling is shift equivalent to to any other.



Thanks!




