SOME EXERCISES IN CHARACTERISTIC CLASSES

1. GAUSSIAN CURVATURE AND GAUSS-BONNET THEOREM

Let S C R? be a smooth surface with Riemannian metric g induced from
IR3. Its Levi-Civita connection V can be defined by

VxY = (dxY)" = dxY — (dxY)V

where (dxY)T and (dxY)" denote the tangential and normal components
of the usual derivative dxY of the vector function Y in direction of the
vector X. Just check that V as just defined preserves g and is torsion-free.

The normal component (dxY )" is A°(S)=bilinearin X, Y and the scalar-
valued bilinear form < dxY, N >= — < Y, dxN > on 71,5, called the
second fundamental form of S in R3S, is symmetric in X, Y, equivalently,
the linear transformation 7,M — T},M defined by X — —dxN, is self-
adjoint. This is (up to sign) the differential of the Gauss spherical map
S — S? taking p € Sto N, € S? and 7,5 to Ty, S* = TS (canonically
isomorphic by parallel translation) .

Various assertions above follow by differentiating inner product relations
such as < y, N >= 0 or < N,N >= 1. For example, differentiating
< N,N >=1weget<dxN,N >=0,s0if X € T,5, we getdx N L N,
soindeed dx N € T,S.

Definition 1. The determinant of this linear transformation T,S — T,,S is
called the Gaussian curvature of S at p, denoted K,,.

The easiest way to do calculations is as follows:

e Represent S as a parametrized surface ® : U — R3 for some open
set U C R? and some smooth map ® : U — R? everywhere of
maximal rank: ®,, @, linearly independent at each (u,v) € U. In
terms of u, v the induced metric g on U has expression

1) g=<&,®, >du’®+2<, o, > dudvt < &, , > dv’

e Take a smooth orthonormal frame e; (u, v), es(u, v), n(u, v) for *R3:
e;(u,v), es(u, v) an orthonormal basis for T, ) S obtained, say, by
applying Gram-Schmidt to ®,,(u, v), ®,(u,v), and n = e; x es.

Date: April 7, 2016.



2 SOME EXERCISES IN CHARACTERISTIC CLASSES

e Since de; is perpendicular to both e, and n (differentiate < e, e, >=
0 and D< e;,n >= 0), using from the above paragraphs that the
ez-component of de; = Ve, and finally the definition of connec-
tion one-forms ¢/ from the notes on connections, we get the first
equation below. Similar reasoning for the second:

d61 = 6’%e2+)\1n
(2) deg = 9%61%‘)\211

dn = —)\161—)\262

for suitable one-forms 07, 03 = —02 X\, Ay € AY(U).

The third equation is obtained from the first two by first using <
de;,n >= )\; , 72 = 1,2, and then using < de;,n >= — < e;,dn >.
A consequence of the third equation is the following formula for the
Gaussian curvature (as defined above, extrinsically):

where d A is the (oriented) area element of the metric g on U':

4) dA = y/det(g) du dv

where g is as in (1).Since the determinant meaures the distortion in
area, we see that (??) is equivalent to Definition 1. This is the extrin-
sic of curvature, meaning that it Uses the shape of the embedding of
Sin R3.

1.1. The Exercises.

(1) Compute d?e; by using (2), then set the resulting expression = 0
(since d? = 0). Show that this gives Gauss’s Theorema Egreguium

5) K dA = —d#? (= dby),

where the left-hand side is defined as in Definition 1, or, equiva-
lently, equation (3), is an extrinsic quantitity (defined in terms of
the shape of the embedding in R?), while the right-hand side is an
intrinsic quantity (depends just on the Levi-Civita connection of the
induced metric, hence just on the induced metric.)

Remark Recall, from the notes on connections, that d%s = Qs
for some Q € A%(S,Sk(T)), where Sk(T) C End(T) denotes
the bundle of skew-symmetric endomorphisms of 7', and where we
have changed the K = Ky of the notes to ) because now we re-
serve K for the Gaussian curvature (a function on S). On a metric



(6)

2)

3)

SOME EXERCISES IN CHARACTERISTIC CLASSES 3

connection on a bundle of rank 2 , 2 is represented by a matrix of
2-forms

1 1
Q- (é’% %2) — (dg% dff) with Q) = —02.

From the intrinsic point of view, (5) says K dA = Q) = Pf(Q).

Let ®(u,v) = (sinucosv,sinu,sinv,cosu), 0 <u <7, 0<v <
27 be the standard parametrization of the unit sphere centered at the
origin by spherical coordinates (where the circles © = 0, u = 7 col-
lapse to the north pole, south pole respectively), Make the following
choices for e, es, n:

e = ¢, = (cosucosv,cosusinv, —sinu),
ea = &,/ cosu=(—sinv,cosv,0),
n = o.

Work out explicitly all the equations (1) to (5) for these particular
choices of ®, ey, €2, n. In particular, what is the value of K?

Suppose now that S is an oriented surface with a Riemannian metric
g (not neccessarily induced from an embedding in R?) and associ-
ated Levi-Civita connection V. We have seen two ways of looking
at the curvature d%;

(a) d%s = Qs for some Q € A?*(S,Sk(T)) as above and in the
notes..

(b) d%s = 1R for some R € A*(S,A*T) C &,,57(S,AT) as in

class. We have, for x € T, a contraction operator ¢, : APT —
AP=T and in particular an isomorphism AT —s Sk(T) that
takes Ay € AT to the skew-symmetric endomorphism z —
L ANy) =< z,z2 > y— < y,z > x for z,y,z € T. This
isomorphism takes R to §2.
Let u € A%(S, A>T') be the unique section that is of unit length
and is positive for the chosen orientation. Over any open set
with positively oriented orthonormal frame ey, €5, u = e; A es.
Note that the Pfaffian Pf(R) € A?(S) is obtained from R €
A%(S, A’T) by

Pf(R) =<u,R >

The Exercise:
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(i) Let o € A°(S,T) be a vector field of constant length:
< 0,0 >= 1. Prove that

dv(O’ A de’) =R

consequently
(7) d<u,0Ndgyo >= Pf(R)
(i) Now suppose S = S\ {pi,...,pn} where S is a closed
surface and {py,...,pn} is the set of zeros of a vector

field on S having only simple zeros. Apply Stokes’s the-
orem and (7) to o = s/|s| to get
®) [ IR =Y 5 =x(8)
s i=1
(4) Apply the procedure of the last problem to the example of spherical
coordinates (Exercise (2) above). Check that equations (7) and (8)
for o one of the fields e; or es.
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2. ADDITIONAL EXERCISES

(1) (Milnor-Stasheff 4B): Prove the following theorem of Stiefel: If
n + 1 = m2" with m odd, then RP" does not have 2" vector fields
that are linearly independent at every point. In particular, show that
R P*+1 has a nowhere zero vector field but does not have 2 vector
fields that are linearly independent at every point.

(2) (Milnor-Stasheff 5E): A vector bundle £ — B is said to be of fi-
nite type if and only if B can be covered by finitely many open sets
Ui, ..., Uy such that E|y, is trivial for i = 1,... k. Prove that
the tautological line bundle L — R P is not of finite type. This
is the bundle denoted by ~! in Milnor-Stasheff. (Note that a bun-
dle over a reasonable space of finite covering dimension (such as
a finite-dimensional manifold) is necessarily of finite type. So to
find an example not of finite type the base space B must be infinite-
dimensional.)

(3) (Milnor-Stasheff 15B): Let G,,(R*), respectively én(Ro") denote
the Grassmannian of unoriented, respectively oriented n-dimensional
subspaces of R*°. Observe that én(Roo) is a two - sheeted cover-
ing space of G,(R*). Let A be an integral domain in which 2 is
invertible. For instatnce, could take A = Q. Recall that we have
computed H* (G, (R*>), A).

Exercise: Prove that H*(G,,(R*), A) is the polynomial ring over
A generated by the Pontrjagin classes pi(y"), ..., pp/2(7") of the
universal (= tautological) R"-bundle 1" over G,,(R>).

Suggestion Prove first the following general statement: For any
double covering 7 : X — X with covering transformation ¢ : X =
X of order two, 7* : H*(X,A) — H*(X,A) is 1nJectwe and its
image is the ﬁxed point set of the involution t* : H*(X,A) —
H*(X,A).
(4) Let L — M and EF — M be a complex line bundle and a complex
vector bundle of rank n (that is, fiber C") respectively.

(a) Compute the total Chern class ¢(L ® E) in terms of the Chern
classes of L and E. (Suggestion: Use the splitting principle).

(b) Same for ¢(Hom(L, E)).

(c) Suppose the base M has real dimension 2n, and let L, E be as
above. Give a necessary and sufficient condition, in terms of
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the Chern classes of L and F, for the existence of an injective
bundle homomorphism ¢ : L — F.

(5) A quick look at complex hypersurfaces in P"*1:

)

(10)

(11)

Let h € H?(P"*1Z) = 7Z be the generator with the property
that A([P']) = 1, where P! C P"*! is the natural holomorphic
embedding (actually linear). This is called the positive generator
of H?. The complex line bundles over P"*! often denoted O(d),
d € Z, notation chosen so that ¢;(O(d)) = dh. Thus for d < 0,
O(d) has no holomorphic sections other than the identically zero
section, and O(0) is the trivial bundle with its holomorphic sections
constant functions on P"*1,

Now, if d > o, the space of holomorphic sections of O(d) is in bi-
jective correspondence with the space P(n + 2, d) of homogeneous
polynomials of degree d in n + 2 variables. If f € P(n + 2,d),
the equation f = 0 defines a subset (analytic subvariety) of P!,
the zero set of a holomorphic section of O(d). If the only common
zero of the equations f,, = 0 (partial derivaatives with respect to all
n + 2 variables) is at the origin, then f = 0 defines a non-singular
hypersuface, let’s call it Xj. It is a complex manifold of complex
dimension n. All non-singular f give diffeomorphic X, under dif-
feomorphisms that preserve the Chern classes.

Fix n and d, let X = X, and let tx : X — P"*! be the embed-
ding. The normal bundle of X in P"*! is easily seen to be 1% (O(d))
(from the fact that X is the zero set of a section of O(d) transverse
to the zero section). So the standard decomposition (C'*™ but not
holomorphic)

TXONX = L*XT]P’”*1
becomes
TX @ 50(d) = TP

If we let u = (5h € H*(X,Z) (where h € H?*(P""' Z) is the
positive generator as above), then (10) allows us to compute ¢(X)
as follows:

(1 + u)n+2

X p—
o(X) 1+ du

(a) Warm-up exercise Use (11) to compute:

(i) ¢1(X) for any n and d in terms of w.
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(i1) Argue that
(12) W(1X]) = d

by interpreting (by Poincaré duality) cup products as in-
tersection products, and using that ©" = (51" and A" is
Poincaré dual to a line (P!) in P"*!.

(ii1) Use the two previous problems to derive formulas for the
Euler characteristic x(X4) = ¢,(Xg) forn = 1,2, 3.

(b) Now to Milnor-Stasheff 16- D. First we need to simplify the
definition of the Chern class si(E). For a line bundle, define
sk(L) = ci(L)F € H?*(X). Extend to all bundles by requiring
that it be additive and natural. This means: If £ = L ® --- P
Loy si(E) = ¢1(L1)*+- - -+c1 (L, )", and extend to all bundles
by the splitting principle. (In terms of symmetic functions, the

sp(ti, ..., t,) are the power sums s(ti,...,t,) = th + - +
tfl are, for fixed n and k£ < n, an alternative set of algebra
generators for the algebra of symmetric functions in ¢4, . . ., %,

related to the elementary symmetric functions by the famous
Newton formulas.)

Observe that s, (E ® F) = s,(E) + sg(F).
Exercise Prove that s,,(Xy) = d(n + 2 — d").

(6) (Milnor-Stasheff 16-E, F) This exercise gives more constructions of
complex n-dimensional manifolds X with s, (X) # 0 and of real n-
dimensional manifolds Y with the analogous Stiefel-Whhitney class
sp(Y') # 0. Such aY is not cobordant to a sum of products of lower
dimensional manifolds

(a) Hypersurfaces in products of complex projective spaces:

The holomorphic line bundles in products P™ x P" of two pro-
jective spaces are the bundles O(dy, dy) = 77 O(d;) @750(d>),
where 71, 7o are the projections onto the two factors.

Assume 2 < m < nand let X,,,,, C P™ x P" be the zero set of
a holomorphic section s of O(1,1) which is transeverse to the
zero section. Equivalently, X, ,, is the zero set in P"* x P of
a polynomial f(z,y), for (z,y) € C™*! x C"*! that is of bi-
degree (1, 1): of degree one in x and in y, that is, f(sz,ty) =
stf(x,y) for all s,t € C, and so that the common solutions of
fa; = 0, f,, = 0 are contained in 0 x C**' U C™*! x 0, for
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example

f(x,y) = zoyo + 11+ + TinYim

Then X, ,, is a complex hypersurface in P™ x P", therefore a
complex manifold of complex dimension m + n — 1.

Exercise Prove that
(m+n)!

3m+n71(Xm,n) = - min!

Suggestion Use the same reasoning in this situation as the one
used in (9) and (10) to derive formulas for the characteristic
classes of X, ,,. In particular, show that, since 7'(P"™ x P") =
mi TP™ @ w3 TP" of bundles of rank less than n, its s, ,_1-
class vanishes, s0 Spin—1(Xmn) = —Sm,—1(O(1,1)). Then
compute its Chern class from O(1,1) = 7;O(1) @ m50(1).

(b) Hypersurfaces in products of real projective spaces:

The procedure just studied for complex manifolds and Chern
classes can be repeated for real manifolds and Stiefel-Whitney
classes. For instance, the class s;(FE) can be defined, using the
splitting principle, as the class determined by s, (L) = w;(L)*
when L is a real line bundle.

Let’s just look at one example, which is particularly interest-
ing in that it gives the smallest example of an oriented odd-
dimensional manifold that is not a boundary. Let Y C RP? x
RP* be a non-singular hypersurfce of bi-degree (1,1): take
f(z,y) = 0 with f asin (13) withm = 2,n = 4.

Exercise
(i) Prove that Y is orientable. (Suggestion: compute w;(Y))
(ii) Prove that s5(Y) # 0. (Suggestion: derive and use the
analogue of (14)).

(7) Show that the odd - dimensional complex projective spaces C P21

bound by producing an explicit orientable manifold X of real di-
mension 4m + 3 with boundary CP?m+!

Suggestion: CP?™*! is the space of complex one-dimensional lin-
ear subspaces of C*"*2. Let H denote the quaternions, let HP™
denote the space of one-dimensional right quaternionic linear sub-
spaces of H™ !, Identify C*™2 with H™*!. Show that every com-
plex line is contained in a unique right-quaternionic line, and that
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this leads to a fibration
5?2 5 Ccp?tl s HP™

Then find a real vector bundle E with fiber R* whose sphere bundle
is the above S?-bundle.



