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1. INTRODUCTION

These are notes for a course in characteristic classes. These notes are meant to be
rather informal, skipping many details, but trying to convey the main ideas, and to
give some appreciation for the rich nature of the subject. The standard reference is
the book [2]. This book deals mostly with the topological theory, is the foundation
of the subject. But there is also the differential geometric theory, which we hope
to develop. The characteristic classes appear then in de Rham cohomology, and
[1] gives a very clear exposition of de Rham theory. Algebraic geometry provides
many applications for the theory of characteristic classes. We hope to be able to
discuss, to some extent, all these points of view.

Warning: These are informal notes, sloppy in many details, sometimes deliberate.
Some examples to keep in mind:

(1) Coefficients in homology and cohomology groups are often left unstated.
Will often write Hk(M) rather than Hk(M,Z) or Hk(M,R).

(2) Assumptions on the topological spaces involved are not made very explicit.
Usually a simplicial complex will do, or manifold if we’re usiing differen-
tiial forms.

(3) Sometimes we are careful to distinguish a simplicial complex K (a com-
binatorial object) from its geometric realization |K| (a topological space),
sometimes we are sloppy and make no distinction.

(4) Many equations hold only up to sign. For instance, a factor (−1)pq may be
missing.

1.1. The first example. Characteristic Classes are certain invariants of vector
bundles that allow us to distinguish and, to a certain extent, classify bundles. They
should have some geometric significance, tell us something interesting about the
bundles. They should be functorial and computable.

The first example of a “characteristic class” is the invariant that distinguishes
the Möbius band from the cylinder:

Proposition 1. Let E
p−→ S1 be a reai line bundle over S1 (vector bundle with

fiber R). Then

E ∼=
(

[0, 1]× R
) / (

(0, y) ∼ (1, ay)
)

for some a ∈ R, a 6= 0.
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and a/|a| ∈ {−1, 1} is a complete invariant of E. In particular, there are exactly
two isomorphism classes of real line bundles over S1: the cylinder E1 and the
Möbius band E=1.

Proof. Clear from the fact that if q : [0, 1] → S1 is the quotient map q(t) =
exp(2πit), then q∗E is trivial. �

We will see that it’s best to interpret {±1} as H1(S1,Z/2). The invariant a/|a|
will be denoted w1(E) called the first Stiefel-Whitney class of E.

Here is a hint for why we should use H1(S1,Z/2) as our two-element set of
complete invariants: If we cosider a more general topological space X and want
to classify real line-bundles E → X , it is reasonable to expect that the bundles
f∗E over S1, for the various maps f : S1 → X , may be involved in the clas-
sification. So an invariant w1(E) ∈ H1(X,Z/2) with the functoriality property
w1(f∗(E)) = f∗(w1(E)) ∈ H1(S1,Z) would make sense. This is indeed the
case, and this more general w1 will be the first Stiefel-Whitney class.

1.2. Vector Bundles over Spheres. The reasoning behind the classification of line
bundles over S1 applies to vector bundles over Sm with fiber Rn for anym,n ≥ 1,
see [3]. Namely, suppose E → Sm is a vector bundle with fiber Rn. Write Sm as

Sm = Dm
+ tSm−1 Dm

− ,

a union of two disks (hemispheres) glued along their common equatorial sphere
Sm−1. Since disks are contractible, we have trivializations

φ± : E|Dm±
∼=−→ Dm

± × Rn,

and over their common equator Sm−1 a bundle isomorphism

ψ = φ+ ◦ φ−1
− : Sm−1 × Rn → Sm−1 × Rn

which is of the form

(1) ψ(x, v) = (x,A(x)v) for some A : Sm−1 → GL(n,R),

where GL(n,R) denotes the group of invertible n by n - matrices.
Conversely, given a continuous map A : Sm−1 → GL(n,R) we can form the

identification space EA defined as

(2) EA = Dm
+ × Rn

⊔
(x,v)∼(x,A(x)v)

Dm
− × Rn

and with p : EA → Sm defined by p(x, v) = x on each piece, gives us a bun-
dle isomorphic to E. Thus all bundles over Sm arise in this way. Moreover
the isomorphism class of EA depends just on the homotopy class of A, that is,
[A] ∈ πm−1(GL(n,R). In other words, if we introduce the temporary notation
V ecn(Sm) for the collection of vector bundles of rank n over Sm and [V ecn(Sm)]
for the set of isomorphism classes of these bundles. Then we have:

Proposition 2. The map πm−1(GL(n,R)) → [V ecn(Sm)] that assigns to [A] ∈
πm−1(GL(n,R)) the class [EA] ∈ V ecn(Sm) is a one-to-one correspondence.
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To apply this proposition, it is convenient to replace GL(n,R) by its subgroup
O(n), the orthogonal group, since the inclusion O(n)→ GL(n,R) is a homotopy
equivalence. Also recall that O(n) has two connected components, its identity
component is the special orthogonal group SO(n). Also recall that for i > 0,
πi(O(n)) = πi(SO(n)), the identity component, So in Proposition 2 we can re-
place πm−1(GL(n,R)) by π0(O(n)) if m = 1 and by πm−1(SO(n)) if m ≥ 2.

Finally we need to know the values πm−1(O(n)). Let’s look at small values of
m:

Proposition 3. (1) π0(O(n)) = Z/2 for all n ≥ 1

(2) π1(SO(n)) =

{
Z if n = 2

Z/2 if n > 2.

(3) π2(SO(n)) = 0 for all n;

(4) π3(SO(n)) =

{
Z if n = 3 or n > 4

Z⊕ Z if n = 4.

Proof. For (1): If is well-known that O(n) has two connecred components, classi-
fied by the determinant ±1, thus Z/2 in additive notation. Therefore π0(O(n)) =
Z/2 for all n ≥ 1.

For all the remaining ones can replace O(n) by SO(n).
For the first part of (2), SO(2) is the rotation group of R2, homeomorohic to the

circle S1, thus π1(SO(2)) = Z.
For the second part of (2), let us first look at SO(3), the group of rotations of

S2, hence two ways to proceed:
(1) Identify SO(3) as a topological space: SO(3) = RP 3 the real projective

space,
(2) Use the exact homotopy sequence of the fibration SO(2)→ SO(3)→ S2:

→ π2(S2)
∂∗−→ π1(SO(2))→ π1(SO(3))→ π1(S2))→

which becomes Z ∂∗−→ Z → π1(SO(3)) → 0 where ∂∗ is the connecting
homomorphism of the exact homotopy sequence of the fibration. So, for
this approach, it is critical to compute the connecting homomorphism.

Leaving the connecting homomorphism aside for now, let’s accept SO(3) = RP 3

and hence π1(SO(3)) = Z/2.
To complete (2), need to compute π1(SO(n) for n > 3, Again the homotopy

sequence of the fibration SO(n− 1)→ SO(n)→ Sn−1 :

→ π2(Sn−1)→ π1(SO(n− 1))→ π1(SO(n))→ π1(Sn−1)→
which becomes 0→ π1(SO(n−1))→ π1(SO(n))→ 0 that is, π1(SO(n−1)) =
π1(SO(n) for n > 3. Therefore π1(SO(n)) = Z/2 for all n ≥ 3. This finishes
the proof of (2) for all n. But it also establishes another important fact:

Proposition 4. The inclusion SO(n) → SO(n + 1) induces an isomorphism
πi(SO(n))

∼=−→ πi(SO(n+ 1)) for i ≤ n− 2.
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Proof. Look at the exact homotopy sequence of SO(n))→ SO(n+ 1)→ Sn:

→ πi+1(Sn)→ πi(SO(n))→ πi(SO(n+ 1))→ πi(S
n)→

if both i+ 1 and i are both < n, that is, i ≤ n− 2, this sequence becomes

0→ πi(SO(n))→ πi(SO(n+ 1))→ 0

which proves the claim. �

Finally,for statements (3) and (4), if we accept three facts: SO(3) = RP 3

as above, equivalently, the group Q of unit quaternions (homeomorphic to the
sphere S3 ) double-covers SO(3)) and fhe group Q × Q doublle - covers SO(4)
(by the map Q × Q → SO(4) that takes (q1, q2) to the linear tranformation of
H = R4 given by x → q1xq

−1
2 ) it follows that π2(SO(3)) = π2(SO(4)) = 0

and, by Proposition 4, π2(SO(n)) = 0 for all n. Finally π3(SO(3)) = Z and
π3(SO(4)) = Z⊕ Z follow, while π3(SO(5)) will take some work (a connecting
homomorphism), after that π3(SO(n)), n > 5 follows from Proposition 4. �

If we apply these facts to vector bundles over Sm we get the following:

(1) Rn-bundles over S1 in one-one correspondence with Z/2 = H1(S1,Z/2)
by the invariant w1(E) called the first Stiefel-Whitney class.

(2) R2-bundles over S2 in bijective correspondence with Z, the invariant in
H2(S2,Z) = Z called the Euler class e(E).

(3) Instead of R2-bundles we could look at C - bundles, in this case the multi-
plicative group of C is homotopy equivalent toU(1), isomorphic to SO(2),
we get again a bijective correspondence to Z, the invariant in H2(S2,Z) is
called the first Chern class c1(E).

(4) Rn-bundles over S2 in one-one correspondence with Z/2 = H2(S2,Z/2),
the invariant w2(E) is called the second Stiefel-Whitney class.

(5) Rn-bundles over S3: all trivial.
(6) R4-bundles over S4: in one-one correspondence with Z2 (pairs of inte-

gers), in corresponcence the pair (e(E), p1(E)), the Euler class and first
Pontrjagin class.

(7) Rn-bundles over S4, n ≥ 5: one invariant in Z = H4(S4,Z), the first
Pontrjagin class p1(E).

2. EULER CLASS

One of the earliest theorems in characteristic classes is the Poincaré - Hopf the-
orem:

Theorem 1. Let M be a closed manifold of dimension n and X a continuous
vector field on M with isolated zeros. Then∑

Xp=0

ι(p) = χ(M).
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Here χ(M) =
∑

(−1)i dim(H i(M,R)) is the Euler characteristic or Euler
number of M . If p is an isolated zero of X , in some local coordinate system
defined on a neighborhood U centered at p, Xq = (q, f(q)) for some map f :
(U,U \ p)→ (Rn,Rn \ 0), then ι(p) = deg(f).

 � � � 

FIGURE 1. Zeros of index 1,−1,−1, 1 respectively

� �

FIGURE 2. Zeros of index 2,−2, , 3 respectively

Hopf proved this theorem in two steps:

(1)
∑

X(p)=0 ι(p) is independent of X , provided X has isolated zeros.

(2) If M is triangulated by a simplicial complex K, that is, M is homeomo-
prhic to |K|, the geometric realization of K, construct a vector field in the
first barycentric subdivison |K ′| that vanishes prescisely at the barycenters
σ̂ of the simplices of K with index ι(σ̂) = (−1)dim(σ)

Then for the field X of (2) we get∑
X(p)=0

ι(p) =
n∑
i=0

(−1)i(number of i− simplices of K) = χ(M)

where the second equality is a well-known lemma in linear algebra.
See Figure 3 for a picture of Hopf’s vector field for the first barycentric sub-

division of a square (or , with some care, of a cell structure on a torus). Another
standard and easy way to justify the second step is to use the gradient ∇f of a
Morse function f : M → R and the well known equality χ(M) =

∑
∇pf=0 ι(p).

To prove (1), let’s put it into the more general context of the Euler class of an
oriented vector bundle. For concreteness we will assume that all spacesand maps
are smoothj, but we could use more general topological spaces and continuous
maps.
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FIGURE 3. Hopf’s field on a square (or torus)

2.1. Orientation. Suppose π : E → M is a smooth vector bundle with fiber Rn
over a smooth manifold M of dimension m. Recall that his means that M has a
cover U = {Uα} so that

(1) For each α there is a bundle isomorphism φα : E|Uα → Uα × Rn.
(2) Whenever Uαβ = Uα∩Uβ 6= ∅ the map φαφ−1

β : Uαβ×Rn → Uαβ×Rn is
of the form φαφ

−1
β (x, v) = (x, aαβv) for some smooth map aαβ : Uαβ →

GL(n,R).
Recall that GL(n,R) denotes the group of invertible n br n matrices with real
coeffcients, and GL+(n,R) denotes the subgroup of matrices with positive deter-
minant. It has index two in GL(n,R)

An orientation on an n-dimensional vector space can be defined in two equiva-
lent ways:

(1) A choice of “positive half-space” in the one-dimensional vector space ΛnV .
Namely, ΛnV \ 0 has two connected components, choose one and call it
positive.

(2) A choice of generator for the infinite cyclic group Hn(V, V \ 0,Z)

One way to see the equivalence is to show that each is equivalent to a third
statement:

(3) Let e1, . . . , en be a basis of V .The setB of ordered bases {(eσ(1), . . . , eσ(n)) :

σ ∈ Sn} is a disjoint union B = B1 t B−1 according to the sign of the
permutation σ. Choose one of these two sets and call it positive.

We next prove that a choice in (3) gives choices in (1) and (2). Once this is
done the opposite directions should be clear. Choose a positive ordered basis in (3)
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and denote it simply e1, . . . , en. Then the positive multiples of e1 ∧ · · · ∧ en give
a component of ΛnV \ 0, hence an orientation in the sense of (1), Let ∆n be the
standard n-simplex {(x1, . . . , xn) ∈ Rn : x1, . . . , xn ≥ 0 and x1 + · · ·+xn ≤ 1}.
Then the map σ : ∆n → V defined by σ(x1, . . . , xn) = (x1e1 + · · · + xnen) −
(e1 + · · ·+ en)/n is a singular simplex in V with booundary in V \ 0 (the reason
for the last term as to have the barycenter at the origen). It is easy to see that this
is a generator x of the integral homology group Hn(V, V \ 0,Z). We then choose
the generator of Hn(V, V \ 0,Z) that evaluates to one on x.

Finally, recall that if A;V → V is a linear transformation, then the induced
linear map ΛnA : ΛnV → ΛV is multiplication by detA. In particularA preserves
orientation if and only if detA > 0.

Definition 1. Let π : E → M with fiber Rn and connected base M be a vector
bundle. Let U , φα and aαβ : Uαβ → GL(n,R) be as above. Then E is orientable
if and only if the cover U and the local trivia;izations πα can be chosen so that for
all α, β, aαβ : Uαβ → GL+(n,R).

If E is orientable, then an orientation of E is an orientation of each fiber Ep
for all p ∈ M that varies continuously with p. An orientation of E is uniquely
determined by the orientation of a single Ep0 , thus there are two possible choices
for an orientaion of E.

Note that the set of orientations on a vector space is a two-element set with the
discrete topology, so continuous is the same as locally constant. Assume (as we
always can by refinement) that the Uα are connected. Then each E|Uα ∼= Uα×Rn
has two orientations. Fix α and an orientation of E|Uα . If Uα ∩Uβ 6= ∅, since aαβ
preserves orientaion, there is a unique compatible orientation in Uβ , even if Uαβ is
disconnected. If M is connected then for every Uγ there is a “chain” Uβ1 , . . . , Uβk
joining Uα and Uγ (all sucsesive intersections non-empty). Thus our definition of
“orientability” guarantees the existence of an orientation.

2.2. The Thom class.

Theorem 2. Let π : E → M be an oriented vector bundle with fiber Rn over a
connected base M . Then

(1) H i(E,E \ 0) = 0 for i < n
(2) Hn(E,E \ 0,Z) = Z. A generator µ is called a Thom class of E.
(3) For each p ∈ M , let ip : Ep → E be the inclusion map. Then i∗p :

Hn(E,E \ 0) → Hn(Ep, Ep \ 0) is an isomorphism. In particular, the
collection {i∗pµ : p ∈M} is an orientation of E.

(4) Thom Isomorphism Theorem : The map Hk(M) → Hn+k(E,E \ 0)
taking x ∈ Hk(M) to π∗x ∪ µ is an isomorphism.

Proof. These statements follow from the “Mayer-Vietoris principle”. To write con-
cise formulas, if U ⊂ M , write EU for E|U and EU for the pair (EU , ], EU \ 0).
Similarly, if p ∈M , write Ep for (Ep, Ep \ 0). If U, V ⊂M are open, we have the
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Mayer-Vietoris sequence on M :
(3)
H i−1(U∩V )→ H i(U∪V )→ H i(U)⊕H i(V )→ H i(U∩V )→ H i+1(U∪V )→ . . .

and also on E = (E,E \ 0):
(4)
H i−1(EU∩V )→ H i(EU∪V )→ H i(EU )⊕H i(EV )→ H i(EU∩V )→ H i+1(EU∪V )→

Let us assume M has a finite good cover U = {U1, . . . , Uk} meaning that all
non-empty intersections Ui1 ∩ · · · ∩ Uil , l ≥ 1, are contractible. This is always
possible if M is a compact smooth manifold, by taking the convex open sets in a
Riemannian metric. If M = |K|, the geometric realization of a finite simplicial
complex K, take the cover by stellar neighborhoods of vertices.

Let U1 be the collection of these finite intersections. For j = 2, 3, , . . . let U j
be the collection of open subsets of M that are unions of at most j elements of
U1, and let U∞ = ∪∞j=1U j . Note that every member of U1 is contractible and
M ∈ Uk ⊂ U∞. The strategy is to use the Mayer - Vietoris sequences to prove,
by induction on j, any statement on M that can be formulated for arbitrary open
subsets U ⊂M and is true for contractible U . For the inductive step, each element
of U j+1 is of the form U ∪ V for some U ∈ U j and some V ∈ U1. But then
U ∩ V ∈ U j , and this is the setting for Mayer-Vietoris.

For the first statement, its clearly true for U ∈ U1. Suppose it is true for all
U ∈ U j , and let V ∈ U1. Then the sequence (4) for i < n gives

H i−1(EU∩V )→ H i(EU∪V )→ H i(EU )⊕H i(EV )

By the induction hypothesis the first and third term vanish, so must the middle term
H i(EU∪V ), and the induction is complete.

To prove the second and third statements by this method, we need to be prove
the following statement for an arbitrary U ∈ U∞:

Let {ηp : p ∈ M} be an orientation of E as in Definition 1: ηp ∈ Hn(Ep,Z) is
a generator, depending continuously on p. Then for every open set U ∈ U∞ there
exists a unique element µU ∈ Hn(EU ,Z) with the property that for all p ∈ U ,
i∗p(µU ) = ηp.

Recall that continuous dependence means locally constant: for each p ∈ U and
contractible neighborhood W , p ∈ W ⊂ U , for any trivialization EW ∼= W × Ep,
then ηq = i∗q(1⊗ ηp) (where 1⊗ ηp ∈ Hn(W × Ep) is the class corresponding to
ηp under the Künneth isomorphism.)

To prove this statement, first it is true forU contractible, since then EU ∼= U×Ep0
for any fixed p0 ∈ U , and µU is the class corresponding to 1 ⊗ ηp0 under this
isomorphism. In partcular, the statement is true for U ∈ U1.

Suppose that it is true for all U ∈ U j and suppose V ∈ U1. Then the sequence
(4) for i = n gives

(5) 0→ Hn(EU∪V )→ Hn(EU )⊕Hn(EV )
i∗U∩V,V −i

∗
U∩V,V−→ Hn(EU∩V ),
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where the vanishing of the first term is a consequence of the proof of the first
statement: Hn−1(U ∩ V ) = 0 if U ∩ V ∈ U∞.

Consider the continuous family {ηp ∈ Hn(Ep,Z) : p ∈ U ∪ V } of orientations
of the Ep, p ∈ M , restricted to U ∪ V . Restrict these to U and V . By induction
there is a unique µU ∈ Hn(EU ,Z) such that i∗p(µU ) = ηp for all p ∈ U , and
a similar µV ∈ Hn(EV ,Z). These restrict to classes i∗U∩V,U (µU ) ∈ Hn(EU∩V )

and i∗U∩V,V (µV ) ∈ Hn(EU∩V ) with the same property as µU∩V . By the induction
hypothesis these classes are all equal, in particular, i∗U∩V,U (µU )−i∗U∩V,V (µV ) = 0.
Thus the sequence (5) implies that there is a unique class µU∪V that restricts to µU
and µV .

Note that the uniqueness of µU has the following important consequence:

(6) If U, V ∈ U∞ and U ⊂ V, then i∗U,V (µV ) = µU .

Next, we prove the Thom isomorphism, from which all the remaining statements

will follow. For U ∈ U∞, consider the maps Hk(U)
π∗∪µ−→ Hk+n(Eu). The nat-

urality (6) implies that for any U, V ∈ U∞ we get a map of the Mayer-Vietoris
sequence (3) on M to the correspoding one (4) on E . The maps are isomorphisms
if U ∈ U1, and the induction step follows from the “five lemma”:isomorphim for

U, V and U ∩V implies isomorphism for U ∪V . This proves that Hk(M,Z)
π∗∪µ−→

Hk+n(M,Z) is an isomorphism. In particular, since H0(M,Z) = Z, we get
Hn(E,Z) = Z and therefore i∗p : Hn(E) → Hn(Ep) is isomorphic for all p ∈
M . �

2.2.1. Integration over the fiber. The construction of the Thom class in the last
proof may seem somewhat mysterious. As often happens in topology, there are
several models for constructing invariants, and a specific construction may be eas-
ier to understand in some particular model. For example, cohomology may be
represented as singular cohomology, or de Rham cohomolgy, or Chech,... Some
specific characteristic classes may be more natural in one of these theories than in
any of the others;

For the Thom isomorphism, there is a very natural construction for its inverse
π∗ : Hn+k(E,E \ 0) → Hk(M) by using differential forms and integration over
the fiber. This is explained very well in [1], so we give a brief description.

First of all, relative cochains on (E,E \ 0) cannot be represented by differential
forms, since a non-zero form cannot vanish on a dense open set. But the same
cohomology (with R-coefficients) can be achived by the complex of forms with
fiber-compact supports. Let π : E → M be a smooth vector bundle with local
trivializations φα : EUα → Uα × Rn and transition functions aαβ : Uαβ →
GL+(n,R) as above. LetA∗(E) denote the deRham complex of differential forms
on the space E and let A∗fc(E) denote the set of all η ∈ A∗(E) with the property
that for all α there exists a compact set Kα ⊂ Rn so that the support of η|Uα×Rn is
contained in Uα ×Kα.

This definition is independent of choices and closed under exterior differentia-
tion. One could compare the Kα to be balls in some Riemannian metric and write
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(for a compact base, or a base with a finite cover of trivializing Uα’s) A∗fc(E) =

∪nA∗(Bn(E)), the associated bundle of balls of radius n in E, and get deRham
maps

A∗fc(E)

∫
−→

⋃
n

C∗(E,E \Bn(E))

and use the fact that the singular cohomoogy groups obtained from the right-hand
side are all isomorphic to H∗(E,E \ 0).

Now Amfc(Uα ×Rn) = ⊕i+j=mAi,jfc(Uα ×Rn), where, in multi-index notation,

Ai,jfc(Uα × Rn) = {
∑

|I|=i,|j|=j

φI,J(x, y)dxIdyJ : φI,J ∈ A0
fc(Uα × Rn)}

If m = k + n ≥ n, then

Ak,nfc = {
∑
|I|=k

φI(x, y)dxIdy1 . . . dyn : φI(x, y) ∈ A0
fc(Uα × Rn)}

and
∫
F : Ak,nfc (Uα × Rn)→ Ak(Uα) is defined by∫

F
(φI(x, y)dxIdy1 . . . dyn) = (

∫
y∈Rn

φI(x, y)dy1 . . . dyn)dxI

and is extended to A∗fc by setting it to be zero on Ai,jfc whenever j 6= n.
One needs to verify that this is well defined and gives a chain map (commuting

with d) thus a well defined map in cohomology. This is π∗ : Hk+n
fc (E)→ Hk(M).

It is easily proved to be an isomorphism by using the Mayer-Vietoris arguments as
in the proof of Theorem 2. The Thom class µ is characterized by π∗(µ) = 1.

2.2.2. The Gysin Sequence.

Theorem 3. Gysin Sequence: Let π : E →M be an oriented vector bundle with
fiber Rn. Then there is an exact sequence

· · · → H0(M)
e(E)−→ Hn(M)

π∗−→ Hn(E \ 0)
π∗−→ H1(M)→ . . .

where e(E) ∈ Hn(M) is defined to be the image of µ under the natural maps
Hn(E,E \ 0)→ Hn(E) ∼= Hn(M).

Proof. The Gysin sequence follows from the Thom isomorphism applied to the
exact sequence of the pair (E,E \ 0):

Hn(E,E \ 0)
j−→ Hn(E)

i∗−→ Hn(E \ 0)
δ∗−→ Hn+1(E,E \ 0)

π∗ ∪ µ
x π∗

x id
x π∗ ∪ µ

x
H0(M)

e(E)−→ Hn(M)
π∗−→ Hn(E \ 0)

π∗−→ H1(M)

�

All maps in this diagram have geometric significance and should be examined
closely, In particular, we display more carefully the definition of Euler class given
in the statement of the theorem:
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Definition 2. The Euler class e(E) ∈ Hn(M) is ((π∗)−1 ◦ j)(µ).

If E →M is an oriented vector bundle with fiber Rn over an oriented manifold
of dimension n, and s : M → E is a section with an isolated zero at p ∈M then the
index of s at p is defined as follows: choose a local trivialization of E|U ∼= U ×Rn
over a neighborhood U of p, let f : (U,U \ p) → (Rn,Rn \ 0) correspond to
s: s(x) = (x, f(x)). Then the local index is defined as ιp(s) = deg(f), where
the chosen orientations on M and E are used in defining the degree. Thus ιp(s)
depends on two choices of orientation,

Proposition 5. Let π : E → M be an oriented vector bundle with fiber Rn over
a closed, oriented manifold Mof dimension n. Let s : M → E be a continuous
section of E with isolated zeros. Then

e(E)[M ] =
∑
s(p)=0

ι(p).

Proof. Consider the diagram⊕
s(p)=0H

n(E|Up, E|Up \ 0)
i∗←− Hn(E,E \ 0)

j−→ Hn(E)

s∗
y s∗

y s∗
y

⊕
s(p)=0H

n(Up, Up \ p)
i∗←− Hn(M,M \ {s = 0}) j−→ Hn(M).

(7)

Start with the Thom class µ ∈ Hn(E,E \ 0). Going right then down we get
s∗j(µ) = e(E) since s∗ = (π∗)−1. Going down, then right we get js∗(µ) ∈
Hn(M) which is a class supported on the zero set. This means that it is the

image of a class in Hn(M,M \ 0), namely s∗(µ). Since Hn(M,M \ 0)
i∗←−

⊕Hn(Up, Up \ p) is an isomorphism, we see that i∗s∗(µ) is the “vector” i∗s∗(µ)
with components the local indices of s. The map j is gives the sum of the com-
ponents. More precisely, js∗(µ)([M ]) =

∑
s(p)=0 ιp(s) while s∗j(µ)([M ]) =

e(E)([M ])
. �

Proposition 5 justifies the first step in Hopf’s proof of Theorem 1 in case that M
is orientable. The non-orientable case reduces to this by passing to the orientation
double cover: both sides of the equality are defined for all manifolds, independent
of orientation, and both sides are multiplicative under coverings. Thus the proof ot
the Poincaré-Hopf Theorem (Theorem 1) is complete.

2.3. The Poincaré dual class of a submanifold. If Mn+k is a closed oriented
manifold and Xk ⊂ M is a closed oriented submanifold (superscripts denote di-
mension), thenX defines a homology class [X] ∈ Hk(M,Z) which has a Poincaré
dual class [̂X] ∈ Hn(M,Z). Working modulo torsion, [̂X] is characterized by the
identity

(8) α([X]) = (α ∪ [̂X])([M ]) for all α ∈ Hk(M).
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We describe an explicit construction of [̂X]. Let N be a tubular neighborhood of
X in M , diffeomorphic to the total space of the normal bundle of X in M . Thus
N is a neighborhood of X in N so that there is a projection π : N → X which is
diffeomorphic to a vector bundle, with X ⊂ N as the zero-section. Then we have
an inclusion i : (N,N \0)→ (M,M \X) which by excision gives an isomoprhism
i∗ : H∗(M,M \X)

∼=−→ H∗(N,N \ 0). Let j̃ : H∗(N,N \ 0)→ H∗(M) be the
composition

(9) H ∗ (N,N \ 0)
(i∗)−1

−→ H∗(M,M \X)
j−→ H∗(M),

where j : H∗(M,M \X) → H∗(M) is the relative to absolute map in the exact
sequence of the pair (M,M \X)

Proposition 6. [̂X] = j̃(µ), where µ is the Thom class of the normal bundle N of
X in M .

Proof. Let α ∈ Hk(M). Then α([X]) = i∗Xα([X]), where iX : X → M is

the inclusion. The Thom isomorphism Hk(X)
π∗∪µ−→ Hn+k(N,N \ 0) between

two groups, each isomorphic to Z by evaluation on the respective fundamental
classes, gives us ı∗Xα([X]) = ((π∗i∗Xα)∪ µ)([N,N \ 0]) (clear at least up to sign,
which is enough for a first look). Since the projection π : N → X is a homotopy
equivalence, π∗i∗Xα = i∗Nα . Now α ∪ j̃(µ) = i∗Nα ∪ µ, evaluating on respective
fundamental classes gives (8). �

Geometrically, since (8) asserts the equality of two homomorphismsHk(M)→
Z and the first is supported on X , so must the second. This means that the coho-
mology class [̂X] should also be supported onX , meaning it should be in the image
Hn(M,M \ X) → Hn(M). Since Hn(M,M \ X) ∼= Hn(N,N \ X) = Zµ,
must have that [̂X] = j̃(mµ) for some m ∈ Z. Proposition 6 asserts m = 1.

2.3.1. Transversality. Let f : M1 → M2 be a smooth map of smooth manifolds,
and let X2 ⊂ M2 be a smooth submanifold. We say that f is transversal to X2 if
and only if, for each p ∈ f−1(X2) the composition

(10) TpM1
dpf−→ Tf(p)M2

P−→ Tf(p)M2/Tf(p)X2 = Nf(p)X2

is surjective, whereNX2 denotes the normal bundle ofX2 inM2 andP : TM2|X2 →
NX2 denotes the projection onto the quotient (NX2 can be viewed either as a quo-
tient of TM2|X2 , as indicated in (10), or a sub-bundle of TM2|X2 complementary
to TX2. The second description is compatible with the embedding of NX2 in M2

as a tubular neighborhood).
Standard arguments based on the implicit function theorem give

Theorem 4. Suppose f : M1 →M2 is transverse to X2 ⊂M2 as above. Then
(1) X1 = f−1(X2) is a submanifold of M1 with tangent bundle TX1 =

ker(Pdf).
(2) df induces an isomorphism df : NX1 → f∗NX2. In particular, NX1

∼=
f∗NX2.
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(3) The Thom classes of NX1, NX2 satisfy µNX1 = f∗(µNX2).
(4) The Poincaré dual classes satisfy [̂X1] = f∗([̂X2]

Proof. The first assertion follows from the implicit function theorem, the second
mostly by definition, the third by the defining properties of the Thom class, and the
fourth from Proposition 6. �

Remark 1. Observe that X1 need not be connected, even if X2 is connected. For
disconnected X1, the Thom class of NX1 means the sum of the Thom classes of its
connected components.

We can now state and prove the generalization of Proposition 5 to the case when
the base has possibly higher dimension than the fiber:

Proposition 7. Let π : E → M be an oriented vector bundle with fiber Rn over
the closed oriented manifold M of dimension m, where m ≥ n, let s : M → E
be a section of E which is transverse to the zero section, and let Zs = {x ∈ M :
s(x) = 0} ⊂ M be the zero set of s. Then Zs is a submanifold of M which is
Poincaré dual to the Euler class e(E):

e(E) = [̂Zs] ∈ Hn(M).

Proof. Consider the commutative square in the right of the diagram (7) used in the
proof of Proposition 5. It also makes sense in the context m > n (while the rest of
(7) does not).

By the first and parts of Theorem 4, Zs is a submanifold of M with normal
bundle s∗E and the Thom class of this bundle is s∗µ. By Proposition 6, js∗µ =

[̂Zs] ∈ Hn(M), while s∗j(µ) = e(E), almost by definition (Definition 2) since
s∗ = (π∗)−1. �

This proposition illustrates a basic principle: Characteristic classes are Poincaré
dual to singularities.

Finally, the naturality of the Thom class gives us that if f : M1 → M2 and
E → M2 is an oriented vector bundle with fiber Rn, and f∗E → M1 is the
induced bundle, then

(11) e(f∗E) = f∗e(E) in Hn(M1,Z).

In other words, the Euler class is functorial, illustrating the basic principle: char-
acteristic classes are functiorial.

3. OBSTRUCTION THEORY

The discussion of the Euler class fits into the more general context of obstruction
theory. Suppose we have

(1) A locally trivial fibration p : E → B with fiber F .
(2) The base is triangulated: B = |K| for some simplicial complex K.
(3) The fiber is (r − 1)-connected: πi(F ) = 0 for i < r, and πr(F ) 6= 0.
(4) If r = 1, π1(F ) is abelian.
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The goal of obstruction theory is to determine when p : E → B has a section. The
strategy is to do it skeleton by skeleton, and see what happens. Before we start, for
each simplex σ < K choose, once and for all, a bundle isomorphism

(12) hσ = (p, hFσ ) : E||σ| → |σ| × F,

where we explicitly write the forms of hσ followed by projection to each factor.
Namely, followed by projection to |σ| must get p, followed by projection to F get
a map we call hFσ .

This isomorphisms need not be compatible, and would not be unless p : E → B
is the trivial fibration pB : B × F → B. The important point is that they be fixed
in advance.

Once all the hσ are fixed, we can proceed in steps as follows:

(1) There is always a section s0 defined over K0: to each vertex (0-simplex)
v, pick a point s0(v) ∈ Ev.

(2) Try to extend s0 to a section s1 over K1:
(a) If π0(F ) = 0, that is, if F is connected, then, for each one-simplex

σ =< v0, v1 > < K, there is a path γ in F from hFσ (s0(v0)) to
hFσ (s0(v1)). Then

((1− t)v0 + tv1, γ(t))

defines a section of |σ| ×F that goes under h−1
σ to a section of p over

|σ| that extends s0 over ∂σ. Doing this over every one-simplex we get
a section s1 over K1 that extends s0.

(b) If π0(F ) 6= 0, that is, if F is disconnected, then we have to work
harder. The next step would be to define a one-cochain o(s0) ∈
C1(K,π0(F )) by

(13) o(s0)(σ) = [hFσ (s0(v1))− hFσ (s0(v0))] ∈ π0(F )

where the bracket [.] denotes the homotopy class. There is an obvi-
ous problem with this formula: π0(F ) need not be a group. But the
statements o(s0)(σ) = 0, o(s0)(σ) 6= 0 have a clear meaning: the
two points lie in the same connected component of F , or in different
components, respectively. For the moment, let us interpret (13) in this
way. It is then clear that s0 extends over K1 if and only if o(s0) = 0.
This is essentially an obvious re-statement of what it means to extend
s0 overK1, and not very useful. The useful statement would be: o(s0)
is a cocycle, and it is a coboundary if and only if s0 can be replaced
by a section t0 over K0 that extends over K1.

(3) This is indeed the case. But given the exceptional nature of π0 and π1, let
us assume that F is connected and simply connected, so that the discussion
starts with π2(F ) which is an abelian group. Then arguing as in (a) above
we get that s0 extends to a section s2 over K2. Then to extend over K3,
look at a 3-simplex σ < K.



NOTES IN ALGEBRAIC TOPOLOGY SPRING 2016 15

(a) If π2(F ) = 0, then hFσ (s2||∂σ|) extends to a map φ : |σ| → F , and
(x, f(x)), x ∈ |σ| defines a section of |σ| ×F that goes under h−1

σ to
a section of p over |σ| that extends s2. This would be s3 on |σ|.

(b) If π2(F ) 6= 0, then, in analogy with (13) define a 3-cochain o(s2) ∈
C3(K,π2(F )) by

(14) o(s2)(σ) = [(hFσ ◦ s2)||∂σ|] ∈ π2(F ).

It is clear that s2 extends over the 3-skeleton if and only if o(s2) = 0.
We will prove that o(s2) is a cocycle, and is a coboundary if and only
if we can replace s2 by a section t2 that agrees with s2 on the one-
skeleton K1 and extends over K3.

The general procedure is now clear. But we need to be careful about details.
First we have to make the coefficients precise: πr(F ) is a local coefficient system
on K. For our purposes a local coefficient system on K means an assignment of
an abelian group Av to each vertex v of K, and to each edge < v0, v1 > if K an
isomorphism < v0, v1 >

#: Av1
∼=−→ Av0 so that

(15) < v0, v1 >
#< v1, v2 >

#=< v0, v2 >
# if < v0, v1, v2 > < K.

All the Av are isomorphic, say to a fixed abelian group A, but not “equal”. In fact
(15 ) is equivalent to an action of π1(B) on A by a group G of automorphisms of
A, and the collection of Av determoine a bundle over B with fiber A and stucture
group G. This bundle may be the product bundle B ×A, or may be non-trivial.

This structure is exactly what it’s needed to define cohomology with coefficients
in A: First our simplices σ =< x0, . . . , xk > will always be ordered, and x0 will
be called the leading vertex of σ. For each σ we define Aσ = Ax0 . In this way
we assign a group Aσ to each ordered simplex σ. Then we define the space of
k-cochains with coefficients in A by

(16) Ck(K,A) =
⊕

σ<K,dim(σ)=k

Aσ

with coboundary defined as follows:

(17) δc(σ) =< x0, x1 >
# c(σ(0)) +

k+1∑
j=1

(−1)jc(σ(j))

where σ =< x0, . . . , xk+1 > is an arbitrary k+1-simplex and for j = 0, . . . k+1,
σ(j) =< x0, . . . , x̂j , . . . , xk+1 > is the face of σ opposite to the jth vertex xj .
Observe that for j > 0, c(σ(j)) ∈ Ax0 , while c(σ(0)) ∈ Ax1 , thus < x0, x1 >

#

c(σ(0)) ∈ Ax0 , so this formula makes sense.
The equation δ2 = 0 is a consequence of (15) and the cohomology of this com-

plex is denoted by H∗(K,A).
Now given our fibration p : E → B = |K| with (r − 1)-connected fiber F we

can define the local coefficient system πr(F ) by
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Definition 3. Let πr(F ) be the local system on K defined as follows: For each
vertex v of K define πr(F )

v
= πr(Ev). For each edge < v0, v1 > < K, let

< v0, v1 >#: πr(Ev1) → πr(Ev0) be the homomophism induced by “parallel
translation” Ev1 → Ev0 along the path < v0, v1 >.

Consequently, for each ordered simplex σ =< x0, . . . , xk >, πr(F )σ = πr(Ex0).
Note that we have not specified a base-point for πr(F ) or for π1(Ex0). The rea-
son is that for all x, y ∈ F and for all paths γ1, γ2 in F from x to y the induced
isomorphisms γ#

i : πr(F, y) → πr(F, x) coincide: γ#
1 = γ#

2 , in other words,
πr(F, x) is determined, as x varies, up to unique isomorphism. The reason is very
simple: if r ≥ 2 then π1(F ) is trivial and hence any two paths γ1, γ2 from x to
y are homotopic relative to the endpoints. If r = 1 we have assumed that π1(F )

is abelian, so it has no non-trivial inner automorphisms. Since γ#
1 = γ#

2 times an
inner automorphism, we get that for all γ1, γ2, γ#

1 = γ#
2 .

Now the situation with respect to the groups πr(Ex0) is quite different. Given
x0, x1 ∈ B the and paths γ1, γ2 from x0 to x1 the isomorphisms γ#

1 and γ#
2 could

be different if π1(B) operates non-trivially on πr(F ).

Theorem 5. Let p : E → B, F , r, K, πr(F ), hσ be as above.

(1) There exists a section s : |Kr| → E||Kr|. If s, s′ are any two sections on
|Kr|, their restrictions to |Kr−1| are homotopic.

(2) Given a section s over |Kr|, let o(s) ∈ Cr+1(K,πr(F )) be defined as in
(14): for each (r + 1)-simplex σ =< x0 . . . , xr+1 >,

(18) o(s)(σ) = [φσ ◦ s||∂σ|] ∈ πr(Ex0)

where φσ : E|σ → Ex0 is the projection defined by the product structure
hσ of (12), namely φσ(z) = h−1

σ ((x0, h
F
σ (z))).

Then:
(a) s extends over Kr+1 if and only if o(s) = 0.
(b) o(s) is a cocyle.
(c) If s′ is a section over Kr that agrees with s on Kr−1, then o(s′) is

cohomologous to o(s).
(d) o(s) is a coboundary if and only if s can be redefined on Kr, leaving

it unchanged on Kr−1, to a section s′ that extends to Kr+1.

Proof. We have already explained that πi(F ) = 0 for i < r implies the existence
of sections over the r-skeletonKr. The same inductive argument applied to the cell
complex K × I , (where I is the unit interval and the cells are σ × 0, σ × 1, σ × I
for simplices σ < K) gives homotopies between any two sections as long as the
boundaries of the cells σ × I have dimension < r, that is, as long as dim(σ) < r.
Thus part (1) is clear.

For the second part, we have also explained (2a), which is clear from the def-
inition of o(s): s extends to Kr+1 if and only if o(s) = 0. To prove (2b), that
o(s) is a cocycle, fix an (r + 2)-simplex ∆r+2 =< x0, . . . , xr+2 >. To compute
δo(s)(< x0, . . . , xr+2 >) it suffices to restrict E and its associated constructions
to the subcomplex ∆r+2 < K.
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Since |∆r+2| is contractible, there exists a bundle isomorphism E||∆r+2|
∼=−→

|∆| × Ex0 which resuts in unique isomorphisms πr(Ex)
∼=−→ πr(E||∆r+2|)

∼=←−
πr(Ex0) for each x ∈ |∆r+2|, and which agree with the parallel translation isomor-
phisms. Keeping this in mind, if we look at the r+3 terms of δo(< x0, . . . , xr+2 >
) given by (17), together with the definition (18) we see that we can interpret the
formula as follows:

Let ∆r+1 denote an abstract (r + 1)-simplex, and let ι0, . . . , ιr+2 be the em-
beddings ιj : ∆r+1 → ∆r+2 as the face opposite the jth vertex. These result in
r + 3 embeddings ιj : ∆r

r+1 → ∆r
r+2 where the r-skeleton ∆r

r+1 = ∂∆r+1 has
geometric realization homeomorphic to the r-sphere Sr.

Our section s over Kr restricts to a section s over ∆r
r+2. Under the product

structure s(X) corresponds to (x, f(x)) for a map f : |∆r
r+2| → Ex0 . Namely,

in the notation of (18), f = φ∆r+2 . We get r + 3 maps f ◦ ιj : |∆r
r+1| → Ex0 .

Let η ∈ πr(|∆r
r+1|) be a generator. We see that δo(s)(∆r+2) is the element <

x0, x1 >
# (f ◦ ι0(η)) +

∑
(−1)j(f ◦ ιj)(η) of πr(Ex0). To see that this is zero,

apply the Hurewicz homomorphism:

πr(|∆r
r+1|)

(ι̂0)∗−(ι1)∗+,...−→ πr(|∆r
r+2|)

f∗−→ πr(Ex0)

H
y H

y H
y

Hr(|∆r
r+1|)

(ι0)∗−(ι1)∗+...−→ Hr(|∆r
r+2|)

f∗−→ Hr(Ex0)

(where (ι̂0)∗ =< xo, x1 >
# (ι0)∗ is needed in the top row, not in the bottom.). The

vertical arrows are the Hurewicz homomorphismsH . Since all the spaces involved
are (r− 1)-connected, all the vertical arrows are isomorphisms. We will only need
that the last one is an isomorphhism.

Finally, it is easy to see that the map
∑r+2

j=0(−1)j(ιj)∗ : Hr(∆
r
r+1)→ Hr(∆

r
r+2)

is the zero map. This is the familiar argument for ∂2 = 0 illustrated in Figure 4.
Thus H(δo(s)) = 0, therefore, δo(s) = 0 and o(s) is a cocycle. This concludes
the proof of (2b).

For (2c), suppose s and s′ are two sections on |Kr| that agree on |Kr−1|: Define
an r-cochain d(s, s′) ∈ Cr(K,πr(Ex0)), called the difference cochain of s, s′, as
follows. Given any r-simplex σ =< x0, . . . , xr >, observe that s||∂σ| = s′||∂σ|.
Form a standard sphere Sr by taking the disjoint union of two copies of |σ| identi-
fied by the identity map of |∂σ| There is a well-defined map d(s, s′) : Sr → E||σ|
to be s′ on the upper hemisphere and s on the lower hemisphere, and following by
projection to Ex0 , a map Sr → Ex0 . In other words, d(s, s′)(σ) is the composition

(19) Sr = σ t∂σ σ
s′ts−→ E|σ → Ex0 .

We define d(s, s′)(σ) ∈ πr(Ex0) to be the homotopy class of this map. For later
use, record this as a definition:
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x0

x2

x1

x3

FIGURE 4. Picture for r = 1 of δo(s) = 0

Definition 4. Let s, s′ be two sections of E||Kr| that agree on |Kr−1|. The cochain
d(s, s′) ∈ Cr(K,πr(F )) just defined is called the difference cochain of the sec-
tions s, s′.

Claim: δd(s, s′) = o(s′)− o(s).

The proof of this claim is similar to the proof of (2b). Fix an (r + 1)-simplex
∆r+1 =< x0, . . . , xr+1 >, restrict the constructions to the sub-complex ∆r+1 of
K. Under the product structure E||∆r+1

∼=−→ |∆r+1| × Ex0 , we have functions
f, f ′ : |∆r

r+1| → Ex+0 so that s(x) = (x, f(x)) and s′(x) = (x, f ′(x)). Write
simply ∆ for ∆r+1. Form the space ∆r t∆r−1 ∆r. We have well defined maps
Sr → Ex0

(20) Sr = |∆r| ι,ι
′

−→ ∆r
⊔

∆r−1

∆r d(s,s′)−→ Ex0

where ι, ι′ are the inclusions of the copies of ∆r in ∆r t ∆r followed by the
projection to the identification space. Therefore f = d(f, f ′)◦ι and f ′ = d(f, f ′)◦
ι′.

We also have collection of r + 2 maps Sr → Ex0

(21) Sr = ∆r
j

⊔
∆r−1
j

∆r
j

ιjtιj−→ ∆r
⊔

∆r−1

∆r d(f,f ′)−→ F

where ιj : ∆r
j → ∆r, j = 0, . . . , r + 1 is the inclusion of the face ∆r

j opposite the
jth vertex of ∆.

Apply now the Hurewicz homomorphism H to both diagrams. In (20) we get
the generator of πr(Sr) to go to H(o(s′)− o(s)), while the same generator goes to
H(δd(s, s′)) in (21). Thus the two obstruction classes are in the same cohomoogy
class, proving (2c).
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For the proof of (2d) we need to see that given any section s over Kr and c ∈
Cr(K,πr(F )) there is a section s′ over Kr, agreeing with s on Kr−1, so that
o(s′) = o(s) + δc. in other words, given s, let S(s) = {s′ : |Kr| → E||Kr| : s =

s′ on Kr−1}. Then

Claim: The map S(s)→ Cr(K,πr(F )) defined by s′ → d(s, s′) is surjective.

Recall that for each r-simplex σ < K, d(s, s′) ∈ πr(Ex0) is defined as follows:
let f, f ′ = φσ◦s, φσ◦s′ respectively (in notation of (18)). Identifying |(σ|, |∂σ|) ∼=
(Dr, Sr−1), define a map d(f, f ′) : Sr → Ex0 to be f on one hemisphere, f ′ in
the other, well defined on the equator Sr−1, that is d(f, f ′) = f t f ′ : Sr =
Dr tSr−1 Dr ∼= |σ| t|∂σ| |σ| → Ex0 . The surjectivity claim then follows from the
following version simplex by simplex:

Lemma 1. Let Sr = D1 ∪D2 a standard decomposition of the sphere Sr into two
disks (hemispheres) intersecting in the equator: D1 ∩ D2 = Sr−1. Let F be any
space and let f : D1 → F and g : Sr → F be given continuous maps. Then there
exists g′ : Sr → F homotopic to g so that g′|D1 = f |D1 .

Proof. Since D1 is contractible, we have that f and g|D1 are homotopic, in fact
there exists H0 : D1 × I ∪ D2 × {0} so that H0(x, 0) = g(x) for all x ∈ Sr,
and H0(x, 1) = f(x) for all x ∈ D1. By the homotopy extension property (D1 ×
I ∪ D2 × {0} is a retract of Sr × I), H0 extends to H1 : Sr × I → F . Then
g′(x) = H1(x, 1) is homotopic to g and agrees with f on D1. �

The surjectivity claim follows immediately from this lemma: given any section s
and cochain c ∈ Cr(K,πr(F )), and take any fixed r-simplex σ < K and apply the
lemma to f : D1 → Ex0 and g : Sr → Ex0 any representative of c(σ) ∈ πr(Ex0).
Then g′|D2 represents the s′σ.

Finally, the surjectivity claim implies (2d): if o(s) = δc, then there exists s′ so
that c = d(s, s′), so o(s) = δc = o(s′) − o(s) gives o(s′) = 0, in other words, s′

extends over Kr+1.
�

3.1. The Primary Obstruction. The class [o(s)] of Theorem 5 is called the pri-
mary obstruction to the existence of a section. We did not state the best theorem
concerning o(s). In fact, we should have replaced (2c) by the stronger statement
the cohomology class [o(s)] is independent of s. In view of (1) of Theorem 5, this
is equivalent to proving the statement we may call (2c’): if s and s′ are sections
over Kr that are homotopic over Kr−1, then [o(s)] = [o(s′)]. We will prove this
in §3.3.

Assuming this stronger statement, we have the following version of Theorem 5,
which is stronger in some ways, less precise in others:

Theorem 6. Let p : E → B = |K| be a locally trivial fibration with (r − 1)-
connected fiber F as in Theorem 5. Then

(1) There are sections s overKr and any two such sections s, s′ are homotopic
over Kr−1
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(2) Let o(s) be as in Theorem 5. Then o(s) is a cocyle and its cohomology
class [o(s)] ∈ Hr+1(K,πr(F )) is independent of s. This class is denoted
by o(E) and is called the primary obstruction to a section of E.

(3) o(E) = 0 if and only if E has a section s defined over Kr+1.
(4) If L is a complex and f : |L| → |K| is a continuous map, then o(f∗E) =

f∗o(E).

Proof. The first three statements are clear from Theorem 5 and the statment (2c’)
above. For the last statement, may assume, after subdivision, that f is simplicial.
Then can find explicit representatives that satisfy the desired identity. �

It is important to understand what this theorem implies and does not imply. First
the terminology “primary obstruction” is clear because there are always sections
over Kr, so it is when we reach Kr+1 that we first reach an “obstruction”. The
theorem says that given s over Kr the cohomology class [o(s)] = 0 if and only if
there is a section over Kr+1, but if [o(s)] = 0 it does not say that s extends, but
only that some s′ extends. In this way (2d) of Theorem 5 is much more precise.

3.2. Back to the Euler class. The Euler class gives us a good illlustration of The-
orems 5 and 6. Going back to the situation of §2, let π : E → M be an oriented
vector bundle with fiber Rn over an m-dimensional manifold M triangulated by a
complex K: M = |K|. To have non-trivial situation, assume that n is even and
n ≤ m. For most of the discussion there is no need to assume that the base is a
manifold.

We apply the machinery of §3 not to E (which has contractible fibers) but to the
bundle E∗ = E \ 0 → M , where 0 denotes the zero-section of E. Thus the fiber
F = Rn \ 0 is homotopy equivalent to Sn−1, it is (n − 2)-connected and the first
non-vanishing homotopy group is πn−1(Rn\0) = πn−1(Sn−1) ∼= Z. In particular,
r = n− 1

Theorem 7. Let E,E∗,M, F be as just defined. Then
(1) The local system πn−1(F ) is the constant system Z.
(2) E∗ = E \0→M has a section s on the (n−1)-skeleton Kn−1 of K, and

all sections are homotopic on Kn−2.
(3) e(E) = [o(s)] ∈ Hn(M,Z).
(4) e(E) = 0 if and only if the bundle E → M has a section that does not

vanish on the n-skeleton |Kn|.
(5) In particular, if m = n, E → M has a nowhere vanishing section if and

only if e(E)([M ]) = 0.

Proof. For the first assertion, the local coefficient system Z is determined by the
representation π1(M) → Aut(Z) = {±1} obtained by parallel translation. If γ
is a loop at the base-point, and the linear transformation A(γ) : Rn → Rn is the
result of parallel translation in E along γ, then the automorphism of πn−1(Rn \ 0)
that determines πn−1(F ) is multiplication by the degree of A, which is the same
as the determinant of A. Since E is oriented, this determinant is always one, hence
we get the constant coefficient system Z.
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The second assertion follows from (2a) of Theorem 5. For each n-simplex σ <
K, o(s)(σ) = deg(fσ) where fσ = hFσ ◦ s with hFσ as in (12). Extending fσ
radially, we can regard it as a map fσ : (|σ|, |∂σ|)→ (Rn,Rn \ 0). Looking at the
proof of Proposition 5 thus deg(fσ : ∂σ → Rn \ 0) is the same as the evaluation
of s∗µ ∈ Hn(σ, ∂σ), where µ is the Thom class, on the fundamental homology
class of the pair. Thus o(s)(σ) = e(E)(σ) and (3) follows. The fourth and fifth
statements are then immediate consequences of Theorem 5.

�

Remark 2. We could also consider non-orientable vector bundles E → M with
fiber Rn. In this case the first part of Theorem 7 would read: The system πn−1(F )
is the orientation system. By definition, this is the system corresponding to the fol-
lowing representation of π1(M): Fix a basepoint. For each loop γ at the basepoint,
let A(γ) : Rn → Rn be “parallel translation” along γ. The linear transforma-
tion A(γ) depends on γ, no just its homopopy class relative to the endpoints. But
the sign of the determinant det(A(γ)) depends just on the homotopy class of the
loop γ. This is the representation that defines the orientation system, let’s denote
it ε(E) It is then reasonable to define the Euler class e(E) ∈ Hn(M, ε(E)) to be
the obstruction class.

3.2.1. Some consequences of Theorem 7. Applying Theorem 7 to E = TM , the
tangent bundle of an oriented manifold M , we get

Corollary 1. Let M be a closed oriented manifold. Then M has a nowhere van-
ishing vector field if and only if χ(M) =

∑
(−1)i dim(H i(M,R)) = 0.

Proof. Clear. �

What happens when the base is of strictly larger dimension than n = the dimen-
sion of the fibre? The fourth statement of Theorem 7 gives us the answer. Perhaps
it is more geometric to state this part of the theorem as follows. Assume the base
M is a closed manifold, and let K be a triangulation: |K| = M . Every σ < K has
a dual cell D(σ) of complementary dimension and meeting σ at exactly one point,
their common barycenter. The correspondence σ → D(σ) is incidence reversing.
The complement of the `-skeleton K` deformation retracts to the (m − ` − 1)-
skeleton of K∗. Let us call this the (m − ` − 1)-co-skeleton of M . Then we can
rephrase part (4) of Theorem 7 as follows:

Corollary 2. Suppose E →M is an oriented vector bundle with fiber Rn over the
closed manifold M of dimension m > n. Then e(E) = 0 if and only if E has a
section s that does not vanish anywhere in the complement of the (m − n − 1)-
coskeleton of M .

It is difficult, in general, to go beyond this statement in giving conditions for the
existence of a nowhere vanishing section of E. Suppose, for example, m = n+ 1
and that e(E) = 0. Then we can proceed with the pattern of obstruction theory:

(1) Choose a section s of E that vanishes nowhere on the n-skeleton Kn.
(2) Form the obstruction cochain o(s) ∈ Cn+1(K,πn(Rn \ 0)) = Cn+1(K,Z/2Z)

if n ≥ 4..
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(3) If [o(s)] = 0 ∈ Hn+1(K,Z/2Z) then s extends to a nowhere vanishing
section on Kn+1 = M

(4) If [o(s)] 6= 0, s cannot be extended to a nowhere vanishing section over
Kn+1. But maybe some other non-vanishing s′ onKn extends overKn+1.
Go back, make other choices s′ over Kn and see what happens.

We can see the difficulties in applying obstruction theory: the fiber can have
more non-vanishing homotopy groups, as in (2): here we are using the fact that
πn(Sn−1) = Z/2Z if n ≥ 4. These non-vanishing homotopy groups bring fur-
ther obstructions that have to be computed. But another difficulty, perhaps more
serious, is seen in (4): the “higher order obstructions” are not indepedents of previ-
ous choices, as opposed to the independence of choices of the primary obstruction,
namely (2c) of Theorem 5 no longer holds. If we get [o(s)] 6= 0 all we get is
that this particular s cannot extend. But perhaps there is an s′, agreeing with s on
Kn−1, which doesn’t vanish on Kn, and extends over Kn+1. So we have to check
other possibilities.

There is, however, one case where obstruction theory gives a complete answer:

Proposition 8. Suppose E →M is an oriented vector bundle with fiber R2. Then
E has a nowhere vanishing section if and only if e(E) = 0 ∈ H2(M,Z)

Proof. By Theorem 7 we see that E has a section s that does not vanish at an
point of K2. The obstruction of extending this section to K3 has coefficients in
π2(R2 − 0) = π2(S1) = 0, so s extends over K3. Since πi(S1) = 0 for all i > 1,
can continue in this way to find a nowhere vanishing section s.

�

The basic principle behind this Proposition is that if the fiber is an Eilenberg-
McLane space, that is, πi(F ) = 0 for i 6= r, then the primary obstruction in
Hr+1(M,πr(F )) determines everything. In fact, we can strengthen Proposition 8
as in the next proposition. Another illustration of this principle is Theorem 8.

Proposition 9. Let E1, E2 → M be oriented rank two vector bundles. Then E1

and E2 are isomorphic if and only if e(E1) = e(E2) ∈ H2(M,Z).

Proof. We sketch two versions of the proof:
(1) Familiar proof: an oriented rank two vector bundle has transition functions

in GL+(2,R), the group of non-singular 2 by 2 real matrices. Since the
inclusion of the rotation group SO(2) ∼= S1 → GL(2,R) and S1 → R2\0
is a homotopy equivalence, the problem is the same as classification of
principal S1-bundles over M , which is easily obtained by the “exponential
sequence

0→ Z→ C∞(R)
exp(2πi·)−→ C∞(S1)→ 0

of sheaves over M , where the first is the constant sheaf, the other two are
sheaves of germs of the indicated functions. Passing to cohomology we
get

· · · → 0 = H1(M, C(R))→ H1(M, C(S1))
δ∗−→ H2(M,Z)→ 0
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thus the connecting homomorphism δ∗ is an isomorphism between the
group H1(M, C(S1)) of isomorphism classes of S1-bundles and the group
H2(M,Z).

(2) A version of the proof using definition and properties of the primary ob-
struction class in a more direct way would be as follows: Given E1, E2 →
M , the problem is to find a bundle isomorphism A : E1 → E2. This is a
section of the bundle Iso(E1, E2) → M with fiber Iso(R2,R2) of linear
isomorphisms R2 → R2. Since the fibre is isomorphic to GL+(2,R) and
thus homotopy equivalent to the Eilenberg-McLane space S1 = K(Z, 1),
a section exists if and only if the obstruction class [o(A)] ∈ H2(M,Z) is
zero, where A is a section of Iso(E1, E2) over K1.

To compute this class, let s1 be a section of E1 \ 0 over K1. Then
s2 = As1 is a section ofE2 overK1 and from the definition of the obstruc-
tion cochain we see that o(s2) = o(As1) = o(A) + o(s1) ∈ C2(K,Z):
given a 2-simplex σ < K, o(As1)(σ) = deg(A ◦ s1)|∂σ = deg(A|∂σ) +
deg(s1|∂σ). Here we use the local trivializtions on σ to get maps to the
fiber. All fibers are homotopically S1, and we also use that the degree of a
pointwise prouct of two maps S1 → S1 is the sum of their degrees.

Using the independence of the cohomology class of the primary ob-
struction from the representative, we get [o(A)] = [o(s2)] − [o(s1)] =
e(E2)− e(E1) ∈ H2(M,Z). Thus an isomorphism exists over K2, there-
fore over M , if and only if e(E1) = e(E2).

�

3.3. The difference cochain revisited. In Definition 4 we gave a definition of the
difference cochain d(s, s′) of two sections s, s′ that agree on Kr−1. This seemed
natural in the context we chose for Theorem 5 and the desire of not introducing fur-
ther machinery into its proof. A more efficient way,, which we pursue now, would
have been to use the structure of the product K × I . This also has wider applica-
bility since it applies to sections homotopic over Kr−1 (but not necessarily equal),
thus to the proof of the statment (2c’) of §3.1 needed for the proof of Theorem 6.

Going back to the fibration E → |K| with (r − 1)-connected fiber F , we know
we always have sections overKr and any two are homotopic overKr−1. Let s0, s1

be sections over Kr, we can ask when they are homotopic over Kr. This can be
formulated in terms of a section over K × I and its natural cell subdivision with
cells σ×0, σ×1, σ×I , for σ < K, and with ∂(σ×I) = ∂σ×I+(−1)dim(σ)σ×∂I .

Let s0, s1 be sections ofE overKr, letE′ = E×I → K×I be the bundle over
K×I induced fromE → K by the projectionK×I → K, let h : Kr−1×I → E
be a homotopy between s0 and s1, meaning h(x, 0) = s0(x), h(x, 1) = s1(x) for
all x ∈ Kr−1. Such a homotopu is equivalent to a section S = S(s0, s1, h) of E′

over (K × I)r defned by

(22) S(s0, s1, h)(x, t) =


(s0(x), 0) for (x, 0) ∈ Kr × 0,

(s1(x), 1) for (x, 1) ∈ Kr × 1,

(h(x, t), t) for (x, t) ∈ Kr−1 × I.
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FIGURE 5. σ × I < K × I

Then, arguing with the cell structure of K × I in the analogous way to our
earlier arguments with the cell structure of K, and taking care of the local coeffi-
cient groups (we will avoid explicit book-keeping), we get an obstruction cochain
o(S) ∈ Cr+1(K × I, πr(F )). Arguing as in the proof of Theorem 5 we get that
o(S) is a cocycle. The cochains on K × I split as a direct sum

(23) Ck(K × I) = q∗Ck−1(K)⊕ i∗0Ck(K)⊕ i∗1Ck(K)

where q : Ck(K × I)→ Ck−1(K) is the map on chains defined on basis elements
by q(σ × I) = σ and q(σ × 0), q(σ × 1) = 0. Note that q is not a chain map, so
the summand q∗Ck−1(K) of Ck(K × I) is not closed under δ (see Figure 5).

The equation δo(S) = 0 in Cr+1(K × I, πr(F )) becomes

(24) i∗1S − i∗0S − δq∗d(s0, s1, h) = 0

for the cochain d(s0, s1, h) ∈ Cr(K,πr(F )) with value on the r-simplex σ < K
given (with some abuse of notation) by

(25) d(s0, s1, h)(σ) = [S|∂(σ×I)] ∈ πr(F ),

and i0, i1 : K → K × I are the two natural embeddings K → K × 0, K →
K×1. Thus we see that this obstruction cochain o(S) overK×I contains various
cochains we have studied before, and the equation δo(S) = 0 contains several
familiar equations. In particular, abusing notation in the same way as in (25), have
that

(26) o(s0)(σ) = [s0|∂σ] ∈ πr(F ), o(s1)(σ) = [s1|∂σ] ∈ πr(F ),

and therefore (24) is equivalent to

(27) o(s1)− o(s0) = δd(s0, s1, h)
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which is the equation that we need to prove statement (2c’) of §3.1, which com-
pletes the proof of Theorem 6: If s, s′ are sections over Kr, they are homotopic
over Kr−1 then o(s) and o(s′) are cohomologous.

Note that (29) gives us that o(s1) = o(s0), then d(s0, s1, h) is a cocycle. This
happens whenever s0, s1 are sections defined over all of K, since, for a section s
over K, o(s) = 0. This is needed for the proof of Proposition 10 below.

Moreover, if s0 = s1 on Kr−1, and h = h0, the constant homotopy, then, if we
let d(s0, s1) = d(s0, s1, h0), then (24) is the same relation we found in the claim
following Definition 4 relating the obstruction cochains and the difference cochain:

(28) δd(s0, s1) = o(s1)− o(s0),

thus giving us another proof of this equation.
Using these new equations and applying to S and K × I the same reasoning as

in the proof of Theorems 5 and 6 we get:

Proposition 10. Let s0, s1 be sections of E over K and let h be a homotopy be-
tween their restrictions to Kr−1. Then

(1) d(s0, s1, h) is a cocycle.
(2) Its cohomolgy class [d(s0, s1, h)] = 0 ∈ Hr(K,πr(F )) if and only if s0

and s1 are homotopic over Kr.
(3) For all c ∈ Hr(X,πr(F )) there exists a section s overKr such that s = s0

over Kr−1 and [d(s0, s)] = c.

Proof. Apply the proofs of Theorems 5 and 6 to K × I and the section S =
S(s0, s1, h). The only point that needs further explanation: in the third statement,
previous arguments give s over Kr with d(s0, s) = c. Since c is a cocycle, (28)
gives o(s) = o(s0) = 0, thus s extends to Kr+1

�

3.3.1. Maps to Eilenberg-McLane spaces. As an application, recall that, given a
finitely generated abelian group Π and an integer n ≥ 1, an Eilenberg-McLane
space K(Π, n) is a space Z with

πi(Z) =

{
0 if i 6= n,

Π if i = n.

We have seen the example S1 = K(Z, 1), it may be familiar that CP∞ = K(Z, 2),
RP∞ = K(Z/2, 1). By general principles it is known that K(Π, n) exists and is
unique up to homotopy equivalence. But it is rare to find a good model as in the
above examples.

The usual proof of existence is: the finitely generated abelian group Π is iso-
morphic to a direct sum Zk ⊕ C1 ⊕ · · · ⊕ Cl where, for i = 1, . . . , l, Ci is a finite
cyclic group of order di > 1. Forma a CW complex as follows:

(1) Take a single 0-cell e0.
(2) Take k + l cells of dimension n, e1

n, . . . e
k+l
n and attach them to e0 by the

only possible map ∂ein → e0, i = 1, . . . , k + l.
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(3) Take l cells of dimension n+1, e1
n+1, . . . e

l
n+1 and attach ein+1 to the image

of ek+i
n by a map ∂ein+1 → ek+i

n of degree di. The result is a space Z0 with
πi(Z0) = 0 for 0 ≤ i < n and πn(Z0) = Π, but have no knowledge of
πi(Z0) for i > n.

(4) Now attach cells of dimension n + 2 to get Z1 with πi(Z1) = 0 for 0 ≤
i < n and i = n + 1 and πn(Z1) = Π. Then attach n + 3 cells to get Z2

with πi(Z2) = 0 for 0 ≤ i < n and n < i ≤ n+ 2 keeping πn(Z2) = Π,
and so on. Then ∪kZk is a K(Π, n).

In particular, we see that K(Π, n) can be realized as a CW -complex Z with
n−1-skeleton Zn−1 consisting of a single point p0. We will make this assumption
from now on.

The following theorem says that, given any finite complex X , there is a one to
one correspondence between the set [X,K(Π, n)] of homotopy classes of maps
f : X → K(Π, n) and the cohomology group Hn(X,Π). In other words, the
space K(Π, n) represents the functor Hn( · ,Π). More precisely:

Theorem 8. Let Π be a finitely generated abelian group and let n ≥ 1.

(1) For any abelian groupA there is a natural isomorphismHn(K(Π, n), A) ∼=
Hom(Π, A).

(2) Let η ∈ Hn(K(Π, n),Π) correspond to the identity in Hom(Π,Π), and
let X and [X,K(Π, n)] be as above. Then the map [X,K(Π, n)] →
Hn(X,Π) defined by f → f∗η is a bijection.

Proof. For the first statement, by Hurewicz we haveHi(K(G,n),Z) = 0 for i < n
and the natural map πn(K(Π, n) → Hn(K(Π, n),Z) is an isomorphism. By the
universal coefficient theorem, for any abelian groupA, we haveHn(K(Π, n), A) ∼=
Hom(πn(K(Π, n)), A) ∼= Hom(Π, A).

For the second statement, note that maps f : X → K(Π, n) correspond to
sections s(x) = (x, f(x)) of the trivial bundle X × K(Π, n). We can use the
obstruction theory for homotopies of sections of Proposition 10: making an ob-
vious change of notation writing f intsead of the section s, we see first that, up
to homotopy, we may assume that any map f : X → K(Π, n) maps the (n − 1)-
skeletonXn−1 to the basepoint p0 (the (n−1)-skeleton of the above construciton of
K(Π, n)), so all maps agree on Xn−1. Proposition 10 imples that f0 is homotopic
to f1 overXn if and only if [d(f0, f1)] = 0 ∈ Hn(X,πn(K(Π, n))) = Hn(X,Π).

Now, for each n-simplex σ of X , d(f0, f1)(σ) is represented by the map of
the n-sphere ∂(σ × I) that agrees with f0 on σ × 0, with f1 on σ × 1 and maps
∂σ × I to p0 (see Figure 5). This element of πn(K(Π, n)) is obtained from two
maps of the n-sphere σ/∂σ, namely f0|σ and f1|σ as their difference in the group
πn(K(Π, n)) = Π, in other words,

(29) [o(f0, f1)(σ)] = [f1|σ]− [f0|σ] ∈ Π.

Now, our maps f : X → K(Π, n) factor X → X/Xn−1 → K(Π, n), for any
n-simplex σ, H([f |σ]) = f∗(σ) ∈ Hn(K(Π, n),Z), where H is the Hurewicz
homomorphism. Then, by definition, f∗η(σ) = η(f∗σ) = [f |σ]. Thus (29) is
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equivalent to
d(f0, f1) = f∗1 η − f∗0 η,

and Proposition 10 gives us that f0 is homotopic to f1 overXn if and only if f∗0 η =
f∗1 η, and every α ∈ Hn(X,Π) can be obtained as f∗η−f∗0 η for some f : Xn+1 →
K(Π, n). Since πi(K(Π, n)) = 0 for i > n, there are not further obstructions
to homotopies between f0 and f1 or to extension of f . Thus we can conclude
that the map f → f∗η is both injective and surjective as a map [X,K(Π, n)] →
Hn(X,Π). �

This theorem says that η is the “universal” n-dimensional cohomology class
with coeffcients in Π.

3.3.2. Maps to Spheres. The proof of the preceding theorem can be easily modi-
fied to give the following theorem of Hopf:

Theorem 9. Let M be a closed, oriented n-dimensional manifold, and let [M,Sn]
denote the set of homotopy classes of maps f : M → Sn. Then the map deg :
[M,Sn]→ Z is a bijection.

Proof. In dimensions ≤ n it is the same obstruction proof as in Theorem 8, with
Π = πn(Sn) = Hn(Sn) = Hn(Sn) = Z and η ∈ Hn(Sn,Z) a generator. Higher
obstructions now vanish because dim(M) = n. �

4. STIEFEL-WHITNEY CLASSES

We started our discussion of characteristic classes with the Euler class e(E)
of an oriented vector bundle E → X with fiber Rn. We saw that one possible
definition of e(E) :

e(E) ∈ Hn(X,Z) is the primary obstruction to finding a nowhere vanishing sec-
tion of E

This definition makes sense because it asks for a section of the associated bundle
E \ 0 with (n− 2)-connected fibre F = Rn \ 0 ∼ Sn−1 and πn−1(F ) = Z, so the
primary obstruction is indeed an element of Hn(X,Z).

In the same spirit the Stiefel-Whitney classes of E were originally defined as
follows:

For k = 1, . . . n, the kth Stiefel-Whitney class of E, wk(E), is the primary
obstruction to finding n−k+1 sections of E that are linearly independent at each
point.

This is a temporary definition to motivate Defiinition 6 below. As it stands,
wn(E) is the primary obstruction to finding n− n+ 1 = 1 sections of E indepen-
dent at each point, in other words, a nowhere vanishing section, while w1(E) is the
primary obstruction to finding n− 1 + 1 = n sections linealry indpendent at each
point, in other words, a trivialization. Thus, for now, wn(E) = e(E).

Let’s look at w1(E), the primary obstruction to finding n sections that form a
basis at each point. Equivalently, we want to find a section of the bundle of bases
of the fibers of E. The space of basis of Rn is homoemorphic to the GL(n,R), the
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space of iinvertible n by n matrices., which has two connected components given
by the sign of the determinant. Thus w1(E) is the primary obstruction to a section
of GL(E), the bundle associated to E with fiber GL(n,R).

We are in the situation of the first step of the procedure of §3: GL(E) has a sec-
tion s over the 0-skeleton, it can be be extended to a section over the one-skeleton if
and only if, for every one-simplex < x0, x1 >, det(s(x0))and det(s(x1)) have the
same sign. We are in the situation we previously avoided of considering π0, which
is, in general, not a group. but, in this case it is the multiplicative group {±1},
or, in additive notation, Z/2 that is, if and only if the cochain o(s) ∈ C1(K,Z/2)
defined by o(s) < x0, x1 >= 0 respectively 1 if det(s(x0),det(s(x1)) have the
same, respectively opposite signs, is the zero cochain. Then the general reasoning
of Theorem 5 gives us that GL(E) has a section over the one-skeleton if and only
if [o(s)] = 0 ∈ H1(K,Z/2).

Over the one-skeleton having a seciton ofGL(E) is the same as having a section
of SignDet(E), the associated bundle with fiber {±1} given by the sign of the
determiant. While the section s over the one-skeleton may not extend any further,
there are no further obstructions to extending SignDet(s). Thus we see that the
interpretaion of w1(E) = [o(s0] is:

(30) w1(E) ∈ H1(X,Z/2) and w1(E) = 0 if and only if E is orientable.

Now let’s see the interpretation of the classes wk(E) for 0 < k < n. They are pri-
mary obstructions to sections of associatied Stiefel bundles Stl(E) with fiber the
Stiefel manifold Stl(Rn) of l-frames in Rn, namely the manifold of collections of
l linearly independent vectors {v1, . . . , vkl} in Rn. Since we are only interested in
the homotopy type of the fiber we may assume that {v1, . . . , vl} form an orthonor-
mal set, since the Gram-Schmidt process deformation retracts the space Stl(Rn) of
independent l-tuples to the space of orthonormal ones, which we will denote Vn,l:

Definition 5. If 1 ≤ l ≤ n, the Stiefel manifold of orthonormal l frames in Rn is
the submanifold Vn,l of Rln defined by

Vn,l = {v1, . . . , vl : v1, . . . vl ∈ Rn and vi · vj = δi,j for all i, j}

Here l is a function of k (and n), to be determined by the requirement that Vn,l
be (k− 1)-connected. Thus we need to compute the first non-vanishing homotopy
group of Vn,l. Leaving the case of V1,1 = {±1} aside, the result is:

Theorem 10. For n ≥ 2 we have πi(Vn,l) = 0 if i ≤ n− l − 1 and

πn−l(Vn,l) =

{
Z if l = 1 or n− l is even ,
Z/2 otherwise.

Proof. First note that we just treated, in the discussion of w1, the space Vn,n =
O(n), the orthogonal group, which has two connected components, thus π0(Vn,n) =
Z/2 is the first non-vanishing homotopy group. So assume l < n and first note
that if v1, . . . , vl is orthonormal, there is a rotation matrix R ∈ SO(n) such that
vi = Rei for i = 1, . . . , l, where {ei : i = 1, . . . n} is the standard basis of Rn.
Thus, for l < n, Vn,l is a homogeneous space for the connected group SO(n),
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hence it is connected. The subgroup that leaves e1, . . . , el fixed is the subgroup,
isomorphic to SO(n− l) of rotations that are the identity on the first summand of
Rn = Rl ⊕ Rn−−l, and arbitrary on the second summand. Thus we have

(31) Vn,l = SO(n)/SO(n− l) for 1 ≤ l < n.

If l = 1 then Vn,1 = Sn−1, thus the first non-vanishing homotopy group is as
asserted in the theorem. So let’s assume 1 < l < n. Then we have two natural
maps;

(1) A fibration pl : Vn,l → Vn,l−1 taking v1, . . . , vl to v1, . . . , vl−1

(2) An injective map ιl : Sn−l → Vn,l taking v in the unit sphere of the second
summand of Rn = Rl−1 ⊕ Rn−l+1 to the frame e1, . . . , el−1, v in Vn,l.

Observe that the image of ιl is the fiber of p over the point {e1, . . . , el−1} ∈ Vn,l−1.
In other words, we have a fibration

Sn−l
ιl−→ Vn,l

pl

y
Vn,l−1.

(32)

The exact homotopy sequence of this fibration

(33) . . . −→ πi+1(Vn,l−1)
∂∗−→ πi(S

n−l)
(ιl)∗−→ πi(Vn,l)

(pl)∗−→ πi(Vn,l−1) −→ . . .

easily gives, by induction on l,

Lemma 2. (1) πi(Vn,l) = 0 for i < n− l.
(2) πn−l(Vn,l) is generated by the homotopy class of the map ιl : Sn−l → Vn,l

In particular, we get that πn−l(Vn,l) is a cyclic group and we get a very concrete
geometric description of a generator, namely the most obvious way of getting a
sphere of l-frames from a sphere of unit vectors..

It remains to determine the order of this cyclic group. To this end, look again at
the homotopy sequence (33) for i = n− l. We get

(34) πn−l+1(Vn,l−1)
∂∗−→ πn−l(S

n−l)
(ιl)∗−→ πn−l(Vn,l) −→ 0

The middle group is isomorphic to Z and the group we want is Z modulo the image
of the connecting homomorphism ∂∗

To do this, we have to compute the connecting homorphism. Recall how ∂∗([f ])
is defined on the homotopy class of a map f : Sm → B of the base space of
a fibration F → E → B: represent [f ] by a map (still called) f , of the disk,
f : Dm → B taking ∂Dm to the basepoint in B. Lift this to f̃ : Dm → E, then
f̃ |∂Dm maps ∂Dm to the fiber F over the basepoint. This map f̃ |∂Dm is a map
Sm−1 → B representing ∂∗([f ]).

Let us apply this to the fibration (32). Since we know, from Lemma 2, that
πn−l+1(Vn,l−1) is generated by the homotopy class of the map ιl−1 : Sn−l+1 →
Vn,l−1, we have to find ∂∗([ ˜ιl−1]). Following the above procedure, the map Sn−l →
Sn−l representing ∂∗([ ˜ιl−1]) that we get from the fibration (32) is the same as the
map that we obtain by resticiting this fibration to the image of ιl−1.
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The map Sn−l → Sn−l representing ∂∗([ ˜ιl−1]) that we get from the above pro-
cedure involves only the part of the ibration (32) that lies over the image of ιl−1,
in other words, we can replace (32) by the fibration ι∗l−1Vn,l over Sn−l+1 induced
from it by ιl−1.

Recalling that ιl−1 sends the unit vector v in the second summand of Rn =
Rl−2 ⊕ Rn−l+2 to the (l − 1)-frame frame e1, . . . , el−2, v, we see that all frames
involved in the fibration ι∗l−1Vn,l contain the fixed (l − 2)-frame e1, . . . el−2. Thus
this induced fibration is isomorphic to the fibration

Sn−l −→ Vn−l+2,2 Sm−2 −→ Vm,2y or
y

Sn−l+1 Sm−1.

(35)

by the map that assigns to each frame f the frame e1, . . . , el−2, f . In particular, the
image of ∂∗ in (34) is the same subgroup of πn−l(Sn−l) ∼= Z as the image of the
connecting homomorphism for (35).

We rewrote the fibration using m = n − l + 2 in order to simplify notation in
the next lemma:

Lemma 3. (1) The fibration (35) is the same as the fibration of the unit tangent
bundle T 1Sm−1 of Sm−1.

(2) For the fibration Sm−2 → T 1Sm−1 → Sm−1, the image of the connecting
homomorphism is (1 + (−1)m−1)Z ⊂ Z.

Proof. For the first statement, a tangent vector at x ∈ Sm−1 ⊂ Rm is a vector
y ∈ Rm perpendicular to x, thus Vm,2 = T 1Sm−1.

For the second assertion, use the procedure of computing the connecting homor-
phism πm−1(Sm−1) → πm−2(Sm−2) in the unit tangent bundle fibration: take a
map f : Dm−1 → Sm−1 that is diffeomorphic onto its image in the interior of
Dm−1 and sends ∂Dm−1 to a point. A lift f̃ : Dm → T 1Sm−1 is a unit tan-
gent vector field to Sm−1 over the complement of the basepoint, converging to a
mapping of ∂Dm to the fiber over the basepoint. By suitable scaling in the tan-
gent bundle this is equivalent to a vector field on Sm−1 with a single zero at the
basepoint, and with the local index at the basepoint generating the image of the
connecting homomorphism in πm−2(Sm−2) ∼= Z. By the Poincaré - Hopf theorem
this index is the same as χ(Sm−1) = 1 + (−1)m−1.

�

Putting all this together, we see that for 1 < l ≤ n, πn−l(Vn,l) = Z/(1 +

(−1)n−l−1)Z, finishing the proof of the theorem.
�

With this information, we can finish the definition of the Stiefel-Whitney classes
wk(E). If it iw to be a primary obstruction to findinf l sections linealy independent
at each point, then Theorem 10 tells us, first of all, that k = n − l + 1, that is,
l = n − k + 1 as we had asserted earlier. Moreover, the local coefficient system
πn−k+1(Stn−k+1(Rn)) has fiber either Z or Z/2. In either case there is a unique
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non-zero homomorphism

(36) r : πn−k+1(Stn−k+1(Rn))→ Z/2

(where Z/2 is the constant coefficient system) , namely reduction modulo 2.
Finally, here’s the definition:

Definition 6. Let E → X be a vector bundle with fiber Rn, let 1 ≤ k ≤ n, and
let ok(E) be the primary obstruction to finding n − k + 1 sections of E that are
linearly independent at each point x ∈ X . Then the k-th Stiefel - Whitney class of
E, wk(E) ∈ Hk(X,Z/2) is defined by wk(E) = r(ok(E)), where r is reduction
modulo 2 as in (36).
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