SOME EXERCISES IN CHARACTERISTIC CLASSES

1. GAUSSIAN CURVATURE AND GAUSS-BONNET THEOREM

Let $S \subset \mathbb{R}^3$ be a smooth surface with Riemannian metric g induced from \mathbb{R}^3 . Its Levi-Civita connection ∇ can be defined by

$$\nabla_X Y = (d_X Y)^T = d_X Y - (d_X Y)^N$$

where $(d_X Y)^T$ and $(d_X Y)^N$ denote the tangential and normal components of the usual derivative $d_X Y$ of the vector function Y in direction of the vector X. Just check that ∇ as just defined preserves g and is torsion-free.

The normal component $(d_X Y)^N$ is $A^0(S)$ =bilinear in X, Y and the scalarvalued bilinear form $\langle d_X Y, N \rangle = - \langle Y, d_X N \rangle$ on $T_p S$, called the *second fundamental form of* S *in* $\mathbb{R}^3 S$, is symmetric in X, Y, equivalently, the linear transformation $T_p M \to T_p M$ defined by $X \to -d_X N$, is selfadjoint. This is (up to sign) the differential of the Gauss spherical map $S \to S^2$ taking $p \in S$ to $N_p \in S^2$ and $T_p S$ to $T_{N_p} S^2 \cong T_p S$ (canonically isomorphic by parallel translation).

Various assertions above follow by differentiating inner product relations such as $\langle y, N \rangle = 0$ or $\langle N, N \rangle = 1$. For example, differentiating $\langle N, N \rangle = 1$ we get $\langle d_X N, N \rangle = 0$, so if $X \in T_p S$, we get $d_X N \perp N$, so indeed $d_X N \in T_p S$.

Definition 1. The determinant of this linear transformation $T_pS \to T_pS$ is called the Gaussian curvature of S at p, denoted K_p .

The easiest way to do calculations is as follows:

- Represent S as a parametrized surface Φ : U → ℝ³ for some open set U ⊂ ℝ² and some smooth map Φ : U → ℝ³ everywhere of maximal rank: Φ_u, Φ_v linearly independent at each (u, v) ∈ U. In terms of u, v the induced metric g on U has expression
- (1) $g = \langle \Phi_u, \Phi_u \rangle du^2 + 2 \langle \Phi_u, \Phi_v \rangle du dv + \langle \Phi_v, \Phi_v \rangle dv^2$
 - Take a smooth orthonormal frame $\mathbf{e}_1(u, v)$, $\mathbf{e}_2(u, v)$, $\mathbf{n}(u, v)$ for $\Phi^* \mathbb{R}^3$: $\mathbf{e}_1(u, v)$, $\mathbf{e}_2(u, v)$ an orthonormal basis for $T_{\Phi(u,v)}S$ obtained, say, by applying Gram-Schmidt to $\Phi_u(u, v)$, $\Phi_v(u, v)$, and $\mathbf{n} = \mathbf{e}_1 \times \mathbf{e}_2$.

Date: April 7, 2016.

Since de₁ is perpendicular to both e₂ and n (differentiate < e₁, e₂ >= 0 and D< e₁, n >= 0), using from the above paragraphs that the e₂-component of de₁ = ∇e₁, and finally the definition of connection one-forms θ^j_i from the notes on connections, we get the first equation below. Similar reasoning for the second:

(2)
$$d\mathbf{e}_{1} = \theta_{1}^{2}\mathbf{e}_{2} + \lambda_{1}\mathbf{n}$$
$$d\mathbf{e}_{2} = \theta_{2}^{1}\mathbf{e}_{1} + \lambda_{2}\mathbf{n}$$
$$d\mathbf{n} = -\lambda_{1}\mathbf{e}_{1} - \lambda_{2}\mathbf{e}_{2}$$

for suitable one-forms $\theta_1^2, \theta_2^1 = -\theta_1^2, \lambda_1, \lambda_2 \in A^1(U)$.

~?

The third equation is obtained from the first two by first using $< d\mathbf{e}_i, \mathbf{n} >= \lambda_i$, i = 1, 2, and then using $< d\mathbf{e}_i, \mathbf{n} >= - < \mathbf{e}_i, d\mathbf{n} >$. A consequence of the third equation is the following formula for the Gaussian curvature (as defined above, extrinsically):

(3)
$$K \, dA = \lambda_1 \wedge \lambda_2$$

where dA is the (oriented) area element of the metric g on U:

(4)
$$dA = \sqrt{\det(g)} \, du \, dv$$

where g is as in (1).Since the determinant meaures the distortion in area, we see that (??) is equivalent to Definition 1. This is the *extrinsic* of curvature, meaning that it Uses the shape of the embedding of S in \mathbb{R}^3 .

1.1. The Exercises.

(1) Compute $d^2\mathbf{e}_1$ by using (2), then set the resulting expression = 0 (since $d^2 = 0$). Show that this gives Gauss's *Theorema Egreguium*

(5)
$$K dA = -d\theta_1^2 \ (= d\theta_2^1)$$

where the left-hand side is defined as in Definition 1, or, equivalently, equation (3), is an *extrinsic* quantitity (defined in terms of the shape of the embedding in \mathbb{R}^3), while the right-hand side is an *intrinsic* quantity (depends just on the Levi-Civita connection of the induced metric, hence just on the induced metric.)

Remark Recall, from the notes on connections, that $d_{\nabla}^2 s = \Omega s$ for some $\Omega \in A^2(S, Sk(T))$, where $Sk(T) \subset End(T)$ denotes the bundle of skew-symmetric endomorphisms of T, and where we have changed the $K = K_{\nabla}$ of the notes to Ω because now we reserve K for the Gaussian curvature (a function on S). On a metric

2

connection on a bundle of rank 2 , $\boldsymbol{\Omega}$ is represented by a matrix of 2-forms

$$\Omega = \begin{pmatrix} 0 & \Omega_2^1 \\ \Omega_1^2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & d\theta_2^1 \\ d\theta_1^2 & 0 \end{pmatrix} \text{ with } \Omega_2^1 = -\Omega_1^2.$$

From the intrinsic point of view, (5) says $K dA = \Omega_2^1 = Pf(\Omega)$.

(2) Let $\Phi(u, v) = (\sin u \cos v, \sin u, \sin v, \cos u), 0 \le u \le \pi, 0 \le v \le 2\pi$ be the standard parametrization of the unit sphere centered at the origin by spherical coordinates (where the circles $u = 0, u = \pi$ collapse to the north pole, south pole respectively), Make the following choices for $\mathbf{e}_1, \mathbf{e}_2, \mathbf{n}$:

(6)
$$\mathbf{e}_{1} = \phi_{u} = (\cos u \cos v, \cos u \sin v, -\sin u),$$
$$\mathbf{e}_{2} = \Phi_{v} / \cos u = (-\sin v, \cos v, 0),$$
$$\mathbf{n} = \Phi.$$

Work out explicitly all the equations (1) to (5) for these particular choices of Φ , e_1 , e_2 , n. In particular, what is the value of K?

- (3) Suppose now that S is an oriented surface with a Riemannian metric g (not neccessarily induced from an embedding in R³) and associated Levi-Civita connection ∇. We have seen two ways of looking at the curvature d²_∇;
 - (a) $d_{\nabla}^2 s = \Omega s$ for some $\Omega \in A^2(S, Sk(T))$ as above and in the notes..
 - (b) d²_∇s = ι_sR for some R ∈ A²(S, Λ²T) ⊂ ⊕_{p,q}S^p(S, Λ^qT) as in class. We have, for x ∈ T, a contraction operator ι_x : Λ^pT → Λ^{p-1}T and in particular an isomorphism Λ²T → Sk(T) that takes x ∧ y ∈ Λ²T to the skew-symmetric endomorphism z → ι_z(x ∧ y) =< x, z > y- < y, z > x for x, y, z ∈ T. This isomorphism takes R to Ω.

Let $\mathbf{u} \in A^0(S, \Lambda^2 T)$ be the unique section that is of unit length and is positive for the chosen orientation. Over any open set with positively oriented orthonormal frame $\mathbf{e}_1, \mathbf{e}_2, \mathbf{u} = \mathbf{e}_1 \wedge \mathbf{e}_2$. Note that the Pfaffian $Pf(R) \in A^2(S)$ is obtained from $R \in A^2(S, \Lambda^2 T)$ by

$$Pf(R) = \langle u, R \rangle$$

The Exercise:

(i) Let $\sigma \in A^0(S,T)$ be a vector field of constant length: $<\sigma,\sigma>=1$. Prove that

$$d_{\nabla}(\sigma \wedge d_{\nabla}\sigma) = R$$

consequently

$$d < u, \sigma \land d_{\nabla}\sigma > = Pf(R)$$

(ii) Now suppose $S = \overline{S} \setminus \{p_1, \dots, p_n\}$ where \overline{S} is a *closed* surface and $\{p_1, \dots, p_n\}$ is the set of zeros of a vector field on \overline{S} having only simple zeros. Apply Stokes's theorem and (7) to $\sigma = s/|s|$ to get

(8)
$$\int_{\bar{S}} Pf(R) = \sum_{i=1}^{n} \iota_{p_i}(s) = \chi(S)$$

(4) Apply the procedure of the last problem to the example of spherical coordinates (Exercise (2) above). Check that equations (7) and (8) for σ one of the fields e_1 or e_2 .

(7)

2. Additional Exercises

- (1) (Milnor-Stasheff 4B): Prove the following theorem of Stiefel: If $n + 1 = m2^r$ with m odd, then $\mathbb{R}P^n$ does not have 2^r vector fields that are linearly independent at every point. In particular, show that $\mathbb{R}P^{4k+1}$ has a nowhere zero vector field but does not have 2 vector fields that are linearly independent at every point.
- (2) (Milnor-Stasheff 5E): A vector bundle E → B is said to be of finite type if and only if B can be covered by finitely many open sets U₁,..., U_k such that E|_{U_i} is trivial for i = 1,...,k. Prove that the tautological line bundle L → ℝP[∞] is not of finite type. This is the bundle denoted by γ¹ in Milnor-Stasheff. (Note that a bundle over a reasonable space of finite covering dimension (such as a finite-dimensional manifold) is necessarily of finite type. So to find an example not of finite type the base space B must be infinite-dimensional.)
- (3) (Milnor-Stasheff 15B): Let G_n(ℝ[∞]), respectively G̃_n(ℝ[∞]) denote the Grassmannian of *unoriented*, respectively *oriented* n-dimensional subspaces of ℝ[∞]. Observe that G̃_n(ℝ[∞]) is a two - sheeted covering space of G_n(ℝ[∞]). Let Λ be an integral domain in which 2 is invertible. For instance, could take Λ = ℚ. Recall that we have computed H^{*}(G̃_n(ℝ[∞]), Λ).

Exercise: Prove that $H^*(G_n(\mathbb{R}^\infty), \Lambda)$ is the polynomial ring over Λ generated by the Pontrjagin classes $p_1(\gamma^n), \ldots, p_{[n/2]}(\gamma^n)$ of the universal (= tautological) \mathbb{R}^n -bundle γ^n over $G_n(\mathbb{R}^\infty)$.

Suggestion Prove first the following general statement: For any double covering $\pi: \tilde{X} \to X$ with covering transformation $t: \tilde{X} \to \tilde{X}$ of order two, $\pi^*: H^*(X, \Lambda) \to H^*(\tilde{X}, \Lambda)$ is injective and its image is the fixed point set of the involution $t^*: H^*(\tilde{X}, \Lambda) \to H^*(\tilde{X}, \Lambda)$.

- (4) Let L → M and E → M be a complex line bundle and a complex vector bundle of rank n (that is, fiber Cⁿ) respectively.
 - (a) Compute the total Chern class $c(L \otimes E)$ in terms of the Chern classes of L and E. (Suggestion: Use the splitting principle).
 - (b) Same for c(Hom(L, E)).
 - (c) Suppose the base M has real dimension 2n, and let L, E be as above. Give a necessary and sufficient condition, in terms of

the Chern classes of L and E, for the existence of an *injective* bundle homomorphism $\phi : L \to E$.

(5) A quick look at complex hypersurfaces in \mathbb{P}^{n+1} :

Let $h \in H^2(\mathbb{P}^{n+1}, \mathbb{Z}) \cong \mathbb{Z}$ be the generator with the property that $h([\mathbb{P}^1]) = 1$, where $\mathbb{P}^1 \subset \mathbb{P}^{n+1}$ is the natural holomorphic embedding (actually linear). This is called the *positive generator* of H^2 . The complex line bundles over \mathbb{P}^{n+1} often denoted $\mathcal{O}(d)$, $d \in \mathbb{Z}$, notation chosen so that $c_1(\mathcal{O}(d)) = dh$. Thus for d < 0, $\mathcal{O}(d)$ has no holomorphic sections other than the identically zero section, and $\mathcal{O}(0)$ is the trivial bundle with its holomorphic sections constant functions on \mathbb{P}^{n+1} .

Now, if d > o, the space of holomorphic sections of $\mathcal{O}(d)$ is in bijective correspondence with the space P(n+2,d) of homogeneous polynomials of degree d in n+2 variables. If $f \in P(n+2,d)$, the equation f = 0 defines a subset (analytic subvariety) of \mathbb{P}^{n+1} , the zero set of a holomorphic section of $\mathcal{O}(d)$. If the only common zero of the equations $f_{x_i} = 0$ (partial derivatives with respect to all n+2 variables) is at the origin, then f = 0 defines a non-singular hypersuface, let's call it X_d . It is a complex manifold of complex dimension n. All non-singular f give diffeomorphic X_d , under diffeomorphisms that preserve the Chern classes.

Fix n and d, let $X = X_d$ and let $\iota_X : X \to \mathbb{P}^{n+1}$ be the embedding. The normal bundle of X in \mathbb{P}^{n+1} is easily seen to be $\iota_X^*(\mathcal{O}(d))$ (from the fact that X is the zero set of a section of $\mathcal{O}(d)$ transverse to the zero section). So the standard decomposition (C^{∞} but not holomorphic)

(9)
$$TX \oplus NX = \iota_X^* T \mathbb{P}^{n+1}$$

becomes

(10)
$$TX \oplus \iota_X^* \mathcal{O}(d) = \iota_X^* T \mathbb{P}^{n+1}$$

If we let $u = \iota_X^* h \in H^2(X, \mathbb{Z})$ (where $h \in H^2(\mathbb{P}^{n+1}, \mathbb{Z})$ is the positive generator as above), then (10) allows us to compute c(X) as follows:

(11)
$$c(X) = \frac{(1+u)^{n+2}}{1+du}$$

(a) *Warm-up exercise* Use (11) to compute:

(i) $c_1(X)$ for any n and d in terms of u.

(ii) Argue that

by interpreting (by Poincaré duality) cup products as intersection products, and using that $u^n = \iota_X^* h^n$ and h^n is Poincaré dual to a line (\mathbb{P}^1) in \mathbb{P}^{n+1} .

- (iii) Use the two previous problems to derive formulas for the Euler characteristic $\chi(X_d) = c_n(X_d)$ for n = 1, 2, 3.
- (b) Now to Milnor-Stasheff 16- D. First we need to simplify the definition of the Chern class s_k(E). For a line bundle, define s_k(L) = c₁(L)^k ∈ H^{2k}(X). Extend to all bundles by requiring that it be additive and natural. This means: If E = L₁ ⊕ · · · ⊕ L_m, s_k(E) = c₁(L₁)^k + · · · + c₁(L_m)^k, and extend to all bundles by the splitting principle. (In terms of symmetic functions, the s_k(t₁,...,t_n) are the power sums s_k(t₁,...,t_n) = t₁^k + · · · + t_n^k are, for fixed n and k ≤ n, an alternative set of algebra generators for the algebra of symmetric functions in t₁,...,t_n, related to the elementary symmetric functions by the famous Newton formulas.)

Observe that $s_k(E \oplus F) = s_k(E) + s_k(F)$.

Exercise Prove that $s_n(X_d) = d(n+2-d^n)$.

- (6) (Milnor-Stasheff 16-E, F) This exercise gives more constructions of complex *n*-dimensional manifolds X with s_n(X) ≠ 0 and of real *n*-dimensional manifolds Y with the analogous Stiefel-Whitney class s_n(Y) ≠ 0. Such a Y is not cobordant to a sum of products of lower dimensional manifolds
 - (a) Hypersurfaces in products of complex projective spaces:

The holomorphic line bundles in products $\mathbb{P}^m \times \mathbb{P}^n$ of two projective spaces are the bundles $\mathcal{O}(d_1, d_2) = \pi_1^* \mathcal{O}(d_1) \otimes \pi_2^* \mathcal{O}(d_2)$, where π_1, π_2 are the projections onto the two factors.

Assume $2 \leq m \leq n$ and let $X_{m,n} \subset \mathbb{P}^m \times \mathbb{P}^n$ be the zero set of a holomorphic section s of $\mathcal{O}(1,1)$ which is transeverse to the zero section. Equivalently, $X_{m,n}$ is the zero set in $\mathbb{P}^m \times \mathbb{P}^n$ of a polynomial f(x, y), for $(x, y) \in \mathbb{C}^{m+1} \times \mathbb{C}^{n+1}$ that is of bidegree (1,1): of degree one in x and in y, that is, f(sx, ty) =stf(x, y) for all $s, t \in \mathbb{C}$, and so that the common solutions of $f_{x_i} = 0, f_{y_j} = 0$ are contained in $0 \times \mathbb{C}^{n+1} \cup \mathbb{C}^{m+1} \times 0$, for example

(13)
$$f(x,y) = x_0 y_0 + x_1 y_1 + \dots + x_m y_m$$

Then $X_{m,n}$ is a complex hypersurface in $\mathbb{P}^m \times \mathbb{P}^n$, therefore a complex manifold of complex dimension m + n - 1.

Exercise Prove that

(14)
$$s_{m+n-1}(X_{m,n}) = -\frac{(m+n)!}{m!n!}$$

Suggestion Use the same reasoning in this situation as the one used in (9) and (10) to derive formulas for the characteristic classes of $X_{m,n}$. In particular, show that, since $T(\mathbb{P}^m \times \mathbb{P}^n) = \pi_1^* T \mathbb{P}^m \oplus \pi_2^* T \mathbb{P}^n$ of bundles of rank less than n, its s_{m+n-1} class vanishes, so $s_{m+n-1}(X_{m,n}) = -s_{m_n-1}(\mathcal{O}(1,1))$. Then compute its Chern class from $\mathcal{O}(1,1) = \pi_1^* \mathcal{O}(1) \otimes \pi_2^* \mathcal{O}(1)$.

(b) Hypersurfaces in products of real projective spaces:

The procedure just studied for complex manifolds and Chern classes can be repeated for real manifolds and Stiefel-Whitney classes. For instance, the class $s_k(E)$ can be defined, using the splitting principle, as the class determined by $s_k(L) = w_1(L)^k$ when L is a real line bundle.

Let's just look at one example, which is particularly interesting in that it gives the smallest example of an oriented odddimensional manifold that is not a boundary. Let $Y \subset \mathbb{R}P^2 \times \mathbb{R}P^4$ be a non-singular hypersurfee of bi-degree (1,1): take f(x,y) = 0 with f as in (13) with m = 2, n = 4.

Exercise

- (i) Prove that Y is orientable. (Suggestion: compute $w_1(Y)$)
- (ii) Prove that $s_5(Y) \neq 0$. (Suggestion: derive and use the analogue of (14)).
- (7) Show that the odd dimensional complex projective spaces $\mathbb{C}P^{2m+1}$ bound by producing an explicit orientable manifold X of real dimension 4m + 3 with boundary $\mathbb{C}P^{2m+1}$

Suggestion: $\mathbb{C}P^{2m+1}$ is the space of complex one-dimensional linear subspaces of \mathbb{C}^{2m+2} . Let \mathbb{H} denote the quaternions, let $\mathbb{H}P^m$ denote the space of one-dimensional right quaternionic linear subspaces of \mathbb{H}^{m+1} . Identify \mathbb{C}^{2m+2} with \mathbb{H}^{m+1} . Show that every complex line is contained in a unique right-quaternionic line, and that this leads to a fibration

$$S^2 \to \mathbb{C}P^{2m+1} \to \mathbb{H}P^m$$

Then find a real vector bundle E with fiber \mathbb{R}^3 whose sphere bundle is the above S^2 -bundle.