
SOME EXERCISES IN CHARACTERISTIC CLASSES

1. GAUSSIAN CURVATURE AND GAUSS-BONNET THEOREM

Let S ⊂ R3 be a smooth surface with Riemannian metric g induced from
R3. Its Levi-Civita connection∇ can be defined by

∇XY = (dXY )T = dXY − (dXY )N

where (dXY )T and (dXY )N denote the tangential and normal components
of the usual derivative dXY of the vector function Y in direction of the
vector X . Just check that∇ as just defined preserves g and is torsion-free.

The normal component (dXY )N isA0(S)=bilinear inX, Y and the scalar-
valued bilinear form < dXY,N >= − < Y, dXN > on TpS, called the
second fundamental form of S in R3S, is symmetric in X, Y , equivalently,
the linear transformation TpM → TpM defined by X → −dXN , is self-
adjoint. This is (up to sign) the differential of the Gauss spherical map
S → S2 taking p ∈ S to Np ∈ S2 and TpS to TNpS

2 ∼= TpS (canonically
isomorphic by parallel translation) .

Various assertions above follow by differentiating inner product relations
such as < y,N >= 0 or < N,N >= 1. For example, differentiating
< N,N >= 1 we get < dXN,N >= 0, so if X ∈ TpS, we get dXN ⊥ N ,
so indeed dXN ∈ TpS.

Definition 1. The determinant of this linear transformation TpS → TpS is
called the Gaussian curvature of S at p, denoted Kp.

The easiest way to do calculations is as follows:
• Represent S as a parametrized surface Φ : U → R3 for some open

set U ⊂ R2 and some smooth map Φ : U → R3 everywhere of
maximal rank: Φu,Φv linearly independent at each (u, v) ∈ U . In
terms of u, v the induced metric g on U has expression

(1) g =< Φu,Φu > du2 + 2 < Φu,Φv > dudv+ < Φv,Φv > dv2

• Take a smooth orthonormal frame e1(u, v), e2(u, v),n(u, v) for Φ∗R3:
e1(u, v), e2(u, v) an orthonormal basis for TΦ(u,v)S obtained, say, by
applying Gram-Schmidt to Φu(u, v),Φv(u, v), and n = e1 × e2.
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• Since de1 is perpendicular to both e2 and n (differentiate< e1, e2 >=
0 and D< e1,n >= 0), using from the above paragraphs that the
e2-component of de1 = ∇e1, and finally the definition of connec-
tion one-forms θji from the notes on connections, we get the first
equation below. Similar reasoning for the second:

de1 = θ2
1e2 + λ1n

de2 = θ1
2e1 + λ2n(2)

dn = −λ1e1 − λ2e2

for suitable one-forms θ2
1, θ

1
2 = −θ2

1, λ1, λ2 ∈ A1(U).
The third equation is obtained from the first two by first using <

dei,n >= λi , i = 1, 2, and then using < dei,n >= − < ei, dn >.
A consequence of the third equation is the following formula for the
Gaussian curvature (as defined above, extrinsically):

(3) K dA = λ1 ∧ λ2

where dA is the (oriented) area element of the metric g on U :

(4) dA =
√

det(g) du dv

where g is as in (1).Since the determinant meaures the distortion in
area, we see that (??) is equivalent to Definition 1. This is the extrin-
sic of curvature, meaning that it Uses the shape of the embedding of
S in R3.

1.1. The Exercises.

(1) Compute d2e1 by using (2), then set the resulting expression = 0
(since d2 = 0). Show that this gives Gauss’s Theorema Egreguium

(5) K dA = −dθ2
1 (= dθ1

2),

where the left-hand side is defined as in Definition 1, or, equiva-
lently, equation (3), is an extrinsic quantitity (defined in terms of
the shape of the embedding in R3), while the right-hand side is an
intrinsic quantity (depends just on the Levi-Civita connection of the
induced metric, hence just on the induced metric.)

Remark Recall, from the notes on connections, that d2
∇s = Ωs

for some Ω ∈ A2(S, Sk(T )), where Sk(T ) ⊂ End(T ) denotes
the bundle of skew-symmetric endomorphisms of T , and where we
have changed the K = K∇ of the notes to Ω because now we re-
serve K for the Gaussian curvature (a function on S). On a metric
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connection on a bundle of rank 2 , Ω is represented by a matrix of
2-forms

Ω =

(
0 Ω1

2

Ω2
1 0

)
=

(
0 dθ1

2

dθ2
1 0

)
with Ω1

2 = −Ω2
1.

From the intrinsic point of view, (5) says K dA = Ω1
2 = Pf(Ω).

(2) Let Φ(u, v) = (sinu cos v, sinu, sin v, cosu), 0 ≤ u ≤ π, 0 ≤ v ≤
2π be the standard parametrization of the unit sphere centered at the
origin by spherical coordinates (where the circles u = 0, u = π col-
lapse to the north pole, south pole respectively), Make the following
choices for e1, e2,n:

e1 = φu = (cosu cos v, cosu sin v,− sinu),

e2 = Φv/ cosu = (− sin v, cos v, 0),(6)
n = Φ.

Work out explicitly all the equations (1) to (5) for these particular
choices of Φ, e1, e2,n. In particular, what is the value of K?

(3) Suppose now that S is an oriented surface with a Riemannian metric
g (not neccessarily induced from an embedding in R3) and associ-
ated Levi-Civita connection ∇. We have seen two ways of looking
at the curvature d2

∇;
(a) d2

∇s = Ωs for some Ω ∈ A2(S, Sk(T )) as above and in the
notes..

(b) d2
∇s = ιsR for some R ∈ A2(S,Λ2T ) ⊂ ⊕p,qS

p(S,ΛqT ) as in
class. We have, for x ∈ T , a contraction operator ιx : ΛpT →
Λp−1T and in particular an isomorphism Λ2T

∼=−→ Sk(T ) that
takes x ∧ y ∈ Λ2T to the skew-symmetric endomorphism z →
ιz(x ∧ y) =< x, z > y− < y, z > x for x, y, z ∈ T . This
isomorphism takes R to Ω.
Let u ∈ A0(S,Λ2T ) be the unique section that is of unit length
and is positive for the chosen orientation. Over any open set
with positively oriented orthonormal frame e1, e2, u = e1∧e2.
Note that the Pfaffian Pf(R) ∈ A2(S) is obtained from R ∈
A2(S,Λ2T ) by

Pf(R) =< u,R >

The Exercise:
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(i) Let σ ∈ A0(S, T ) be a vector field of constant length:
< σ, σ >= 1. Prove that

d∇(σ ∧ d∇σ) = R

consequently

(7) d < u, σ ∧ d∇σ >= Pf(R)

(ii) Now suppose S = S̄ \ {p1, . . . , pn} where S̄ is a closed
surface and {p1, . . . , pn} is the set of zeros of a vector
field on S̄ having only simple zeros. Apply Stokes’s the-
orem and (7) to σ = s/|s| to get

(8)
∫
S̄

Pf(R) =
n∑

i=1

ιpi(s) = χ(S)

(4) Apply the procedure of the last problem to the example of spherical
coordinates (Exercise (2) above). Check that equations (7) and (8)
for σ one of the fields e1 or e2.
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2. ADDITIONAL EXERCISES

(1) (Milnor-Stasheff 4B): Prove the following theorem of Stiefel: If
n + 1 = m2r with m odd, then RP n does not have 2r vector fields
that are linearly independent at every point. In particular, show that
RP 4k+1 has a nowhere zero vector field but does not have 2 vector
fields that are linearly independent at every point.

(2) (Milnor-Stasheff 5E): A vector bundle E → B is said to be of fi-
nite type if and only if B can be covered by finitely many open sets
U1, . . . , Uk such that E|Ui

is trivial for i = 1, . . . , k. Prove that
the tautological line bundle L → RP∞ is not of finite type. This
is the bundle denoted by γ1 in Milnor-Stasheff. (Note that a bun-
dle over a reasonable space of finite covering dimension (such as
a finite-dimensional manifold) is necessarily of finite type. So to
find an example not of finite type the base space B must be infinite-
dimensional.)

(3) (Milnor-Stasheff 15B): Let Gn(R∞), respectively G̃n(R∞) denote
the Grassmannian of unoriented, respectively oriented n-dimensional
subspaces of R∞. Observe that G̃n(R∞) is a two - sheeted cover-
ing space of Gn(R∞). Let Λ be an integral domain in which 2 is
invertible. For instatnce, could take Λ = Q. Recall that we have
computed H∗(G̃n(R∞),Λ).

Exercise: Prove that H∗(Gn(R∞),Λ) is the polynomial ring over
Λ generated by the Pontrjagin classes p1(γn), . . . , p[n/2](γ

n) of the
universal (= tautological) Rn-bundle γn over Gn(R∞).

Suggestion Prove first the following general statement: For any
double covering π : X̃ → X with covering transformation t : X̃ →
X̃ of order two, π∗ : H∗(X,Λ) → H∗(X̃,Λ) is injective and its
image is the fixed point set of the involution t∗ : H∗(X̃,Λ) →
H∗(X̃,Λ).

(4) Let L → M and E → M be a complex line bundle and a complex
vector bundle of rank n (that is, fiber Cn) respectively.

(a) Compute the total Chern class c(L⊗ E) in terms of the Chern
classes of L and E. (Suggestion: Use the splitting principle).

(b) Same for c(Hom(L,E)).

(c) Suppose the base M has real dimension 2n, and let L,E be as
above. Give a necessary and sufficient condition, in terms of
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the Chern classes of L and E, for the existence of an injective
bundle homomorphism φ : L→ E.

(5) A quick look at complex hypersurfaces in Pn+1:
Let h ∈ H2(Pn+1,Z) ∼= Z be the generator with the property

that h([P1]) = 1, where P1 ⊂ Pn+1 is the natural holomorphic
embedding (actually linear). This is called the positive generator
of H2. The complex line bundles over Pn+1 often denoted O(d),
d ∈ Z, notation chosen so that c1(O(d)) = dh. Thus for d < 0,
O(d) has no holomorphic sections other than the identically zero
section, andO(0) is the trivial bundle with its holomorphic sections
constant functions on Pn+1.

Now, if d > o, the space of holomorphic sections ofO(d) is in bi-
jective correspondence with the space P (n+ 2, d) of homogeneous
polynomials of degree d in n + 2 variables. If f ∈ P (n + 2, d),
the equation f = 0 defines a subset (analytic subvariety) of Pn+1,
the zero set of a holomorphic section of O(d). If the only common
zero of the equations fxi

= 0 (partial derivaatives with respect to all
n + 2 variables) is at the origin, then f = 0 defines a non-singular
hypersuface, let’s call it Xd. It is a complex manifold of complex
dimension n. All non-singular f give diffeomorphic Xd, under dif-
feomorphisms that preserve the Chern classes.

Fix n and d, let X = Xd and let ιX : X → Pn+1 be the embed-
ding. The normal bundle ofX in Pn+1 is easily seen to be ι∗X(O(d))
(from the fact that X is the zero set of a section of O(d) transverse
to the zero section). So the standard decomposition (C∞ but not
holomorphic)

(9) TX ⊕NX = ι∗XTPn+1

becomes

(10) TX ⊕ ι∗XO(d) = ι∗XTPn+1

If we let u = ι∗Xh ∈ H2(X,Z) (where h ∈ H2(Pn+1,Z) is the
positive generator as above), then (10) allows us to compute c(X)
as follows:

(11) c(X) =
(1 + u)n+2

1 + du

(a) Warm-up exercise Use (11) to compute:

(i) c1(X) for any n and d in terms of u.
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(ii) Argue that

(12) un([X]) = d

by interpreting (by Poincaré duality) cup products as in-
tersection products, and using that un = ι∗Xh

n and hn is
Poincaré dual to a line (P1) in Pn+1.

(iii) Use the two previous problems to derive formulas for the
Euler characteristic χ(Xd) = cn(Xd) for n = 1, 2, 3.

(b) Now to Milnor-Stasheff 16- D. First we need to simplify the
definition of the Chern class sk(E). For a line bundle, define
sk(L) = c1(L)k ∈ H2k(X). Extend to all bundles by requiring
that it be additive and natural. This means: If E = L1 ⊕ · · · ⊕
Lm, sk(E) = c1(L1)k+· · ·+c1(Lm)k, and extend to all bundles
by the splitting principle. (In terms of symmetic functions, the
sk(t1, . . . , tn) are the power sums sk(t1, . . . , tn) = tk1 + · · · +
tkn are, for fixed n and k ≤ n, an alternative set of algebra
generators for the algebra of symmetric functions in t1, . . . , tn,
related to the elementary symmetric functions by the famous
Newton formulas.)
Observe that sk(E ⊕ F ) = sk(E) + sk(F ).

Exercise Prove that sn(Xd) = d(n+ 2− dn).

(6) (Milnor-Stasheff 16-E, F) This exercise gives more constructions of
complex n-dimensional manifoldsX with sn(X) 6= 0 and of real n-
dimensional manifolds Y with the analogous Stiefel-Whhitney class
sn(Y ) 6= 0. Such a Y is not cobordant to a sum of products of lower
dimensional manifolds
(a) Hypersurfaces in products of complex projective spaces:

The holomorphic line bundles in products Pm×Pn of two pro-
jective spaces are the bundlesO(d1, d2) = π∗1O(d1)⊗π∗2O(d2),
where π1, π2 are the projections onto the two factors.

Assume 2 ≤ m ≤ n and let Xm,n ⊂ Pm×Pn be the zero set of
a holomorphic section s of O(1, 1) which is transeverse to the
zero section. Equivalently, Xm,n is the zero set in Pm × Pn of
a polynomial f(x, y), for (x, y) ∈ Cm+1 × Cn+1 that is of bi-
degree (1, 1): of degree one in x and in y, that is, f(sx, ty) =
stf(x, y) for all s, t ∈ C, and so that the common solutions of
fxi

= 0, fyj = 0 are contained in 0 × Cn+1 ∪ Cm+1 × 0, for
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example

(13) f(x, y) = x0y0 + x1y1 + · · ·+ xmym

Then Xm,n is a complex hypersurface in Pm × Pn, therefore a
complex manifold of complex dimension m+ n− 1.

Exercise Prove that

(14) sm+n−1(Xm,n) = −(m+ n)!

m!n!

Suggestion Use the same reasoning in this situation as the one
used in (9) and (10) to derive formulas for the characteristic
classes of Xm,n. In particular, show that, since T (Pm × Pn) =
π∗1TPm ⊕ π∗2TPn of bundles of rank less than n, its sm+n−1-
class vanishes, so sm+n−1(Xm,n) = −smn−1(O(1, 1)). Then
compute its Chern class from O(1, 1) = π∗1O(1)⊗ π∗2O(1).

(b) Hypersurfaces in products of real projective spaces:

The procedure just studied for complex manifolds and Chern
classes can be repeated for real manifolds and Stiefel-Whitney
classes. For instance, the class sk(E) can be defined, using the
splitting principle, as the class determined by sk(L) = w1(L)k

when L is a real line bundle.

Let’s just look at one example, which is particularly interest-
ing in that it gives the smallest example of an oriented odd-
dimensional manifold that is not a boundary. Let Y ⊂ RP 2 ×
RP 4 be a non-singular hypersurfce of bi-degree (1, 1): take
f(x, y) = 0 with f as in (13) with m = 2, n = 4.

Exercise
(i) Prove that Y is orientable. (Suggestion: compute w1(Y ))

(ii) Prove that s5(Y ) 6= 0. (Suggestion: derive and use the
analogue of (14)).

(7) Show that the odd - dimensional complex projective spaces CP 2m+1

bound by producing an explicit orientable manifold X of real di-
mension 4m+ 3 with boundary CP 2m+1

Suggestion: CP 2m+1 is the space of complex one-dimensional lin-
ear subspaces of C2m+2. Let H denote the quaternions, let HPm

denote the space of one-dimensional right quaternionic linear sub-
spaces of Hm+1. Identify C2m+2 with Hm+1. Show that every com-
plex line is contained in a unique right-quaternionic line, and that
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this leads to a fibration

S2 → CP 2m+1 → HPm

Then find a real vector bundle E with fiber R3 whose sphere bundle
is the above S2-bundle.


