
A CRASH COURSE ON CONNECTIONS

DOMINGO TOLEDO

1. INTRODUCTION

These notes are meant to give a quick view of the theory of connections and
curvature for vector bundles. Basically we follow the outline of §2 of [1], see also
Appendix C of [3]. The main goal is to explain that the characteristic classes of a
Riemannian manifold have local expressions in terms of the metric.

These notes are very preliminary. Watch for updates by looking at the date.
Comments, corrections, requests for explanations, are all welcome.

2. DEFINITION OF CONNECTIONS AND CURVATURE

Everything will be C∞. Let E → M be a smooth bundle over a smooth
manifold. We write A0(E) for the space of smooth sections of E and Ak(E)
for the space of smooth sections of the vector bundle Λk(T ∗M) ⊗ E. In other
words, Ak(E) Is the space of smooth k-forms with coefficients in E. Alterna-
tively, Ak(E) = Ak(M)⊗A0(M) A

0(E).

Definition 1. A connection on E is an R-linear map ∇ : A0(E) → A1(E) with
the property that

(1) ∇(fs) = df ⊗ s+ f∇s

holds for all f ∈ A0(M) and for all s ∈ A0(E). If p ∈ M and X ∈ TpM , and
iX : T ∗pM → R denotes evaluation at X , then we write

(2) ∇Xs = (iX ⊗ id)∇s,

called the covariant derivative of s at p in the direction ofX . The defining equation
(1) becomes

(3) ∇(fs) = (Xf)s+ f∇Xs

In other words, ∇s puts together the covariant derivatives ∇Xs in the direction
of tangent vectors X ∈ TpM into a single element of T ∗M ⊗ E. This element is
evaluated on each X ∈ TpM by means of (2).

The equation (1) means, in particular, that∇ is a first-order differential operator
A0(E) → A1(E). In other words, (∇s)(p) = 0 whenever s is a section that
vanishes to second order at p ∈ M . A section vanishes to second order at p if and
only if it can be written as s =

∑
fisi where fi(p) = 0 and si(p) = 0. This is a
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coordinate-free way of saying that in any local coordinate system, s and all its first
order partial derivatives vanish at p. Then using (1) we see that

(∇s)(p) =
∑

(dfi(p)⊗ si(p) + fi(p)∇s(p)) = 0.

In particular, this implies that (∇s)(p) depends just on the value of s on a neigh-
borhood of p, in other words, it is a local operator. But it says much more: Define
an equivalence relation on A0(E) by saying s1 ∼ s2 if s1 − s2 vanishes to second
order at p. Then (∇s1)(p) = (∇s2)(p).

2.1. Digression into jets. It can be checked that the collection of these equiva-
lence classes, as we vary p, forms a vector bundle over M , called the bundle of
one-jets of sections of E, denoted J1(E). There is a well defined evaluation map
evp : J1(E) → E induced by evp : A0(E) → Ep. The latter has kernel the space
of sections that vanish at p, thus the former has kernel the space of one-jets of sec-
tions that vanish at p. This last space is isomorphic to T ∗pM ⊗Ep. Thus the bundle
J1(E) fits into an exact sequence

(4) T ∗M ⊗ E → J1(E)
ev−→ E

Let j1p : A0(E)→ J1E denote the map that sends s to its equivalence class. A first
order differential operatorD : A0(E)→ A0(F ) (E and F vector bundles overM )
is equivalent to a bundle map or zeroth-order differential operator D̃ : J1E → F
by the rule Ds = D̃j1s. Under this equivalence a connection is a bundle map

(5) ∇̃ : J1(E)→ T ∗M ⊗ E such that ∇̃|T ∗M⊗E = id,

in other words, a splitting of (4).

2.2. Space of connections. The point of connections is that in a general vector
bundle E → M there is no canonical way to differentiate sections. A connec-
tion gives a way to differentiate sections in all directions. First we should prove
existence:

(1) In the trivial bundle M × Rn, or better, in the trivialized bundle, since we
are choosing a particular trivialization, A0(E) is the same as (A0(M))n,
vector functions M → Rn, and we can define ∇s = ds, component-
wise exterior derivative. More precisely, a section s = (f1, . . . , fn) where
fi : M → R and we define∇s by

(6) ∇s = ds = (df1, . . . dfn)

(2) The difference of two connections is a section of T ∗M ⊗ End(E): If ∇1

and ∇2 are connections, then (∇1 − ∇2)(fs) = f(∇1 − ∇2)(s), thus
∇1 − ∇2 is linear over A0(M), in other words, is a bundle map E →
T ∗M⊗E, in other words, a section of T ∗M⊗End(E) = T ∗M⊗E⊗E∗,
where E∗ is the dual bundle of E.

The same computation shows that if∇ is a connection andA ∈ A1(End(E)),
then ∇ + A is a connection. So, if a connection exists, the space of
connections is an affine space for the infinite-dimensional vector space
A1(M,End(E)).
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(3) Given E → M and an open cover {Uα} of M with trivializations(bundle
isomorphisms) φα : E|Uα → Uα × Rn, define a connection ∇0

α on E|Uα
by

(7) ∇0
αs = (id⊗ φ−1α )d(φαs)

where d(φαs) is as in (6).
(4) Let {λα} be a partition of unity subordinate to {Uα}. Then define ∇s =∑

α∇0
αλαs

In summary, connections exist, they form an affine space for the vector space
A1(End(E)).

2.3. Connection one-forms. Let E →M be a vector bundle and choose an open
cover {Uα} with local trivializations φα : E|Uα → Uα × Rn as above. Let {ei}
denote the standard basis for Rn and let ei also denote the constant section ei of
Uα ×Rn. Let si = φ−1α (ei). Then {s1, . . . , sn} is a collection of sections of E|Uα
that forms a basis of Ep for each p ∈ Uα. This collection is called a frame of E|Uα ,
or, more briefly, a local frame for E.

Recall the connection ∇0
α defined in (7) which corresponds to d under φα. In

terms of the frame {si},∇0
α is characterized by∇0

αsi = 0 for i = 1, . . . , n.

Definition 2. Let ∇ be a connection on E, and let ∇α denote its restriction to
Uα (more precisely, its restriction to A0(Uα, E|Uα)). Then ∇α = ∇0

α + θα for a
unique θα ∈ A1(Uα, End(E)), called the connection one-form of ∇ with respect
to {si}.

Let us drop the subscript α and assume that we are working on E|U for which a
frame {si} exists. Then we can write

(8) θ = {θji }, i, j = 1, . . . , n, where θji ∈ A
1(U)

In other words, {θji } is a matrix of scalar one-forms representing θ ∈ A1(End(E)).
Since∇ = ∇0 + θ and ∇0si = 0, the θji are characterized by

(9) ∇si =

n∑
j=1

θji sj for i = 1, . . . , n

Once we have these forms we can find the covariant derivative of any section on
U . Namely, any section s on U can be uniquely written as

(10) s =

n∑
i=1

ξisi for some ξi ∈ A0(U).

Then (1) and (9) give us

∇s =
n∑
i=1

(dξi ⊗ si + ξi∇si) =

n∑
i=1

(dξi ⊗ si + ξi
n∑
j=1

θji sj)
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Relabeling the indices in the second term
∑

i,j ξ
iθji sj we get the final formula

(11) ∇s =

n∑
i=1

(dξi ⊗ si +

n∑
j=1

ξjθijsi)

for the covariant derivative of any section over U .
We can go one step further in (8) and assume that U ⊂ M is the domain of a

coordinate chart ~x : U → Rm where ~x = (x1, . . . , xm). Then we can write

(12) θji =
m∑
µ=1

Γji,µdx
µ, where Γji,µ ∈ A

0(U),

and (11) becomes

(13) ∇s =

n∑
i=1

(dξi ⊗ si +

n∑
j=1

m∑
µ=1

Γij,µξ
jdxµsi)

The functions Γji,µ are usually called the Christoffel symbols.

2.4. Connections on induced bundles. Let∇ be a connection on E →M , let N
be a smooth manifold and let f : N → M be a smooth map. Then we have the
induced bundle (or pull-back) f∗E → N defined by the requirement that it be a
fiber product:

f∗E −→ E
↓ ↓
N

f−→ M

A section s of s∗E is a map s : N → E satisfying s(x) ∈ Ef(x) for all x ∈ N .
If ∇ is a connection on E we want to define an induced connection f∗∇ on f∗E.
Since f can be quite arbitrary, it is difficult to give a short definition that works in
all generality. It seems best to use local frames. Namely, let {Uα} be an open cover
of M so that there is a frame {sαi } for each E|Uα . Then {f−1Uα} is a cover of N
over which E|f−1Uα has frames {f∗sαi }.

Definition 3. Using the notation just explained, if θα are the connection forms for
∇ with respect to the frame {sαi } over Uα, then the induced connection f∗∇ is
defined to be the connection on f∗E with connection forms f∗θα over f−1Uα with
respect to the frames {f∗sαi }.

Explicitly, if U is an open set on which we have a frame {si} and connection
form θ (one of the Uα, drop the α for simplicity), then on f−1(U) we have that, as
in (9), f∗∇ is defined by

(14) (f∗∇)(f∗si) =
n∑
j=1

(f∗θji )(f
∗sj)
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As in (10) we have that any section of f∗E over f−1(U) can be written as s =∑
ξif
∗si, and we get

(15) ∇s =
n∑
i=1

(dξi ⊗ f∗si +
n∑
j=1

ξj(f∗θij)(f
∗si).

In terms of Christoffel symbols

(16) (f∗∇)s =

n∑
i=1

(dξi ⊗ (f∗si) +

n∑
j=1

m∑
µ=1

(f∗Γij,µ)ξjdfµf∗si)

where f = (fµ) in local coordinates.

2.5. Parallel translation. Let ∇ be a connection on E → M and let γ : [a, b]→
M be a smooth path.

Definition 4. A section s of γ∗E, also called a section of E along γ, is called
parallel along γ if and only if (γ∗∇)(s) = 0, where γ∗∇ is the induced connection.

If we write out (13) explicitly, and also write dξi = dξi

dt dt, we get the following
system of equations for parallel sections s =

∑
ξiγ∗si:

(17)
dξi

dt
+
∑
j,µ

Γij,µ(γ(t)) ξj(t)
dγµ

dt
= 0.

This is a system of ODE’s. Therefore the existence and uniqueness theorem for
ODE’s tells us that given any vector v ∈ Eγ(a) there exists a unique parallel section
s along γ with s(a) = v. The vector s(1) is called the parallel translate of v along
γ, denoted P (γ)

γ(b)
γ(a)v. This defines a linear transformation P (γ)

γ(b)
γ(a) : Eγ(a) →

Eγ(b), called parallel transport. Uniqueness implies that for a concatenation of

paths the parallel transports compose: P (γ)
γ(c)
γ(b)P (γ)

γ(b)
γ(a) = P (γ)

γ(c)
γ(a) : Eγ(a) →

Eγ(b). In general, if we take two paths γ1, γ2 from p to q, P (γ1)
q
p 6= P (γ2)

q
p, no

matter how close the two paths γ1, γ2 may be. Equivalently, if γ is a loop at p,
P (γ)pp 6= id no matter how small γ is.

A closely related question is the following: suppose φ : R → M is a mapping
of a rectangle R = [a, b] × [c, d] → M , does there exist a section s along R, that
is, a section of φ∗E that is parallel: (φ∗∇)s = 0? The answer is in general no. The
best way to see this u=is to first intrioduce thd concept of curvature.

2.6. Curvature. Let ∇ : A0(E) → A1(E) be a connection on E. Extend ∇ to
a differential operator d∇ : Ak(E) → Ak+1(E) as follows: recall that Ak(E) =
Ak(M)⊗A0(M)A

0(E) which in turn is the subspace ofAk(M)⊗RA
0(E) spanned

by all ω ⊗ s such that (fω ⊗ s) = ω ⊗ (fs) for all f ∈ A0(M).

Definition 5. The covariant exterior derivative, denoted d∇, is the operator d∇ :
Ak(E)→ Ak+1(E) defined by

(18) d∇(ω ⊗ s) = dω ⊗ s+ (−1)kω ∧∇s.
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For this definition to make sense we have to check that d∇((fω)⊗s) = d∇(ω⊗
(fs)) for all f ∈ A0(M). Let’s check:

(1) d∇((fω)⊗ s) = d(fω)⊗ s+ (−1)k(fω)∧∇s = (df ∧ ω)⊗ s+ fdω ⊗
s+ (−1)k(fω) ∧∇s

(2) d∇(ω ⊗ (fs)) = dω ⊗ (fs) + (−1)kω ∧ (df ⊗ s+ f∇s) = dω ⊗ (fs) +
(−1)k(ω ∧ df)⊗ s+ (−1)k(ω ∧ f∇s)

We see that the term (df ∧ ω) ⊗ s in the first equals (−1)k(ω ∧ df) ⊗ s in the
second. Similarly (fdω)⊗s is the same element of the tensor product as dω⊗(fs),
similarly the two remaining terms.

An alternative, but equivalent, form of the definition of d∇ is to use an obvious
modification of one of the standard formulas for d: if η ∈ Ak(M,E),

(d∇η)(X1, . . . , Xk+1) =
∑

(−1)i+1∇Xi(η(X1, . . . , X̂i, . . . , Xk+1))

+
∑

(−1)i+jη([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . )(19)

(perhaps up to a factor) see, for example, §2 of chapter I of [2]. A straightforward
calculation using (18) or (19) gives that d2∇ is a zeroth-order operator, rather than
second order, therefore

(20) d2∇s = Ks for all s and for some K ∈ A2(M,End(E))

Definition 6. The curvature K∇ ∈ A2(M,End(E)) of ∇ is the element K ∈
A2(M,End(E)) uniquely defined by (20).

Warning: Some authors choose a minus sign in (20): d2∇s = −Ks.
Remarks:

(1) If E is trivial then d∇ = d, the ordinary exterior derivative (on vector-
valued forms). It is well-known that d2 = 0. Since d∇ is a first order
operator with the same leading term as d, it is clear that d2∇ must have
order strictlu less than two. Then a computation shows its order is actually
zero.

(2) On Ak(M,E), k > 0, (20) becomes d2∇(ω ⊗ s) = (ω ∧K)⊗ s.

Now differentiate (20) again to get

d3∇s = (d∇K)s+Kd∇s = (d∇K)s+ d3∇s

thus (d∇K)s = 0 for all s, hence the Bianchi identity

(21) d∇K = 0.

Proposition 1. In the frame {si} over U , K∇ ∈ A2(U,End(E)) is represented
by the matrix of scalar 2-forms Kj

i given by

(22) Kj
i = dθji −

n∑
k=1

θki ∧ θ
j
k, i, j = 1, . . . , n
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Proof. Recall from (9) that∇si =
∑

j θ
j
i sj . Hence from Definition 5

d∇∇si =
∑
j

dθji sj − θ
j
i ∧∇sj =

∑
j

(dθji −
∑
k

θki ∧ θ
j
k)sj

where one goes from the second to the third term by the usual trick of expanding
∇sj =

∑
k θ

k
j sk and then suitably renaming indices. �

Exercise Write (22) in terms of Christoffel symbols.

2.7. Geometric interpretation of curvature. Suppose that ∇ is a connection on
E → M . We have just seen that for any parametrized curve γ : [a, b] → M
there exist parallel sections, in fact, given any v ∈ Eγ(a) there exiss a parralles
section s(t) along γ with s(0) = v. The situation is quite different for parametirzed
surfacesas φ : [a, b] × [c, d] → M . In fact, suppose that there exists a parallel
section s over a non-degenerate such surface φ : ∇s = 0 = d∇s holds at all
(u, v) ∈ [a, b] × [c, d].. We can differentiate again and get d2∇s = Ks = 0., thus
K(X ∧ Y )(s) = 0 for all X,Y tangent to φ.

Proposition 2. Let φ : [a, b] × [c, d] → M be a non-degenerate surface (that is,
dφ has generically rank 2). Then there exist parallel sections s1, . . . , sn of φ∗E
which span the fiber at each point if and only if φ∗K ≡ 0.

Proof. Suppose that there exist sections s1, . . . , sn of φ∗E that form a basis at
each point and are all parallel: d∇si = 0 for i = 1, . . . , n. Then d2∇si = Ksi = 0
for i = 1, . . . , n, therefore K(X ∧ Y ) = 0 for all X,Y tangent to the surface
φ([a, b]× [c, d]), proving one direction.

For the converse, if parallel secitons of φ∗E exist, they can be constructed as fol-
lows: Take a parallel section s(u, 0) of φ∗E|[a,b]×c. For each u ∈ [a, b] let s(u, v)
be the parallel section over u× [c, d] with initial condition our earlier s(u, 0). This
section is parallel along the bottom [a, b]× 0 of the rectangle [a, b]× [c, d] and also
along all vertical segments u× [c, d]. It is parallel over [a, b]× [c, d] if and only if
it satisfles the further equation∇us(u, v) = 0 on each horizontal line [a, b]× v.

From the formula (19) for the exterior derivative we get ∇u∇v − ∇v∇u =
K( ∂

∂u ∧
∂
∂v ). Thus K = 0 gives

0 = ∇u∇vs(u, v) = ∇v∇us(u, v).

Thus∇us(u, v) is the unique solution of∇v(∇us(u, v)) = 0 with initial condition
∇us(u, 0) = 0, hence∇us(u, v) ≡ 0 as desired. �

Proposition 3. There exists a basis of parallel sections of φ∗E if and only if paral-
lel transport along the boundaries of all subrectangles with vertical and horizontal
sidesof [a, b]× [c, d] is the identity. This is in turn equivalent to parallel transport
along all small loops being the identity, and also equivalent to K = 0.

Proof. Exercise. �

This gives a good geometric interpretation ofK. In particular we get thatK = 0
if and only if parallel transport along all small loops is the identity. In this case the
bundle is called flat.
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We summarize some consequences:

(1) A connection∇ on E is called flat if and only if K∇ = 0.
(2) K∇ = 0 if and only if parallel transport along all small loops in M is the

identity.
(3) K∇ = 0 if and only if parallel transport along loops depends only of the

homotopy class of the loop.
(4) K∇ = 0 if and only if for each fixed p ∈M parallel transport along loops

at p gives a homomorphism ρ : π1(M,p)→ GL(Ep).
(5) In this caseE can be described as follows: let π1(M,p) act on the universal

cover M̃ of M by covering transformations. Choose a linear isomorphism
Ep ∼= Rn and let ρ : π1(M,p) → GL(n,R) be the resulting represen-
tation. Then E = M̃ ×ρ Rn, meaning the quotient of M̃ × Rn by the
equivalence relation (x, v) ∼ (γx, ρ(γ)v).

3. BUNDLES WITH ADDITIONAL STRUCTURE

So far we have talked about general vector bundles E → M with fiber Rn,
with transition functions in GL(n,R) and connections ∇ whose parallel transport
P (γ)qp can be an arbitrary linear isomorphism Ep → Eq. These are called linear
connections.

We can ask for additional structure. A useful general setting is to choose an as-
sociated bundle which has a very special section. This section will give E an extra
structure. We consider only connections that preserve this additional structure.

Concrete examples are:

(1) Complex vector bundles: Assume that E admits a bundle map J : E → E
such that J2 = −id. Then we can make the complex numbers C act on
E by (x + iy)v = xv + yJv. In other words, i ∈ C acts by J , and the
action extends to C by R-linearity. thus all the fibers of E are complex
vector spaces. We only consider connections ∇ that commute with J :
∇(Js) = J∇s. Otherwise said, ∇J = 0 or J is parallel. This is the same
as asking that parallel transport is always complex linear.

(2) Riemannian vector bundles: there is a section g of the bundle S2E∗ of
symmetric 2-tensors that is positive definite at each point. This makes
evert fiber Ep into a Euclidean vector space Ep, gp. We only consider
connections for which parallel transport is an isometry with respecto to g.
This means that dg(X,Y ) = g(∇X,Y ) + g(X,∇Y ) or that g is parallel:
∇g = 0. This is the same as asking that parallel translation is always an
isometry. Thus E is an orthogonal vector bundle.

(3) We can combine the above two examples: ask that there is a J : E → E
with J2 = −id, a section h of S2E∗ which is positive definite at each
point. Moreover ask that they be compatible in the sense that h(JX, JY ) =
h(X,Y ) for all X,Y ∈ A0(E), thus J is an isometry and hp is a hermit-
ian form on the complex vector space Ep. Finally we consider only con-
nections that preserve both structures. This is the same as asking that all
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parallel transports are complex linear isometries. Thus E is a hermitian
vector bundle.

(4) Another example would be the existence of a skew-symmetric form ω ∈
A0(Λ2E∗) which is non-degenerate at each point in the sense that ωn 6= 0
at any point, where 2n = dimEp, and consider only connections that
preserve this structure. This leads to symplectic vector bundles which we
will probably not have the time to study.

3.1. The space of connections preserving the extra structure. In all the above
examples the difference of two connections preserving the extra structure is an
element of A1(M, g) where g is a bundle of Lie-subalgebras of End(E). Taking
the above examples (except the last) in the same order

(1) Complex vector bundles: The difference of two connections is an element
of A1(EndJ(E)), where EndJ(E) is the bundle of J-linear endomor-
phisms. Each fiber EndJ(Ep) is a Lie subalgebra of Ep isomorphic to
gl(n,C). The space of connections preserving J is an affine space for the
vector space A1(M,EndJ(E)).

(2) Riemannian (or orthogonal) vector bundles: The difference of two connec-
tions is an element of A1(M,Endg(E)) where Endg(E) is the bundle of
infinitesimal isometries of (E, g):

(23) Endg(Ep) = {A ∈ End(Ep) : g(AX,Y ) + g(X,AY ) = 0}

holds for all X,Y ∈ Ep. Each fiber Endg(Ep) is a Lie subalgebra of
End(Ep) isomorphic to o(n). The space of connections preserving g is an
affine space for the vector space A1(M,Endg(E)).

(3) Similarly for hermitian vector bundle the space of connections is an affine
space for the vector space A1(M,EndJ,h(E)) with fiber EndJ,h(Ep) a
Lie subalgebra of End(Ep) isomorphic to u(n).

3.2. Frames and connection forms. In all these examples it is best to choose
local frames {si} to be compatible with the extra structure and to make it standard:

(1) Complex vector bundles: {s1, . . . , sn} form a C-basis at each point of U .
The conection forms θji are complex-linear.

(2) Orthogonal (or Riemannian or Euclidean) bundles: the local frames are
orthonormal: g(si, sj) = δij . Then the connection matrices θji are skew-
symmetric

(3) Hermitian bundles: {si} a complex orthonormal basis, the connection ma-
trices skew-hermitian.

3.3. The curvature for additional structure. In all the above situations the cur-
vature of ∇ is a two-form of endomorphisms with extra structure:

(1) Complex vector bundles: K∇ ∈ A2(M,EndJ(E)). Corresponding matri-
ces Kj

i complex-valued.
(2) Riemannian vector bundles: K∇ ∈ A2(M,Endg(E)). Corresponding

matrices Kj
i skew-symmetric.
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(3) Hermitian vector bundles: K∇ ∈ A2(M,EndJ,h(E)). Corresponding ma-
trices Kj

i skew-hermitian.

3.4. Invariant polynomials and characteristic forms. In all the above situations,
given a vector bundle with connection, consider the corresponding Lie algebra g
being one of gl(n,R), gl(n,C), o(n), u(n). Let P polynomial function of degree k
on g invariant under the adjoint action of the corresponding group G, where G =
GL(n,R), GL(n,C), SO(n,R), U(n). The formalism of [1] gives that P (K) ∈
A2k(M) is a well-defined closed form whose cohomology class is independent of
the choice of the connection ∇ (in the class of connections compatible with the
extra structure). It turns out that forGL(n,R) these give more forms than there are
characteristic classes. The reason is that some of these forms are always exact, for
example, tr(K) is always exact. The bijective correspondence between invariant
polynomials and characteristic classes (namely, H∗(BG,R)) works for compact
groups (as SO(n) and U(n)) and for the complexification of a compact group (as
GL(n,C) which is the complexification of U(n)) but not forGL(n,R) which does
not fall into either of these categories.

3.5. Local nature of the characteristic forms. For concreteness we will concen-
trate in the case of Euclidean (also called orthogonal or Riemannian) vector bun-
dles. So the structure group is SO(n). (We prefer to consider only the orientable
situation and connected groups.) Let P(o(n)) denote the algebra of polynomials
on o(n) that are invariant under the adjoint action of SO(n). We will say more
about the structure of this algebra later. By a characteristic form we mean a form
P (K∇) ∈ A2k(M,R). Let C(E) denote the space of metric connections on E. We
need the following observation:

Proposition 4. For each P ∈ P(o(n)) the map cP : C(E)→ A∗(M) that assigns
to∇ the form P (K∇) is a first-order differential operator. Moreover cP is natural:
if f : M → N there is an induced map f∗ : C(E) → C(f∗E) and cP (f∗∇) =
f∗(cP (∇)).

Proof. The space C can be locally parametrized by the space of local connection
forms θ. The formula (22):

K∇ = dθ − θ ∧ θ
is clearly a (first order, non-linear) differential operator. The map that assigns to
K∇ the form P (K∇) involves no derivatives, is a zeroth-order (non-linear opera-
tor).

�

3.6. Riemannian manifolds. Suppose now that (M, g) is an n-dimensional Rie-
mannian manifold. Then TM is an orthogonal vector bundle. Moreover, it is well
known that TM has a unique metric connection (∇g = 0) that is also torsion free
(∇XY −∇YX = [X,Y ]), the Levi-Civita connection∇LC(g). Moreover∇LC(g)
is constructed from g by an explicit formula that involves only first derivatives of
g, so is a differential operator in g.
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LetM(M) denote the space of Riemannian metrics on M , let LC :M(M)→
C(TM) be the map that assigns to a metric g its Levi-Civita connection ∇LC(g)
and let cP : C(TM) → A∗(M) the map of §3.5. Denote the composed map
κP :M(M)→ A∗(M).

Proposition 5. For each P ∈ P(o(n)) the map κP : M(M) → A∗(M) is a
second-order differential operator. Moreover this map is natural under local dif-
feomorphisms: if f : M → N is a local diffeomorphism, κP ◦ f∗ = f∗ ◦ κP .

Proof. Immediate from Proposition 4 and the construction of the Levi-Civita con-
nection. �
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