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DOMINGO TOLEDO

1. Outline

This will be a course on the topology and geometry of surfaces. This is
a continuation of Math 4510, and we will often refer to the notes for that
course [12]. We first recall the definition of a surface. The first two parts
are in Definition 6.1 of [12].

Definition 1.1. A topological space S is called:

(1) A topological surface if it is a Hausdorff space with a countable basis
and it has the property that every x ∈ S has a neighborhood U
which is homeomorphic to an open set in R2, in other words, there
exists a covering {Uα}α∈A for some index set A, and for each α ∈ A
there exists a homeomorphism φα : Uα → Vα, where Vα ⊂ R2 is
open. These homeomorphisms are called coordinate charts.

(2) A differentiable surface or a smooth surface if it is a topological
surface and the above homeomorphisms (or coordinate charts) can
be chosen to have the following property: whenever Uα∩Uβ 6= ∅, the

homeomorphism φα ◦ φ−1
β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ) is smooth.

The maps φα ◦ φ−1
β are called the transition maps between charts.

(3) A topological surface with boundary is a Hausdorff space S with a
countable basis with the property that every x ∈ S has a neighbor-
hood U and a homeomorphism φ : U → V where V is an open set
in R2

+ = {(x, y) ∈ R2 : y ≥ 0}.
(4) If S is a topological surface with boundary and x and φ are as in the

definition, the point x is called an interior point if φ(x) ∈ {(x, y) :
y > 0} and X is called a boundary point if φ(x) ∈ {(x, y) : y = 0}.

(5) A differentiable surface with boundary or smooth surface with bound-
ary is a topological surface with boundary in which all the transition
maps φα ◦ φ−1

β are smooth.

Remark 1.1. (1) The corresponding definitions in any dimension n, with
R2 replaced by Rn and R2

+ replaced by Rn+ = {(x1, . . . , xn) : xn ≥ 0}
are called topological or differentiable n manifolds, or topological or
differentiable n-manifolds with boundary.
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(2) It is true, but not trivial to prove, that the dimension n is a topo-
logical invariant. It is also true but not trivial to prove that home-
omorphisms take boundary points to boundary points and interior
points to interior points. This last fact we will be able to prove for
surfaces (n = 2) once we have the fundamental group.

(3) The conditions of Hausdorff and countable basis are needed for cor-
rectness of the definition, but it is not clear why they are required.
One equivalent formulation of these conditions is to require that S
be a metrizable space locally homeomorphic to the plane. I chose
the formulation above because may be easier to check. We will not
prove the equivalence of these two formulations, and for the most
part we will forget these conditions since they will be automatic in
the examples we consider.

Example 1.1. Here are some examples of smooth surfaces. A good reference
is the first chapter of [9]. In all these examples it will be clear that they
have a countable basis because Rn does, and all the examples are subspaces
or quotient spaces of subspaces of some Rn, so they still have a countable
basis. The Hausdorff property would be easy to check in each case.

(1) The sphere S2 ⊂ R3 defined by S2 = {(x, y, z) : x2 + y2 + z2 = 1}.
It is checked in Example 6.3 of [12] that S2 is a smooth surface.

(2) The torus T 2, that can be defined (up to homeomorphism, or up
to diffeomorphism) in one of three equivalent ways: as S1 × S1, as
the identification space R2/Z2, or as the identification space [0, 1]×
[0, 1]/((x, 0) ∼ (x, 1), (0, y) ∼ (1, y)). See Example 4.4 of [12] for
more details. In particular, the neighborhoods pictured in Figures
4.2 and 4.3 of [12] are homeomorphic to disks in R2, showing that
T 2 is a topological surface, and a bit more care shows that it is a
smooth surface.

(3) The Klein Bottle K of Definition 4.5 of [12], see Figure 4.4. It is
the identification space [0, 1] × [0, 1]/ ∼, where the identification is
(x, 0) ∼ (x, 1) and (0, y) ∼ (1, 1− y). Again it is a smooth surface.

(4) The Möbius bandM of Definition 4.6 of [12]: M = [0, 1]×[−1, 1]/((0, y) ∼
(1,−y)). This is an example of a surface with boundary.

(5) The disk D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and the cylinder C =
[0, 1] × [−1, 1]/((0, y) ∼ (1, y)) are other examples of surfaces with
boundary.

(6) The projective plane P 2 is defined to be the quotient of S2 by the
identification x ∼ −x. In other words, antipodal points on S2 are
identified. Points in P 2 are in one to one correspondence with lines
through the origin in R3, just as points in S2 are in one to one
correspondence with rays through the origin in R3. To check that
P 2 is a smooth manifold, let p : S2 → P 2 be the projection map, that



5520 NOTES 3

to x ∈ S2 assigns the antipodal pair {x,−x} ∈ P 2. The six sets U±z ,
U±y , U±x , where the corresponding coordinate has the corresponding

sign, used in Example 6.3 of [12] to cover S2 project to 3 sets that
cover P 2. Namely since every antipodal pair has a representative
(x, y, z) with one of x, y, z > 0, the ones with superscript + suffice.
Call their images under p Uz, Uy, Ux, and use the same formulas for
the transition maps to check that they are smooth.

(7) Another way to describe the projective plane P 2 is as follows: Let
S2

+ = {(x, y, z) ∈ S2 : z ≥ 0 and ∂S2
+ denote its boundary {z = 0}.

Consider the map f : S2
+ → P 2 obtained as the composition:

S2
+ ⊂ S2 → P 2.

Then f is surjective, it is injective on the interior of S2
+ and 2 to one

on its boundary. It induces a continuous bijection g : (S2
+/ ∼)→ P 2

where ∼ is the equivalence relation x ∼ −x for all x ∈ ∂S2
+. It is easy

to see that g is a homeomorphism (see Example 2.2 below), so we
get that P 2 is homeomorphic to a hemisphere with antipodal points
on its boundary identified. Since a hemisphere is homeomorphic to
a disk, we get the final description: P 2 is homeomorphic to a disk
with antipodal points on its boundary identified.

(8) The surface of genus 2 is defined at the end of §4 of [12] as an
identification space of an octagon, see Figure 4.6 and the pictures on
pp. 300–301 of [6], to justify that the following identifications give
the picture of a surface “of genus two” or “with two holes”.

a1

b1 a1

b1

a2

b2a2

b2

Figure 1.1. Surface of Genus Two

(9) Presenting a surface as a quotient of a polygon: Before we define the
surface of genus g, we explain a convenient notation for describing
the quotient space of a polygon by identifying the of edges of its
boundary in pairs, using Figure 1.1 as an example. We choose a
direction around the perimeter of the polygon, say clockwise, label
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the edges to be identified with the same letter, draw similar arrows
on each of the two edges that are identified indicating how they are
identified: a monotone map identifying tail with tail. Move around
the perimeter and write down the symbols for the edges, either a
letter, if you travel in the same direction as the arrow, or its inverse,
if you travel in the opposite direction. Thus the identification in
Figure 1.1 could be written as

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 ,

while the identifications in the boundaries of the following four squares,
running counterclockwise from the bottom, can be written as

aba−1b−1 gives T = torus T 2

aba−1b gives K = Klein bottle

abb−1a−1 gives S = sphere S2

abab gives P = projective plane P 2

Figure 1.2. Four Surfaces as quotients of the square

(10) Checking that the quotient space is a surface requires finding for each
point in the identification space a neighborhood homeomorphic to
an open set in R2, say, a disk. Disk neighborhoods are immediate
for any point in the interior of the polygon. For boundary points
that are in the interior of an edge a set that projects to a disk in the
quotient space is illustrated in the first picture of Figure 1.3. For the
vertices we have to check how many distinct ones there are in the
quotient space. In the case of the octagon for the genus two surface
all the vertices go to a single point in the quotient space, and set
that projects to a disk neighborhood in the quotient space is as in
the second picture of Figure 1.3

Observe that the parts of the neighborhood of an interior point
of an edge fit not only topologically, but also geometrically, into a
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Figure 1.3. Identification Space is Locally Homeomorphic
to the Plane

disk in the plane, while the parts of the neighborhood of the vertex
only fit topologically to a disk. Observe also that figures 4.2 and 4.3
of [12] show that boundary points in the square project to points in
the identification space with a disk neighborhood. In that case, even
the parts of the neighborhood of the vertex fit geometrically into
a disk. The significance of this topological versus geometric fitting
will become clear later, in Section 9.3. A good exercise would be to
find the corresponding neighborhoods for the remaining pictures in
Figure 1.2 (those labeled K, S, P ).

(11) Finally we define, for any g ≥ 1, the surface of genus g, denoted by
Σg, to be the quotient space of a regular 4g-gon by the identification
labeled

(1.1) a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · agbga
−1
g b−1

g ,

generalizing the identification of Figure 1.1 in the obvious way. We
will write Σ0 for the sphere S2 and note that Σ1 is the same as the
torus T 2. Thus Σg is defined for g = 0, 1, 2, 3, . . . .

Our task is to understand surfaces both topologically and geometrically.
We will restrict ourselves mostly to compact, connected surfaces (without
boundary). We will review compactness in the next section, and connect-
edness was discussed in Section 5 of [12]. We will also need the concept of
orientability, which is difficult to define precisely. This will be our temporary
definition:

Definition 1.2. A surface S is non-orientable if it contains a Möbius band
M , meaning that there is a continuous map φ : M → S which is a homeo-
morphism onto its image. Otherwise, S is called orientable.

Example 1.2. (1) The Klein bottle K is not orientable. In its description
in (3) of Example 1.1, the projection to K of the the set [0, 1]× [1

4 ,
3
4 ]

is homeomorphic to M .

(2) The projective plane P 2 is not orientable. If we describe P 2 as in (7)
of Example 1.1, as the disk D = {x2 + y2 ≤ 1} with identification
(x, y) ∼ (−x,−y) for x2 +y2 = 1, then the projection to the quotient
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space of the set 1
2 ≤ x

2 +y2 ≤ 1 is a Möbius band (see the homework
problems).

(3) The sphere S2 is orientable. This is a reasonable statement, but it
is not clear how to prove it rigorously.

(4) More generally, the surfaces Σg, g = 0, 1, 2, . . . of (11) of Example 1.1
are orientable. We will be able to prove this later once we have the
concept of fundamental group and can reduce the problem to a more
tractable one.

We will (partially) prove the following theorem:

Theorem 1.1. Every compact, connected, orientable surface is homeomor-
phic to Σg for some g = 0, 1, 2, . . . . Moreover, if Σg is homeomorphic to Σh,
then g = h.

Figure 1.4. The Surfaces Σg

There is a more comprehensive theorem which includes the non-orientable
surfaces. This is best stated in terms of connected sum of surfaces. See p. 8
of [9] for a definition of the connected sum operation S1 # S2 of surfaces.

Whenever we use this operation we have to keep in mind that it depends
on choices: choose a disk in each surface, and a homeomorphism between
their boundaries. It turns out the any choices of these three ingredients
gives a homeomorphic result. Thus connected sum is an operation on home-
omorphism classes of surfaces. In fact, in our discussion of classification of
surfaces we will always identify homeomorphic surfaces. Connected sum is
a commutative, associative operation with unit S2, but no inverses.

We have that Σg # Σh = Σg+h, in particular, Σg = T 2# . . .#T 2 (g
summands). Thus every Σg, g ≥ 1, is homeomorphic to a connected sum of
tori, see Figure 1.4.

Theorem 1.2. Every compact, connected surface is homeomorphic to S2 or
to a connected sum of tori or to a connected sum of projective planes.



5520 NOTES 7

1.1. Summary of Geometric and Topological Classification. This
topological classification is only part of the story. We also want a geo-
metric classification and how it interacts with the topological one. We will
state the classifications that we have in mind in the following table. For
simplicity only orientable surfaces are considered. Observe that the surfaces
are divided into three classes, one contains only the sphere S2, one only the
torus T 2, and the third class contains all the others. (For non-orientable
surfaces, add P 2 to the first class, K to the second, and all others to the
third class).

Surface Σ0 Σ1 Σ2,Σ3, . . .
genus g 0 1 2, 3, . . .
Euler characteristic χ 2 0 −2,−4, . . .
Fundamental Group π1 {e} Z2 non-abelian group
Natural Geometry Spherical Euclidean Hyperbolic
Its Gaussian Curvature 1 0 −1
Universal Cover S2 R2 Hyperbolic Plane H2

Isometries of Univ. Cover O(3) E(2) PGL(2,R)

The purpose of the course is to explain all undefined terms in this table
and to explain how they are related. A major goal will be to understand
the Gauss-Bonnet Theorem that unifies geometry and topology. It says that
for any geometry on the surface (to be defined more precisely), its Gaussian
curvature function K and the topology of the surface are related by the
formula

(1.2)

∫
S
K dA = 2πχ(S),

where χ(S) is the Euler characteristic that appears in the above table.

2. Compact Spaces

This section is a quick look at material that should have been in Math
4510 but was not covered there by lack of time.

Definition 2.1. Let X be a topological space.

(1) An open cover of X is a collection {Uα}α∈A of open sets, indexed by
some set A, so that X = ∪α∈AUα.

(2) The space X is called compact if every open cover of X has a finite
sub-cover, in other words, there exists a finite subset {α1, . . . , αn} ⊂
A so that X = Uα1 ∪ · · · ∪ Uαn .

Remark 2.1. Often the definition is applied to a subspace X of a topological
space Y , in the subspace topology. Using the definition of subspace topology,
it is easy to see that the definition of compactness of X is equivalent to the
following:
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(1) An open cover ofX is a collection {Uα}α∈A of open sets in Y , indexed
by some set A, so that X ⊂ ∪α∈AUα.

(2) The space X is called compact if every open cover of X has a finite
sub-cover, in other words, there exists a finite subset {α1, . . . , αn} ⊂
A so that X ⊂ Uα1 ∪ · · · ∪ Uαn

Example 2.1. It is not easy to give non-trivial examples of compact spaces,
but it is easy to find non-compact ones.

(1) A finite space is compact.
(2) Any indiscrete space is compact: there are only two open sets.
(3) An infinite discrete space is not compact. For example, Z is not

compact; the collection {n : n ∈ Z} if singleton subsets is an open
cover with no finite sub-cover.

(4) R is not compact: the collection {(−n, n) : n ∈ N} of open sets
covers R but has no finite sub-cover.

A non-trivial example of a compact space is:

Theorem 2.1. The inverval [0, 1] is compact.

Proof. We give a quick sketch of the proof, which has to depend on the com-
pleteness of R. Assume, to get a contradiction, that U = {Uα}α∈A is a cover
of [0, 1] with no finite subcover. Divide [0, 1] into two equal subintervals:
[0, 1] = [0, 1

2 ] ∪ [1
2 , 1]. Then at least one of these two subintervals cannot be

covered by any finite subcollection of U , choose this interval and call it I1.
Repeat the process: divide I1 into two equal subintervals, choose one, called
I2, that is not covered by any finite subcollection of U , and so on. In this
way we get a sequence I1 ⊃ I2 ⊃ I3 ⊃ . . . where the length of Ii = 2−i → 0.
Writng Ii = [ai, bi] we have

a1 ≤ a2 ≤ a2 ≤ · · · ≤ b3 ≤ b2 ≤ b1.

Let a = sup{a1, a2, . . . }. Since every bi is an upper bound for {a1, a2, . . . },
we have a ≤ bi for all i, in other words, a ∈ ∩iIi. In fact, since the length
of Ii converges to 0, {a} = ∩iIi. Pick α so that z ∈ Uα. Since ai → a and
bi → a, there exists an i0 so that Ii ⊂ Uα for all i ≥ i0. But this contradicts
the fact that no finite subcollection of U can cover Ii. �

2.1. Formal Properties of Compactness. We list some easy but very
useful properties of compactness:

(1) Compactness is a topological property: if X and Y are homeomor-
phic, then X is compact if and only if Y is compact.

(2) The continuous image of a compact space is compact: If f : X → Y
is continuous and surjective, and X is compact, then Y is compact.
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Proof: If {Uα}α∈A is an open cover of Y , then {f−1(Uα)} is an open
cover of X, take a finite subcover indexed by {α1, . . . , an} ⊂ A, then
Uα1 , . . . Uαn covers Y .

(3) If X is a metric space and K ⊂ X is compact, then K is closed and
bounded.

Proof: To show bounded, take any x ∈ X and use the open cover
{B(x, n)}n∈N. For closed, prove X\K is open by choosing any x /∈ K
and using the cover of X \ {x} by the open sets {y : d(x, y) > 1

n},
n ∈ N.

(4) If X is compact and f : X → R is continuous, then f has a maximum
and a minimum: there exist x1, x2 ∈ X so that f(x1) ≤ f(x) ≤ f(x2)
for all x ∈ X.

Proof: By (2) f(X) ⊂ R is compact, and by (3) it is bounded, so
sup f(X) and inf f(X) exist, and f(X) is closed, so sup f(X) ∈ f(X)
and inf f(X) ∈ f(X).

2.2. Other useful properties of compactness.

Theorem 2.2. (1) If X is compact and F ⊂ X is closed, then F is
compact.

(2) If X is Hausdorff and K ⊂ X is compact, then K is closed.

Proof. For the first part, if U = {Uα} is an cover of F by open sets in X,
then {X \ F )} ∪ U is an open cover of X, so it has a finite sub-cover, and
the sets in it other than X \ F cover F .

For the second part, to prove that X \K is open, choose x /∈ K. Since
X is Hausdorff, for each y ∈ K there exists a neighborhood Uy of x and a
neighborhood Vy of y so that Uy ∩ Vy = ∅. Then {Vy}y∈K is an open cover
of K. Since K is compact, there is a finite sub-cover Vy1 , . . . Vyn . Then
Uy1 ∩ · · · ∩ Uyn is a finite intersection of open sets, hence open, contains x
and is disjoint from K (check this!), so X \K is open. �

Remark 2.2. The assumption that X is Hausdorff is essential to the second
part of the Theorem. An example would be the space (R, Z) = R with the
Zariski topology of [12] Example 3.14. If A ⊂ R is any subset, then it is
compact (check this!), but an infinite subset other than R is not closed.

Here are some useful corollaries to the Theorem:

Corollary 2.1. Suppose f : X → Y is continuous, X is compact, and Y is
Hausdorff. Then

(1) f is a closed map.
(2) If f is also surjective, then f is an identification.
(3) If f is also bijective, then f is a homeomorphism.
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Proof. For the first part, if F ⊂ X is closed, then F is compact, so f(F ) ⊂ Y
is compact. Since Y is Hausdortt, f(F ) is closed, so f is a closed map. For
the third part, recall that a closed continuous bijection is a homeomorphism:
f−1 exists and if F ⊂ X is closed, then (f−1)−1(F ) = f(F ) is closed, so f−1

is continuous and f is a homeomorphism. For the second part, for f to be
an identification Y must have the quotient topology, which means (since f
is continuous) that for A ⊂ Y , if f−1(A) is closed then A is closed. Since f
is surjective, f(f−1(A)) = A, and f is a closed map, A is closed whenever
f−1(A) is. �

Example 2.2. Let us look in more detail at the presentation of the projective
plane in part (7) of Example 1.1. The map g : (S2

+/ ∼)→ P 2 defined there
is continuous and bijective. Since S2

+ is compact, so is its continuous image
S2

+/ ∼, and P 2 is Hausdorff. So g is a homeomorphism as asserted.

Another useful fact:

Theorem 2.3. Suppose X and Y are compact topological spaces. Then
X × Y is compact.

Proof. See pp. 168–170 of [10] for the proof. �

This, together with Theorem 2.1, gives us a large number of examples of
compact spaces:

Corollary 2.2. (The Heine–Borel Theorem) Let A ⊂ Rn be closed and
bounded. Then A is compact.

Proof. By Theorem 2.1, [0, 1] is compact, so is any interval [a, b] ⊂ R, so is
any product [a1, b1]×· · ·× [an, bn] ⊂ Rn (using Theorem 2.3 inductively). If
A is bounded, then it is a subset of some such product. If, in addition, A is
closed, being a closed subset of a compact space it is compact.

�

3. Topological Classification of Surfaces

We start on the proof of Theorems 1.1 and 1.2. We will need some tools
that are useful in many other contexts.

3.1. Triangulations. We give two definitions of triangulation of a surface.
For simplicity, we will consider only compact surfaces. The first definition
follows p.16 of [9]:

Definition 3.1. Let S be a compact surface (or a compact surface with
boundary). A triangulation of S is a decomposition S = T1 ∪ · · · ∪ Tk
satisfying the following conditions:
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(1) Each Ti is a closed subspace of S and for each i there is a homeomor-
phism φi : T ′i → Ti where T ′i ⊂ R2 is a triangle. The images under
φi of the vertices, respectively edges, of T ′i are called the vertices,
respectively edges, of Ti.

(2) If i 6= j, Ti ∩ Tj is either empty, or is a common vertex of Ti and Tj ,
or is a common edge of Ti and Tj .

This definition says that S is decomposed into simple pieces, and puts a
strong restriction on how these pieces intersect. Certain types of intersection
are allowed, others are not, see Figure 3.1

Figure 3.1. Intersections of two Triangles

Example 3.1. (1) Take the boundary of a regular tetrahedron in R3. It
is homeomorphic to S2, and the images under this homeomorphism
of the four triangles give a triangulation of S2. Similarly, the octa-
hedron and the icosahedron give triangulations of S2, with 8 and 20
triangles respectively.

(2) Figure 3.2 gives two decompositions of the torus T 2 into triangles,
the first is not a triangulation, the second one is. In the first picture
we have drawn in some detail how half of the identification space
goes onto the top half of the usual torus of revolution in R3 and
what resulting decomposition into triangles. In the picture in R3

you can see, for example, how the vertices 3 and 4 are joined by
two edges, going around a circle in the torus. In fact, every pair of
vertices in this decomposition is joined by two edges.

The condition on intersections in Definition 3.1 says that the vertices
determine the triangle (this fails in the first decomposition of Figure 3.2).
What this means is that a triangulation is partly a purely combinatorial
object. This has been formalized into a very useful concept that we define
next. For simplicity we only consider the finite situation.

Definition 3.2. (1) A (finite) simplicial complex is a finite set K, whose
elements are called vertices, and a collection of non-empty subsets
of K called simplices, satisfying the following conditions:

(a) Every vertex v ∈ K, the set {v} ⊂ K is a simplex.
(b) If σ ⊂ K is a simplex and τ ⊂ σ, τ 6= ∅, then τ is a simplex.
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Figure 3.2. Decompositions of the Torus into Triangles

Terminology: If σ = {v0, . . . vk} ⊂ K is a simplex, then v0, . . . vk are
called the vertices of σ and k is called the dimension of σ. The
dimension of K is the maximum dimension of its simplices. We
usually use the bracket notation < v0, . . . , vk > to indicate that a
subset is a simplex.

(2) If K is a simplicial complex, its geometric realization |K| is the
following space. First, let RK denote a real vector space with one
basis element for each v ∈ K. If K has m elements, this space
is isomorphic to Rm, and in it we can take linear combinations of
vertices with real coefficients.
(a) If σ =< v0, . . . , vk > is a simplex, let |σ| = {t0v0 + . . . , tkvk :

t0, . . . , tk ≥ 0, t0 + . . . tk = 1} ⊂ RK .
(b) Let |K| = ∪{|σ| : σ a simplex in K} ⊂ RK .

This definition is hard to visualize because we have used a vector space
RK of dimension the cardinality of K, so we would not be able to easily
visualize the definition except when K has only three elements (as we will
do next). But this is just a device of going from combinatorics to topological
spaces in a well-defined way. Notice that the first part of the definition is
purely combinatorial, talking about finite sets and some of their subsets,
and that the second part produces a topological space from the data of the
first part.

Example 3.2. Suppose K = {1, 2, 3} is a set with three elements and we
make it into a simplicial complex by requiring that the simplices are

< 1, 2 >,< 1, 3 >,< 2, 3 >,< 1 >,< 2 >,< 3 > .

It is easy to check that this collection satisfies the definition of a simplcial
complex. To form its geometric realization, form a vector space with basis
e1, e2, e3. This is the standard R3, and the three one-dimensional simplices
have geometric realization the segments e1e2, e1e3 and e2e3. Thus |K| is
the boundary of a triangle, homeomorphic to a circle. See Figure 3.3
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Figure 3.3. Geometric Realizations

Example 3.3. Note that in the preceding example the simplices are precisely
the proper subsets of K. If we change the definition of the complex to include
also the whole set < 1, 2, 3 > as a simplex, then its geometric realization is
a triangle | < 1, 2, 3 > | = {t1e1 + t2e2 + t3e3 : t1, t2, t3 ≥ 0, t1 + t2 + t3 = 1},
or, in more usual terms, {(x, y, z) : x, y, z ≥ 0, x+y+z = 1}, see Figure 3.3.

Example 3.4. Extending the last two examples, let’s define for n = 0, 1, 2, . . .
the simplicial complex

σn = {0, 1, . . . , n}, all subsets are simplices,

called the n-dimensional simplex, and, for n = 1, 2, 3, . . . , the simplicial
complex

∂σn = {0, 1, . . . , n}, simplices are the proper subsets,

called the boundary of the n-simplex. Then |σn| is the geometric n-dimensional
simplex {(t0, t1, . . . , tn) : ti ≥ 0, t0+· · ·+tn = 1}, while |∂σn| is its boundary,
an (n− 1)-dimensional space homeomorphic to the unit sphere Sn−1 in Rn.
For n = 0, 1, 2, 3, we have that |σn| is a point, interval, triangle (as in Ex-
ample 3.3), solid tetrahedron, ... , while for n = 1, 2, 3, |∂σn| is two points,
three segments forming the boundary of a triangle as in Example 3.2, the
boundary of a tetrahedron. We see in all these examples that applying Def-
inition 3.2 gives |σn| and |∂σn| as subspaces of Rn+1. Looking more closely,
we see that they actually lie in the affine-linear subspace (hyperplane) where
the sum of the coordinates is 1, which is isomorphic to Rn, so we actually
get subspaces of Rn as they should be. But the realization in Rn+1 is more
symmetric, therefore, in some sense, more natural.

Remark 3.1. There is an alternative way of defining the geometric realization
|K| of a simplicial complex K without using the vector space RK . We could,
for each simplex σ =< v0, . . . .vk > define its geometric realization |σ| as in
(2a) of Definition 3.2. This only requires a vector space of dimension k+ 1,
which can be visualized for k small, say for surfaces. Think of all these
geometric realizations σ, for all simplices σ ⊂ K as disjoint, and form the
following space

(tσ⊂K |σ|)/ ∼
where ∼ is the following equivalence relation: if τ ⊂ σ, identify x ∈ |τ | with
f(x) ∈ |σ| where f : |τ | → |σ| is the linear map that sends each vertex in
|τ | to the vertex with the same name in |σ|. There is a map from this space



14 TOLEDO

to |K| ⊂ RK by sending each vertex of each |σ| to the basis element with
the same name in RK and extending by linearity. This gives a continuous
bijection

(tσ⊂K |σ|)/ ∼→ |K|
hence a homeomorphism. This can be visualized, for the simplicial complex
with 4 vertices 0, 1, 2, 3 and two simplices < 0, 1, 2 >,< 0, 2, 3 > as in
Figure 3.4, where the arrows represent the identification maps f defined
above.

Figure 3.4. Assembling the Geometric Realization

Another reason for using the high-dimensional vector space RK in the
definition of the geometric realization of K (or the alternative definition in
the remark above), is to make the following Lemma clear. This Lemma says
that the combinatorics completely determines the geometry, in the sense
that the intersections of the geometric simplices in RK correspond to the
intersections of the sets of vertices.

Lemma 3.1. Let K be a simplicial complex and let σ, τ be simplices in K.
Then |σ|∩ |τ | is empty if and only if σ∩τ = ∅. Otherwise σ∩τ is a simplex,
and in this case |σ| ∩ |τ | = |σ ∩ τ |.

Proof. Let σ =< v0, . . . , vk > and τ =< w0, . . . , wl > where v0, . . . , vk ∈ K
are distinct vertices, w0, . . . , wl ∈ K are distinct vertices, but of course the
two sets may intersect. Recall that for a point x ∈ RK we have that

x ∈ |σ| if and only if x = Σk
i=0 tivi where ti ≥ 0 and Σti = 1,

and similarly

x ∈ |τ | if and only if x = Σl
i=0 sjwj where sj ≥ 0 and Σsj = 1.

Suppose first that σ∩τ = ∅. Then the set v0, . . . , vk, w0, . . . , wl is linearly
independent (being part of a basis), so if x ∈ RK is in |σ| ∩ |τ |, since it
is of both the above forms, linear independence would imply that all the
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coefficients ti, sj are 0, but this is impossible since they each sum to 1. So
|σ| ∩ |τ | = ∅.

Suppose σ ∩ τ 6= ∅. Order the vertices of σ and of τ so that v0 =
w0, . . . , vm = wm and σ ∩ τ =< v0, . . . , vm >=< w0, . . . , wm >. If x ∈
|σ|∩|τ |, then x is a linear combination of both of the displayed forms. By the
linear independence of the set v0, . . . , vm, vm+1, . . . , vk, wm+1, . . . , wl (listing
all vertices without repetitions), all coefficients of vm+1, . . . , vk, wm+1, . . . , wl
must vanish, so x must be a linear combination (and with non-negative
coefficients adding to one) of the common basis vectors v0, . . . vm, in other
words, |σ| ∩ |τ | = |σ ∩ τ | as desired. �

We are know in a position to define “triangulation” of any topological
space, not just a surface.

Definition 3.3. Let X be a topological space. A triangulation of X means
a homeomorphism φ : |K| → X for some simplicial complex K.

If S is a compact surface, this definition says that a triangulation of
S is a homeomorphism φ : |K| → S for some two-dimensional simplicial
complex K. This looks like a more precise version of Definition 3.1. It
will be instructive to show that both definitions of triangulation of S are
equivalent.

3.1.1. Equivalence of the two definitions. To see the equivalence, assume
that we have a homeomorphism as in Definition 3.3. Then |K| = |σ2

1|∪ · · ·∪
|σ2
k|, where σ2

1, . . . , σ
2
k are the two-dimensional simplices of K. Each |σ2

i | is
homeomorphic to a triangle in R2, and if i 6= j, then σ2

i ∩σ2
j is either empty,

or a one element set < v >, where v is a common vertex, or a two element
subset < v0, v1 > where v0, v1 are common vertices, hence < v0, v1 > is a
common edge. Then Lemma 3.1 tells us that |σ2

i | ∩ |σ2
j | is either empty, or

| < v > |, or | < v0, v1 > |. If we write S = φ(|σ2
1|) ∪ · · · ∪ φ(|σ2

k|), then the
sets Ti = φ(|σ2

i |) give a triangulation in the sense of Definition 3.1.

Conversely, suppose that we have a triangulation S = T1,∪ · · · ∪ Tk and
φ : T ′i → Ti as in Definition 3.1. Then there is a well-defined collection of
vertices in S. Call a point v ∈ S a vertex if it is the image of a vertex of
some T ′i under the corresponding φi. The second condition of Definition 3.1
implies that if v is a vertex of Ti and is a point of Tj , then it is also a vertex
of Tj , so the meaning of vertex is well-defined, independent of the triangle
Ti used to define it. The same is true of edges: a pair of vertices determines
an edge if they are the vertices of an edge of some Ti, and if they are also
vertices of another Tj , they determine the same edge in Tj . Said in another
way, the triangles and edges in S are uniquely determined by their vertices,
and the inclusions are correct.

Another way of saying this is that, first, if we let K be the collection of
vertices in S and call a subset of K a simplex if and only if its elements are
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either a single vertex, the vertices of an edge, or the vertices of a triangle,
then K is a simplicial complex. To see that there is a homeomorphism from
|K| to S, let us consider first the identification space used by Massey on
p.19 of [9]. Let us use the symbol t (instead of ∪) to denote disjoint union,
meaning that we are taking a union of disjoint sets. Let

T ′ = T ′1 t T ′2 t · · · t T ′k
and define a map Φ : T ′ → S by letting Φ(x) = φi(x) if x ∈ T ′i . This is a
continuous map since the spaces T ′i are, by assumption, disjoint, and φi is
continuous in T ′i , It is surjective, but of course not a homeomorphism since
T ′ has many connected components. In fact, it is not injective, since each
point on an edge in S has two pre-images, and every vertex in S has several
pre-images. Next, we define an equivalence relation ∼ on T ′ by declaring
x ∼ y if and only if x ∈ T ′i , y ∈ T ′j and φi(x) = φj(y). Then we get a
commutative diagram

(3.1)

T ′ = T ′1 t · · · t T ′k
Φ - S

T = T ′/ ∼

p

?

φ

-

The map φ defined by this diagram is, by construction, bijective, and, by
definition of quotient topology, continuous (see Theorem 4.6 of [12]). Since
it is a continuous bijection of a compact space to Hausdorff space, by Corol-
lary 2.1 it is a homeomorphism.

The informal way of stating what we have just proved is that S is obtained
from the disjoint union of the triangles T ′i by gluing them along edges.

Finally we bring in the simplicial complex K. Suppose < v0, v1, v2 >
is a simplex in K. then v0, v1, v2 are the vertices of a unique triangle Ti
is S, which is the image of a triangle T ′i ⊂ R2. Let v′o, v

′
1, v
′
2 > be the

corresponding vertices of T ′i . Define a map ψi : | < v0, v1, v2 > | → Ti
by sending each vertex to the corresponding one and then extending by
linearity, namely:

ψi(t0v0 + t1v1 + t2v2) = t0v
′
0 + t1v

′
1 + t2v

′
2,

where, of course, t0, t1, t2 ≥ 0 and t0 + t1 + t2 = 1. Observe that v0, v1, v2 are
basis elements in the space RK where |K| lies, and the linear combinations
in the left hand side are in the vector space RK . The linear combination in
the right hand side is in a Euclidean plane R2 where T ′i lies. Since we are
regarding the T ′i as disjoint, we could think of a different Euclidean plane
for each i.

We can define a map F : |K| → S by F (x) = φi ◦ψi(x) if x ∈ |σ2
i |, where

σ2
i is the simplex of K formed by the vertices of Ti ⊂ S. It is now easy to
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check that this map is well-defined, is bijective, and is continuous on each
|σ2
i |, hence it is continuous. Again, since it is a continuous bijection from a

compact space to a Hausdorff space, it is a homeomorphism. Hence the two
definitions of triangulation agree.

We could summarize the construction of the map F by the following
diagram:

(3.2)

|σ2
1| t · · · t |σ2

k|
Ψ = tψi- T ′ = T ′1 t · · · t T ′k

Φ - S

|K|

pK

? ψ - T ′/ ∼

pT ′

?

φ

-

The map F we have just defined is the composition φ ◦ ψ, where ψ is
defined by this diagram: the upper right hand map Ψ = tψi is the map
whose restriction to each |σ2

i | is ψi : |σ2
k| → T ′i . The vertical maps pK ,

pT ′ are identification maps, and the map Ψ preserves identifications and
descends to a map as shown.

Remark 3.2. It is worth looking in more detail at the meaning of triangula-
tion. Looking first one dimension lower, if we consider the example of the
circle S1 divided into two arcs by two vertices v1, v2, then the abstract sim-
plicial complex defined by the vertices is σ1, thus its geometric realization
is an interval. We can defined maps |σ1| → S1 by mapping the interval to
either arc, but neither of these maps is surjective. To triangulate S1 we need
at least three vertices, and the complex ∂σ2 gives of course a triangulation
with three vertices.

In checking if a decomposition of a surface is a triangulation, it helps to
keep in mind that a circle requires at least three vertices. If we look at the
decomposition of T 2 in Figure 3.2 we immediately see several topological
circles with only two vertices, so this tells us immediately that this is not a
triangulation.

Another remark: if we examine the abstract simplicial complex formed
by the vertices of the decomposition of the torus in Figure 3.2, we see that
it is actually ∂σ3, namely all proper subsets of a 4-element set (except that
each subset of cardinality 1 or 2 appears twice). The geometric realization
of ∂σ3 is topologically S2 which is topologically quite different from T 2.

3.2. Triangulability of Surfaces. Not every topological space can be tri-
angulated. For example, since we have assumed that our simplicial com-
plexes K are finite, their geometric realizations |K| are compact (being a
finite union of the compact subspaces |σ|). There are more restrictions, for
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example any geometric realization |K| is locally connected. But the fol-
lowing theorem is true, although tedious to prove, and we will not prove it
here:

Theorem 3.1. Let S be a compact surface. Then S can be triangulated.

We will assume this theorem in deriving the topological classification of
surfaces. Since we are not going to prove it, we should, strictly speaking,
add the hypothesis “triangulable” to any theorem that we prove assuming
this one.

Example 3.5. In addition to the triangulations we have already shown for
S2 and T 2, there is a well-known triangulation of P 2, with six vertices,
illustrated in Figure 3.5. Note that there are many topological circles in
this triangulation, each divided into 3 segments.

Question: If p : S2 → P 2 is the quotient map, what is the triangulation
p−1(K) of S2?

Figure 3.5. A Triangulation of P 2

3.3. The Euler Characteristic. If K is a simplicial complex, let fi be
the number of simplices of dimension i. The Euler characteristic of K is
defined to be the number χ(K) = f0−f1 +f2−· · ·+(−1)dfd, where d is the
dimension of K. Thus χ(K) is the alternating sum of the number of “faces”
of K of each dimension.

If K is two-dimensional, the numbers fi are usually denoted V = f0, E =
f1 and F = f2, for the number of vertices, edges and faces respectively. This
number turns out to have enormous geometric and topological significance.
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It turns out to be a topological invariant of |K|. In particular, if S is a
surface and K is a triangulation of S, then χ(K) turns out to depend only
on S. We will give an indirect proof of this fact later on. Even though we
cannot totally justify that the following definition is correct, we record the
terminology in the following definition. We will not used the unproved fact,
but in computations we will often say χ(S) rather than χ(K).

Definition 3.4. If S is a compact surface, and K is a two dimensional sim-
plicial complex that triangulates S, the Euler characteristic of K, denoted
χ(K), is the number χ(K) = V −E+F . (Fact: all triangulations K of S give
the same value for χ(K), and χ(S) is defined to be χ(K) for a triangulation
K of S).

Example 3.6. (1) If S = S2 triangulated as ∂σ3, the boundary of a tetra-
hedron, then V = 4, E = 6 and F = 2, so χ(∂σ3) = 2 = χ(S2). Ac-
tually, Euler proved that for any triangulation of S2 as the boundary
of a convex polyhedron, χ = 2, hence the name Euler Characteristic.
Check that for the octahedral and icosahedral triangulations of S2

we also get χ = 2.
(2) Using the triangulation of Figure 3.2, we see that χ(T 2) = 2.
(3) Using the triangulation of Figure 3.5 we see that χ(P 2) = 1. Is

there another way of seeing this by using the identification map
p : S2 → P 2?

For a triangulation K of a surface the numbers V , E and F are not
independent. We have the following fact:

Lemma 3.2. If K is a triangulation of a surface, every edge of K is con-
tained in exactly two triangles

Proof. Let e = |σ| be an edge of K for some one-simplex σ of K, and
let x ∈ e be an interior point. We would like to prove that the only way
that x can have a neighborhood in |K| homeomorphic to a disk is that
e be contained in exactly two triangles. First, we know that an interval
cannot be homeomorphic to a disk, so e must be contained in at least one
triangle. Then looking at Figure 3.6, it’s reasonable that if e is contained
in any number of triangles other than two, it cannot have a neighborhood
homeomorphic to a disk. We will be able to give a rigorous proof later. �

Figure 3.6. Each Edge Contained in Two Triangles
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Corollary 3.1. If K is a triangulation of a surface, then 2E = 3F . Thus
χ = V − 1

2F = V − 1
3E.

Proof. Since every triangle has 3 edges and each edge is contained in 2
triangles, 3F counts the edges exactly twice, so 3F = 2E. �

3.4. Proof of Classification. The first step in the proof of classification
relies on the existence of triangulations. We state the theorem using the
model of a disk with its boundary divided into arcs. We could equally well
use a the model of a regular polygon and its boundary naturally divided
into edges. We will move freely from one model to the other.

Theorem 3.2. Let S be a compact connected surface. Then S is homeo-
morphic to the identification space of a disk D whose boundary ∂D is divided
into an even number n = 2m of arcs, and these arcs are identified in pairs.

Proof. We follow Section 7 of the first chapter of [9]. Let K be a triangu-
lation of S, thus there is a homeomorphism φ : |K| → S. Write T ′1, . . . , T

′
k

for the geometric realization of the two-dimensional simplices of K and
Ti = φ(T ′i ) ⊂ S. Choose the ordering of the triangles and an ordered
collection {e1, . . . ek−1} of edges so that Ti has the edge ei in common with
one of T1, . . . Ti−1. This can be done as follows. Choose any triangle, call
it T1, choose a second triangle, call it T2 that has an edge, call it e1, in
common with T1. Then choose a triangle, call it T3, that has an edge, call
it e2, in common with T1 ∪ T2, continue in this way.

Since S is connected, we must get all triangles this way. (Proof: Otherwise
we would stop at some l < k. Then A = T1∪· · ·∪Tl and B = Tl+1∪· · ·∪Tk
would be disjoint closed sets with S = A∪B, contradicting connectedness.)

Define a triangulated space D by

(3.3) D = (T ′1 t · · · t T ′k)/ ∼

where x ∼ y if, for one of the edges ej just chosen, Φ(x),Φ(y) ∈ ej and
Φ(x) = Φ(y), where Φ is as in Diagram 3.1. Referring back to Diagram 3.1,
we see that the only difference is that here we have not made all the iden-
tifications that the map p makes, but only the ones over the chosen edges
{e1, . . . , ek−1}. So Φ descends to a map, let’s call it φ1 : D → S which is one
to one over all of D except on ∂D which is the pre-image of the edges in S
other than the chosen {e1, . . . , ek−1}, on which it is two-to-one (because is
edge is contained in two triangles). This means that ∂D is divided into pairs
of edges and the interior of each edge in each pair maps homeomorphically
to the corresponding edge in D. Thus S is homeomorphic to D/ ∼ where
x ∼ y if φ1(x) = φ1(y). Finally, we need the following Lemma:

Lemma 3.3. Let D1, D2 be disks, let I1 ⊂ ∂D1 and I2 ⊂ ∂D2 be arcs
in the boundary (meaning subspaces of the boundary homeomorphic to the
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unit interval I), let h : I1 → I2 be a homeomorphism. Then the space
(D1 tD2)/(x ∼ h(x)) is homeomorphic to a disk.

Proof. Clearly each there is a homeomorphism of each Di with a half-disk
D′i = {x2 + y2 ≤ 1, y ≥ 0 or y ≤ 0} which takes I1 to I ′i = [−1, 1]×{0}, and
it is clear that gluing two half disks by a homeomorphism of this part of the
boundary produces a disk, see Figure 3.7 �

Figure 3.7. Gluing Disks Along Arcs in Boundary

To finish the proof of the theorem it only remains to prove that D is
homeomorphic to a disk, but this follows by an easy induction from the
Lemma and the construction of D: T ′1, T

′
2 are disks with edges (= arcs) e′1, e

′′
1

in their boundaries identified by a homeomorphism to get (T ′1 t T ′2)/ ∼, so
this space is homeomorphic to a disk. Moreover it has an edge e′2 that is
identified with an edge e′′2 of T ′3 to get the space (T ′1 t T ′2 t T ′3) ∼, which is
then homeomorphic to a disk, and so on until we get to D. �

Remark 3.3. The phrase “arcs identified in pairs” is rather vague. What
this means is that the collection of arcs is divided into pairs, the two arcs
in each pair are identified by a homeomorphism which is monotone in the
sense of the arrows used in the diagrams explained in (9) of Example 1.1.
These homeomorphisms are usually not specified. It is a fact that different
choices lead to homeomorphic results, but we don’t go into any more detail.

Remark 3.4. The converse of this Theorem is also true. The space obtained
from a disk by dividing its boundary into an even number of arcs and iden-
tifying these arcs in pairs is a compact, connected surface. The verification
prodeeds by the same reasoning explained in (9) and (10) of Example 1.1
and illustrated in Figure 1.3. If x ∈ ∂D is interior to an arc, then a neigh-
borhood of x consists of two half-disks identified into a disk as in the first
part of Figure 1.3. If x is a vertex, then a neighborhood in the quotient
space is obtained by identifying several sectors of disks into a single disk.
The only difference with the second half of Figure 1.3 is that the quotient
space may have more than one vertex, as in the example below. A neighbor-
hood of a vertex in the quotient space will still be obtained by identifying
sectors along common boundary edges, each edge in two sectors, and the
edges being cyclically arranged (see the next example for an illustration of
what “cyclically” means), so this identification space will still be a disk.
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Figure 3.8. The Surface of Genus Two as aba−1b−1cded−1e−1c−1.

Example 3.7. To see how to find vertices and their neighborhoods, let’s look
at the example shown if Figure 3.8. If we use the notation explained in (9) of
Example 1.1, reading the left hand figure counterclockwise from the bottom,
this identification space is described by the symbol aba−1b−1cded−1e−1c−1.
To see how many vertices there are, start anywhere, say at 1, and see what’s
equivalent to it: being the tail of c, it is equivalent to 5, as the tail of b
it is equivalent to 2, as head of a it is equivalent to 3, as the head of b
it is equivalent to 4, as the tail of a it is equivalent to 1 and we are back
where we started: 1 ∼ 5 ∼ 2 ∼ 3 ∼ 4 ∼ 1, thus we have come in a full
cycle and the set {1, 5, 2, 3, 4} forms one equivalence class. Similarly we see
6 ∼ 10 ∼ 7 ∼ 8 ∼ 9 ∼ 10, again we complete a cycle and {6, 10, 7, 8, 9} is
an equivalence class. Thus there are two vertices in the identification space.
This is a surface of genus two, which can be pictured as in the right half
of Figure 3.8. It is a connected sum of two tori, the image of ∂D has two
vertices, as pictured. It is a longer presentation of this surface than the
standard one (8) of Example 1.1

3.4.1. Inductive Part of the Proof. We now quickly sketch a nice inductive
argument for going from Theorem 3.2 to the Classification Theorem 1.2.
The proof is in the paper [2] by Burgess. We refer to this paper for details.

Following Burgess, let D be a disk and for each even n, divide ∂D into n
arcs and let D(n) be the collection of all possible pairs of oriented arcs in
this division of ∂D. Let M(n) the class of surfaces obtained from D by so
identifying ∂D according to the elements of D(n).

The argument will be by induction on n. To begin the induction:

Lemma 3.4. If S is a surface of type M(2), then S is homeomorphic to
either S2 or P 2.

Proof. The proof is clear: the only identifications of type D(2) are aa which
gives P 2 and aa−1 that gives S2. �

Then, to be able to carry on the induction, let A = {1
2 ≤ x2 + y2 ≤ 1})

be an annulus, let C1 = {x2 + y2 = 1} be one of its boundary components,
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divided into n arcs, and let A(n) denote the set of all possible pairs of
oriented arcs in this division. LetB(n) be the class of surfaces with boundary
obtained from A by identifying the boundary component C1 according to
the elements of A(n). These surfaces have as boundary the other component
C2 of the boundary of A.

Lemma 3.5. Every surface of type B(n) is homeomorphic to M \∆0, where
M is a surface of type M(n) and ∆ is a disk embedded in M .

Proof. The proof is clear, since we can fill in the boundary of C2 of A/ ∼
with a disk, thus obtaining D/ ∼. �

The proof then proceeds: Assume that every surface of type M(m) for
even m ≤ n − 2 is as in Theorem 1.2, prove that this also holds for every
surface of type M(n). This is done by cases, which we now list and illustrate
with the example aba−1b−1cdd−1efe−1fc−1 of Figure 3.9.

Figure 3.9. aba−1b−1cdd−1efe−1fc−1

Pick a surface M of type M(n). There are 4 cases to be considered:

(1) There is a twisted pair. This means a pair of identifications . . . a . . . a . . .
in the same direction, as the pair . . . f . . . f . . . in Figure 3.9. Then
making just this identification gives a Möbius band (homeomor-
phic to P 2 \∆0

1) and a neighborhood of its boundary is an annulus
A(n − 2), hence performing the remaining identifications gives an
N \∆0

2 for some N ∈M(n− 2). From this we see that M = N#P 2

for N ∈M(n− 2), so by induction M is as desired.
In Figure 3.9 we would get aba−1b−1cdd−1efe−1fc−1 is a con-

nected sum P 2#N where P 2 = ff and N = aba−1b−1cdd−1ee. Note
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here that the e−1 changed to e because of the sense in which we travel
along the boundary of the Möbius band. So we get a twisted pair ee
where the edges are consecutive, seeing that such an identification
gives a Móbius band requires separate argument (see Figure 1.2 of
[2])

(2) There are two separated non-twisted pairs. This means two pairs ,
each in opposite directions, each pair separating the elements of the
other, as aba−1b−1 in Figure 3.9. Then if n = 4 we have a T 2, if
n > 4 we have T 2#N for some n ∈M(n− 4).

In Figure 3.9 we would get T 2#N where N ∈ M(n − 4) is given
by cdd−1efe−1fc−1 (which is easily seen to be the same as efe−1f ,
a Klein bottle).

(3) There is a non-twisted pair of adjacent edges, as dd−1 in Figure 3.9.
Then it is easy to see that these edges “cancel” and M = N where
N ∈M(n− 2). In Figure 3.9, we get aba−1b−1cefe−1fc−1.

(4) There is a non-twisted, non-adjacent, non-separating pair, such as
. . . c . . . c−1 . . . in Figure 3.9. Then performing just the identifica-
tion of c with c−1 yields an annulus with each boundary compo-
nent divided into arcs, the identifications remain within each com-
ponent, so M = N1#N2 where N1, N2 are of type M(n1), M(n2)
for n1 + n2 = n − 2. In Figure 3.9 we get M = T 2#K where
T 2 = aba−1b−1 and K = efe−1f as before.

A good illustration of this case is Figure 3.8, where . . . c . . . c−1

is such a pair, and the right hand half of the picture illustrates the
connected sum.

Since this exhausts all possibilities for pairs of edges, the inductive step
is complete. This concludes the sketch of the proof. See [2] for more details.

We see that the example of Figure 3.9 can be reduced in several ways,
either as P 2#P 2#T 2 using ff , ee, aba−1b−1 by following, say, the se-
quence of moves aba−1b−1cdd−1efe−1fc−1 → ff#aba−1b−1cdd−1eec−1 →
ff#ee#aba−1b−1cdd−1c−1 → ff#ee#aba−1b−1, where the first two moved
are (1), and the third is two applications of (3). Or we could start with
(2) and follow aba−1b−1cdd−1efe−1fc−1 → aba−1b−1#cdd−1efe−1fc−1 →
aba−1b−1#efe−1f = T 2#K, where the second move is two applications of
(3), remembering that we go cyclically around the circle to cancel c . . . c−1.
Note that these two presentations of the surface are not contradictory since
K = P 2#P 2 (see HW 1).

3.5. Comments on Classification and Euler Characteristic. This will
be an informal discussion, since we will assume that the Euler characteristic
is independent of the triangulation used to define it. We will also assume that
it is a topological invariant. We will not use either of these facts in a serious
way, we include them to give a more complete view of the classification
theorem just proved.
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First we remark that the Euler characteristic of a surface can be com-
puted from any presentation as in Theorem 3.2. If we look at the proof
of that theorem, we see that to get the disk D from the triangulation K
by assembling the triangles Ti along some of their edges. In each process
of the construction we replace two triangles by a single one and erase their
common edge. Thus F − E is unchanged at each stage. The remaining
edges are on the boundary, and we may simplify the picture by joining two
successive edges along a vertex Each such move reduces both E and V by
one, so it leaves V − E unchanged. Both of these operations leave V − EF
unchanged, where we of course have a new meaning of these names: a face
is no longer a triangle, and an edge is no longer determined by its endpoints.
But in any case χ = V − E + F . In the situation of Theorem 3.2, F = 1,
E = m = n

2 (note that the edges are counted in the identification space, thus
E is precisely half the number of arcs in ∂D) and V has to be determined
by the identifications as explained in Remark 3.4 and in Example 3.7. In
particular, we see that in Example 3.7 (see Figure 3.8), F = 1, E = 5 and
V = 2, so χ = −2, which is the same answer that we would get from the
presentation in (8) of Example 1.1, see Figure 1.1, where F = 1, E = 4
and V = 1. More generally, from the presentation of Σg, g ≥ 1, given in
Equation 1.1, we see that

(3.4) χ(Σg) = 2− 2g,

since F = 1, E = 2g and V = 1.

If we look at the example of Figure 3.9 we see that F = 1, E = 6 and
we can check, as we did in Example 3.7 that V = 3. Thus χ = −2 as in
Example 3.7. But the surfaces are not homeomorphic, they are T 2#T 2 and
T 2#K.

The difference between T 2#T 2 and T 2#K is that the first is orientable
while the second one is not. Again, this is an informal discussion since
we do not have a good definition of orientability. Definition 1.2 allows us
to see that T 2#K is not orientable since K contains Möbius bands, but we
don’t have a good way of showing that T 2#T 2 does not. The theorem is that
orientability and Euler characteristic determine the topological classification
of surfaces. In fact it can be shown that the classification is:

Orientable: S2 or Σg = T 2# . . . T 2 (g times) χ = 2− 2g(3.5)

Non-Orientable: P 2# . . .#P 2 (n summands) χ = 2− n.

There are other ways of stating the result for non-orientable surfaces, using
the fact that P 2#P 2#P 2 = K#P 2 = T 2#P 2, so there are several equiva-
lent ways of representing a non-orientable surface as a connected sum, see
[2] and sections 7 and 8 of the first chapter of [9] for more details. We will
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deal mostly with orientable surfaces, and use Theorem 1.1 as our list of ori-
entable surfaces. We have proved the first part of that theorem. After we
study the fundamental group we will be able to prove the second part.

4. The Fundamental Group

Let X be a connected and locally path connected space. We will assign to
X a group that is a topological invariant of X, and which, in fact, will give
a lot more topological information on possible continuous maps between
spaces. A good reference is Chapter 2 of [9], another good reference is
Chapter 1 of [5].

Convention: In this section we will assume that all topological spaces are
connected and locally path connected (thus, in particular, path connected).

The reason for this convention will be clear after reading this section. For
now, let’s say that we want path connected spaces because the construc-
tions will involve sending paths from one point to another (see, for example,
Theorem 4.3). On the other hand spaces that are path connected but not
locally path connected, such as in Figure 4.1 present difficulties: Looked at
from afar it looks like a circle, so its fundamental group should be Z (see
Theorem 4.5). On the other hand there are no loops starting at x0 and
going all the way around, so all loops are contractible, so its fundamental
group should be trivial. To avoid deciding what is the proper interpretation
of this example, we assume local path connectedness.

Figure 4.1. Closing the sin(1/x) Curve.

4.1. Homotopy. The unifying concept is called homotopy, which formalizes
the notion of deformation: If X,Y are topological spaces and f, g : X → Y
are continuous maps, the following definition makes precise what it means
to deform f to g. We will also need a more refined concept: If there happens
to be a subset A ⊂ X on which f = g, we may want to keep this equality
throughout the deformation.
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Definition 4.1. Let X and Y be topological spaces and f, g : X → Y be
continuous maps. We say that f and g are homotopic, and write f ∼ g, if
there exists a continuous map F : X × I → Y such that

(4.1) F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X.
The map F is called a homotopy between f and g. If, in addition, A ⊂ X
and f(x) = g(x) for all x ∈ A, we say that f and g are homotopic relative
to A, and write f ∼ g rel A, if there exists a homotopy F : X × I → Y
between f and g that, in addition, satisfies

(4.2) F (x, s) = f(x)(= g(x)) for all x ∈ X and for all s ∈ I.
(in words, points in A do not move under the homotopy).

We will first apply this definition paths. Recall the following terminology:

Definition 4.2. Let X be a connected and path connected topological space,
and let x0, x1 ∈ X. A path in X from x0 to x1 means a continuous map
α : I → X such that α(0) = x0 and α(1) = x1.

Then α ∼ α′ rel {0, 1}means: there exists a continuous map F : I×I → X
with

(4.3) F (t, 0) = α(t), F (t, 1) = α′(t); F (0, s) = x0, F (1, s) = x1 for all s, t.

We often say α ∼ β relative to the endpoints or simply rel endpoints. We
can picture this situation as in Figure 4.2.

Figure 4.2. Homotopic Paths

4.2. Composition of Paths. Recall also that we had the concatenation
(or composition) of paths (see Definition 5.4 of [12]): If α, β : I → X and
α(1) = β(0), then α · β is defined by

(4.4) α · β(t) =

{
α(2t) if 0 ≤ t ≤ 1

2 ,

β(2t− 1) if 1
2 ≤ t ≤ 1.

If we have three paths α, β, γ that can be concatenated, meaning that α(1) =
β(0) and β(1) = γ(0), then we have two paths (α ·β) ·γ and α · (β ·γ), which
are different, even though they are reparametrizations of each other. In
other words, this operation is not associative. We have some candidates for
“units”: if x ∈ X, let εx : I → X denote the constant path at x:

(4.5) εx(t) = x for all t ∈ I.
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Then εα(0) · α 6= α, even though they travel the same path, one of them
constant for half the time and then speeding up, following the other at
twice the speed. The same goes of α ·εα(1) 6= α, this time the first path stays
put for the second half of the interval. Finally we use the notation

(4.6) α−1(t) = α(1− t) for t ∈ I.

We would like to think of this as an inverse, but α ·α−1 6= εα(0) and α−1 ·α 6=
εα(1).

Theorem 4.1. Let X be as above, let x0, x1, x2, x3 ∈ X and let α, β, γ :
I → X be paths from x0 to x1, x1 to x2 and x2 to x3 respectively, and let
εx and α−1 be as above. Also, let α′, β′ be paths from x0 to x1 and x1 to x2

respectively, such that α ∼ α′ and β ∼ β′ both relative to endpoints. Then:

(1) (α · β) · γ ∼ α · (β · γ) rel endpoints.
(2) εx0 · α ∼ α and α · εx1 both rel endpoints.
(3) α · α−1 ∼ εx0 and α−1 · α ∼ εx1 both rel endpoints.
(4) α · β ∼ α′ · β′ rel endpoints.
(5) α−1 ∼ (α′)−1 rel endpoints.

Proof. For detailed proofs see §2 of Chapter 2 of [9]. We will quickly sketch
the proof. For the first 3 statements, we have to find a map F : I × I → X
so that F (t, 0) and F (t, 1) are the maps on each side of the ∼ sign, and
F (0, s), F (1, s) are the appropriate constant maps. The maps on both sides
of the ∼ sign have images that are either the same (in (1) and (2)) or one
contained in the other (as in (3)). In each figure we show a division of I × I
and for each s, we indicate the map on the interval I×{s} that interpolates
between the given maps at s = 0 and s = 1. Each division of the interval is
mapped to the unit interval by the unique linear map that maps endpoints
to endpoints.

Figure 4.3. Homotopy Associativity and Units

For example, in Figure 4.3 we use different parametrizations of the map
obtained from α on the first portion of the interval, then β, then γ. Note that
in this homotopy it is only the relevant endpoints x0 = α(0) and x3 = γ(1)
that stay fixed, all others move. Figure 4.3 also shows the homotopy for
εx0 · α ∼ α, the one for α ∼ α · εx1 is symmetric to this one.
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Figure 4.4. Homotopy Inverse

Particularly interesting is the homotopy for α · α−1 ∼ εx0 shown in Fig-
ure 4.4. Here αs denotes the path α|[0,s]. This homotopy can be pictured as
traveling along α until reaching α(s), then statying at α(s) for the indicated
time, then traveling back to α(0) by way of α−1. This interpolates between
being put at α(0) for s = 0 and the path α · α−1 for s = 1. The homotopy
for α · α−1 is similar.

For (4) and (5), if F is a homotopy between α and α′ and G is a homotopy
between β and β′, (both relative endpoints) then

H(t, s) =

{
F (2t, s) if 0 ≤ t ≤ 1

2 ,

G(2t− 1, s) if 1
2 ≤ t ≤ 1.

is a homotopy between α·β and α′ ·β′, and F (1−t, s) is a homotopy between
α−1 and (α′)−1, both also relative to the endpoints. �

The last two statements of this theorem justify the following Definition:

Definition 4.3. If α : I → X is a path, write [α] = {α′ : α ∼ α′ rel endpoints},
called the homotopy class of α. If α, β : I → X are paths with α(1) = β(0)
define two operations on homotopy classes:

(1) [α] · [β] is defined to be [α · β],
(2) [α]−1 is defined to be [α−1].

Corollary 4.1. With the same notation and assumptions as in Theorem 4.1,
the operations of Definition 4.3 satisfy:

(1) Associativity: [α] · ([β] · [γ]) = ([α] · [β]) · [γ].
(2) Existence of units: [εx0 ] · [α] = [α] · [εx1 ] = [α].
(3) Existence of inverses: [α] · [α]−1 = [εx0 ] and [α]−1 · [α] = [εx1 ].

4.2.1. Path Operations and Continuous Maps. Suppose that X, Y , Z are
topological spaces (let’s keep them always connected and locally path con-
nected), suppose f, f1, f2 : X → Y and g : Y → Z are continuous maps. We
want to see how the path operations and homotopies behave with respect
to maps.

Theorem 4.2. (1) If α, α′ : I → X and α ∼ α′ rel endpoints, then
f ◦ α ∼ f ◦ α′ rel endpoints.
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(2) If α, β : I → X and α(1) = β(0), then f ◦ (α · β) = (f ◦ α) · (f ◦ β).
(3) If f1(α(0)) = f2(α(0)), f1(α(1)) = f2(α(1))) and f1 ∼ f2 relative to
{α(0), α(1)}, then f1 ◦ α ∼ f2 ◦ α rel endpoints.

Proof. For (1), if F : I × I → X is a homotopy between α and α′ relative
endpoints, then f ◦ F : I × I → Y is a homotopy between f ◦ α and f ◦ α′
relative endpoints. Part (2) is clear, and (3) is like (1): If F : X × I → Y
is a homotopy between f1 and f2 relative to {α(0), α(1)}, in other words,
F (x, 0) = f1(x), F (x, 1) = f2(x), F (α(0), s) = f1(α(0)) = f2(α(0))) and
F (α(1), s) = f1(α(1))) = f2(α(1)) for all s ∈ I, then G(t, s) = F (α(t), s) is
a homotopy between f1 ◦ α and f2 ◦ α relative to endpoints. �

The first part of the theorem justifies the following definition:

Definition 4.4. Let f : X → Y be continuous. Define a map f∗ from
homotopy classes of paths in X to homotopy classes of paths in Y by f∗[α] =
[f ◦ α] for any path α : I → X.

Corollary 4.2. Suppose that α, β : I → X are paths from x0 to x1 and x1

to x2, and suppose f : X → Y and g : Y → Z are continuous. Then

(1) f∗([α][̇β]) = f∗([α]) · f∗([β]).
(2) f∗([εx]) = [εf(x)] for all x ∈ X.

(3) f∗([α]−1] = (f∗([α]))−1.
(4) If f1, f2 : X → Y are continuous, f1(x0) = f1(x0), f1(x1) = f2(x1)

and f1 ∼ f2 relative to {x0, x1}, then (f1)∗([α]) = (f2)∗([α]).
(5) (g ◦ f)∗([α]) = g∗(f∗([α])).

Proof. Part (1) follows from (2) of Theorem 4.2, (2) is clear, (3) follows from
(1), (2) and the usual arguments of uniqueness of inverses, (4) follows from
(3) of Theorem 4.2, and (5) is clear. �

4.3. Definition of the Fundamental Group. The preceding discussion
says that the set of homotopy classes of paths is somewhat like a group
under composition (concatenation) of paths, and that a continuous map
f : X → Y induces an operation f∗ from classes in X to classes in Y that
looks like a homomorphism. These classes do not form a group because the
operation [α] · [β] is not always defined, it requires that α(1) = β(0), and
there are as many units [εx] as there are points x ∈ X. This structure is
called a groupoid.

It is easy to get a group out of this situation: Fix a point x0 ∈ X and
consider only paths α : I → X that start and end at x0: α(0) = α(1) = x0.
These are called loops based at x0 and their homotopy classes form a group:

Definition 4.5. Let x0 ∈ X. The fundamental group of X based at x0,
denoted π1(X,x0) is defined as

π1(X,x0) = {[α] : α is a loop based at x0},



5520 NOTES 31

with multiplication [α] · [β], unit [εx0 ] and inverse [α]−1 as above.

Observe that Corollary 4.1 implies that π1(X,x0) is indeed a group, with
unit and inverses as asserted.

Remark 4.1. The notation π1 is used because there are also groups denoted
π2, π3, . . . which are defined by maps of higher dimensional objects into a
space. We will not be concerned with these other groups. The letter “π”
refers to Poincaré, who first defined a version of this group.

Example 4.1. Let X = R2 and x0 = 0. Then π1(R2, 0) = {[ε0]}, the trivial
group. The reason is very simple: if α : I → R2 is a loop at 0, then
F (t, s) = sα(t) is a homotopy of α to ε0 relative to 0. Thus there is only
one element in π1(R2, 0). The same argument shows that if C ⊂ Rn is any
convex set and x0 ∈ C, then π1(C, x0) is the trivial group.

4.4. Properties of the Fundamental Group. We now study some of
the basic properties of the fundamental group. First, since its definition
involved choosing a point x0 ∈ X, usually called the basepoint of X. It is
natural to ask how the group depends on the choice of basepoint.

Theorem 4.3. Let x0, x1 ∈ X and let σ : I → X be a path from x0 to x1.
Then the map φσ : π1(X,x0)→ π1(X,x1) defined by φσ([α]) = [σ−1] · [α] · [σ]
is a group isomorphism.

Proof. Clearly φσ is a homomorphism, and the map φσ−1 is its inverse. �

Figure 4.5 illustrates the map φσ. In the second half of the figure we have
deformed the path slightly (keeping, of course, x1 fixed) to better illustrate
[φσ(α)].

Figure 4.5. Changing the Basepoint

Thus different basepoints give isomorphic fundamental groups. This is
often stated as “the fundamental group is independent of the basepoint”,
and this is a good first statement. But, as you study the subject more deeply,
you realize that this is a somewhat inaccurate statement, because there can
be many isomorphisms, depending on the choice of [σ], and sometimes this
choice can be important.

Next, if f : X → Y is a continuous map, and α ∈ π1(X,x0), then we
have f∗([α]) ∈ π1(X, f(x0)) defined as in Definition 4.4. The map f∗ has the
following properties:
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Theorem 4.4. Let f : X → Y be continuous, and let f∗ : π1(X,x0) →
π1(Y, f(x0)) be as in Definition 4.4. Then

(1) f∗ is a group homomorphim.
(2) If g : X → Y is continuous, g(x0) = f(x0) and f ∼ g relative to x0,

then f∗ = g∗.
(3) If g : Y → Z is continuous, then (g ◦ f)∗ = g∗ ◦ f∗ : π1(X,x0) →

π1(Z, g(f(x0))).

Proof. Immediate from Corollary 4.2 �

Definition 4.6. If f : X → Y is continuous, the map f∗ : π1(X,x0) →
π1(Y, f(x0)) is called the homomorphism induced by f or simply the induced
homomorphism.

Corollary 4.3. If f : X → Y is a homeomorphism, then the induced ho-
momorphism f∗ : π1(X,x0)→ π1(Y, f(x0)) is an isomorphism.

Proof. From (3) of Theorem 4.4, we see that f∗ ◦ (f−1)∗ is the identity on
π1(Y, f(x0)) and (f−1)∗ ◦ f∗ is the identity on π1(X,x0)), thus f∗ is an
isomorphism with inverse (f−1)∗. �

4.5. A Useful Lemma (Lebesgue Numbers). Before proceeding, we
prove a useful lemma that will be needed from time to time.

Lemma 4.1. Let (X, d) be a compact metric space and let U = {Uα}α∈A be
an open cover of X. Then there exists an ε > 0 (called a Lebesgue number
for U) so that, whenever x, y ∈ X and d(x, y) < ε, there exists α ∈ A so
that x, y ∈ Uα.

Proof. Since U is an open cover of X, for each x ∈ X there is an α ∈ A and
an ε(x) > 0 so that B(x, 2ε(x)) ⊂ Uα. The collection {B(x, ε(x))}x∈X is an
open cover of X. Let {B(x1, ε(1)), . . . , B(xn, ε(n))} be a finite subcover, and
let ε = min{ε(1), . . . , ε(n)}. Suppose x, y ∈ X and d(x, y) < ε. Then there
is an i, 1 ≤ i ≤ n, so that x ∈ B(x1, ε(i)). Since d(x, y) < ε, the triangle
inequality gives us that y ∈ B(xi, ε(i) + ε) ⊂ B(xi, 2ε(i)) ⊂ Uαi . �

4.6. The Fundamental Group of the Circle. Corollary 4.3 finally gives
us a topological invariant of spaces. But in able to use it we need some ex-
amples where the group is non-trivial. So far we have only seen Example 4.1
which gives the trivial group.

Let S1 ⊂ R2 be the unit circle centered at the origin, take (1, 0) ∈ S1 as
basepoint.

Theorem 4.5. The group π1(S1, (1, 0)) is isomorphic to Z.
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Proof. The isomorphism is given by the “winding number” of a path. The
proof begins by giving a rigorous construction of the winding number. It
relies on familiar properties of the map p : R → S1 defined by p(t) =
(cos(2πt), sin(2πt)). This map is periodic of period 1 and descends to an
isomorphism R/Z→ S1 (see Examples 4.1 and 4.3 of [12]). If J ⊂ R is any
interval of length less than one, then p|J : J → p(J) is a homeomorphism.

We choose the open cover U = {U1, U2} of S1 where U1 = {(x, y) ∈
S1 : y > − 1√

2
} and U2 = {(x, y) ∈ S1 : y < 1√

2
}. Let U0

1 = (−1
8 ,

5
8) and

U0
2 = (−5

8 ,
1
8). Then p(U0

1 ) = U1, p(U0
2 ) = U2, and, if for each i ∈ Z we

define
U i1 = U0 + i, U i2 = U2 + i (translates by i),

see Figure 4.6.

Figure 4.6. The Map p : R→ S1

Lemma 4.2. The cover U = {U1, U2} of S1 just defined has the property
that each component U i1, i ∈ Z, of p−1(U1) is mapped homeomorphically by
p to U1, and the same for U2.

Proof. Clear, since every interval has length 3
4 < 1. �

Let α : I → S1 be a loop based at (1, 0), so α(0) = α(1) = (1, 0). The
first step is to construct a “lift” α̃ : I → R of α, that is, a path α̃ such that
p ◦ α̃ = α and α(0) = 0:

(4.7)

R

I
α -

α̃

-

S1

p

?

To construct α̃, let ε be a Lebesgue number (Lemma 4.1) for the open
cover α−1(U) of I. Divide I into sub-intervals of length < ε, say [0, t1], [t1, t2],
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. . . [tn−1, 1], where 0 < t1 < t2 < · · · < 1 and ti − ti−1 < ε. Then, by
definition of Lebesgue number, for each i, α([ti−1, ti]) is contained in one
of the sets U1 or U2. Over each sub-interval [ti−1, ti] there is no problem
in constructing lifts. In other words, if in Diagram 4.7 we replace I by
[ti−1, ti], because on each component of p−1(U1) or p−1(U2) the map p is
invertible, we can define a lift α̃ = p−1 ◦ α. The only problem is that there
are infinitely many components, therefore infinitely many possibilities for
p−1. The possibilities have to be chosen in such a way that the choices in
successive intervals match at their common endpoint to give a continuous
map α̃ : I → R. These choices can be made as follows:

First, α([0, t1]) is contained in one of the two sets U1, U2. Choose this
set and call it V1. There is exactly one component of p−1(V1) that contains
0, choose this component and call it W1. Define α̃(t) = (p|W1)−1 ◦ α(t)
for 0 ≤ t ≤ t1. This defines α̃ on the first interval [0, t1]. Then define α̃
on the next interval [t1, t2]: α([t1, t2]) is contained in one of U1, U2, choose
this set and call it V2. There is exactly one component of p−1(V2) that
contains α̃(t1), choose it and call it W2. Define α̃(t) = (p|W2)−1 ◦ α(t) for
t1 ≤ t ≤ t2. This, combined with the previous definition, defines α̃ on
[0, t2]. Continue this way: assume α̃ has been defined on [0, ti−1] so that
p ◦ α̃ = α, define it on [0, ti] by choosing a set Vi = U1 or U2 so that
α([ti−1.ti]) ⊂ Vi and the component Wi of p−1(Vi) that contains α̃(ti−1),
defining α̃(t) = (p|Wi)

−1 ◦ α(t) for ti−1 ≤ t ≤ ti, and thereby defining α̃ on
[0, ti] so that p ◦ α̃ = α. Continuing this way until we get to tn = 1, we get
the conclusion:

There exists a continuous lift α̃ of α as in Diagram 4.7 satisfying α̃(0) = 0.

Next, we need to know that this lift is independent of our construction,
in fact, any two continuous lifts α̃ and α̃′ of alpha as in Diagram 4.7 that
agree at one point are equal.

For future use, we record a more general fact:

Lemma 4.3. Suppose X is a connected space, f : X → S1 is continuous
and f1, f2 : X → R are two continuous lifts of f :

R

X
f

-

f 1
,
f 2

-

S1

p

?

If there exists a point x0 ∈ X so that f1(x0) = f2(x0), then f1(x) = f2(x)
for all x ∈ X.

Proof. Let A = {x ∈ X : f1(x) = f2(x)}. Since f1, f2 are continuous and
S1 is Hausdorff, A is closed. (See Homework for Math 4510). We claim
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that A is also open: suppose x ∈ A, that is, f1(x) = f2(x). Let V = U1

or U2 be an open set in the above cover U of S1 containing p(f1(x)) =
p(f2(x)) = f(x), and let W be the component of p−1(V ) that contains
f1(x) = f2(x). By continuity of f1 and f2 there exists a neighborhood U of
x in X so that f1(U) ⊂ W and f2(U) ⊂ W (take such a neighborhood for
each, and intersect them). Then, for all y ∈ U , f1(y) = (p|W )−1 ◦ f(y) and
also f2(y) = (p|W )−1 ◦ f(y), so f1(y) = f2(y) for all y ∈ U , so U ⊂ A and
A is open. Since x0 ∈ A, A 6= ∅, so the connectedness of X implies that
A = X. �

Going back to our loop α : I → S1 and its lift α̃ : I → R with α̃(0) = 0, we
see that p(α̃(1)) = (1, 0), thus α̃(1) ∈ p−1(1, 0) = Z. This is our definition
of winding number:

Definition 4.7. Let α : I → S1 be a loop based at (1, 0) and let α̃ : I → R
be its unique continuous lift with α(0) = 0. The integer α̃(1) is called the
winding number of α and is denoted w(α).

Remark 4.2. We could equally well done the following: construct a lift α̃′ of
α with α̃′(0) being any integer whatsoever (choose any k ∈ Z and start the
above construction with α̃′(0) = k), get the unique lift α̃′ with α̃′(0) = k.
If we shift our old construction by k, we get α̃ + k which is a lift of α that
agrees with α̃′ at 0. By uniqueness, α̃′ = α̃+k. In particular, α̃′(1)−α̃′(0) =
α̃(1)−α̃(0) = w(α). As a consequence we see that the winding number w(α)
can be defined by taking any lift α̃ of α and setting w(α) = α(1)− α(0).

Next, we need to show that w(α) depends only on the homotopy class
[α] ∈ π1(S1, (1, 0)). To do this, suppose α0, α1 are loops based at (1, 0) and
suppose F : I × I → S1 is a homotopy:

F (t, 0) = α0(t), F (t, 1) = α1(t), F (0, s) = F (1, s) = (1, 0)

for all s, t. Let α̃0 : I → R be a lift of α0, say with α0(0) = 0. The next step

is to lift F to a homotopy F̃ : I × I → R with F̃ (t, 0) = α̃0(t).

(4.8)

R

I × I
F -

F̃

-

S1

p

?

We do this in the same way we constructed α̃, but this time using the
square I × I rather than the interval I. Given F : I × I → S1 as above, let
ε > 0 be a Lebesgue number for the open cover F−1(U) of I×I. Divide each
factor I into intervals of length less than ε/

√
2, say 0 < t1 < t2 . . . tn−1 < 1

and 0 < s1 < · · · < sn−1 < 1 (no need to take the same number in each) so
that all ti−ti−1 and si−si−1 are less than ε/

√
2. Then, for all i, j, the square

[ti−1, ti]× [sj−1, sj ] has diameter < ε, so any two points in the same square
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are in some element of the cover, in other words, F ([ti−1, ti]×[sj−1, sj ]) ⊂ U1

or U2.

We are in the same situation as before: if we replace I × I by [ti−1, ti]×
[sj−1, sj ] in Diagram 4.8, since p is invertible on each component of p−1(U1)

or p−1(U2), there is no problem in lifting F : take F̃ = p−1 ◦ F . But there
are infinitely many possibilities for p−1, the problem again is to choose them
so that they match along their common intervals to give a continuous map
of the square I × I (and to satisfy F̃ ||i×0 = α̃0).

Proceed much as before to make the consistent choices: F ([0, t1]× [0, s1])
is contained in one of U1, U2, choose it and call it V1,1. There is a unique com-

ponent of p−1(V1,1) that contains α̃0([0, t1]), call it W1,1. Define F̃ (t, s) =
(p|W1,1)−1 ◦ F (t, s) for (t, s) ∈ [0, t1]× [0, s1].

Continue by increasing t: F ([t1, t2]× [0, s1]) is contained in one of U1, U2,
choose it, call it V2,1. There is a unique component of p−1(V2,1) that con-

tains the previously defined F̃ (t1 × [0, s1]), call it W2,1. Define F̃ (t, s) =
(p|W2,1)−1 ◦ F (t, s) for (t, s) ∈ [t1, t2] × [0, s1]. by the definition of W2,1

this agrees on t1 × [0, s1] with the previous definition of F̃ , so we get

a well defined continuous lift F̃ : [0, t2] × [0, s1] → R. By construction

p(F̃ (t, 0)) = F (t, 0) = α(t) for t ∈ [0, t2] and F̃ (t, 0) = α̃(t) for t ∈ [0, t1],

thus by the uniqueness lemma (Lemma 4.3), we have that F̃ (t, 0) = α̃(t) for
t ∈ [0, t2].

Continue this way defining F̃ : [0, ti] × [0, s1] → R until it is defined and

continuous on [0, 1]× [0, s1]. In particular, we get that F̃ (t, 0) = α̃(t) for all
t ∈ I.

Then increase s: F ([0, t1]× [s1, s2]) ⊂ U1 or U2 , choose one, call it V1,2,

there is a unique component of p−1(V1,2) that contains F̃ ([0, t1] × s1), call

it W1,2 and define F̃ (t, s) = (p|W1,2)−1 ◦ F (t, s) for (t, s) ∈ [0, t1] × [s1, s2],
combine it with the previous construction to get a continuous lift on ([0, 1]×
[0, s1]) ∪ ([0, t1]× [s1, s2]).

Continue now by increasing t as we did before: at each stage choose Vi,2 so

that the definition F̃ (t, s) = (p|Wi,2)−1 ◦ F (t, s) for (t, s) ∈ [ti−1, ti]× [s1, s2]

agrees with the previously defined F̃ on the vertical segment ti−1 × [s2, s2].

Then on the horizontal segment [ti−1, ti]× s1 the new definition of F̃ agrees
with the old one because they are both lifts of F (t, s1), t ∈ [ti−1, ti] that
agree at (ti−1, ti) (another application of Lemma 4.3).

Continue in this fashion until F̃ is defined and continuous on all of I × I
as in Diagram 4.8.

Observe that F̃ (0, s) is a continuous function of s so that p ◦ F̃ (0, s) =
F (0, s) = (1, 0), so it is a continuous map I → p−1(1, 0) = Z, hence constant

= α̃0(0) = 0. Hence F̃ (t, 1) is a lift of α1 starting at 0, so by uniqueness



5520 NOTES 37

(Lemma 4.3), we have F̃ (t, 1) = α̃1(t) for all t ∈ I. Finally F (1, s) is a
continuous function of s with values in p−1(1, 0) = Z, hence constant, hence
= α̃1(1) and also = α̃0(1), hence α̃1(1) = α̃0(1), in other words, the winding
numbers are equal: w(α0) = w(α1) as desired. Thus we can write define
the winding number of an element of π1(S1, (1, 0)) as w([α]) = w(α) for any
representative α of [α].

Lemma 4.4. The map w : π1(S1, (1, 0))→ Z is a group isomorphism.

Proof. We need to check:

(1) w is a homomorphism: w([α · β]) = w([α]) + w([β]). This follows
from Remark 4.2: if to lift α · β starting at 0, we lift α starting at 0
and follow it by the lift of β starting at α̃(1). But this lift is exactly

α̃(1) + β̃, thus w(α · β) = α̃ · β(1) = α̃(1) + β̃(1) = w(α) + w(β).
(2) w is surjective: let n ∈ Z and let αn(t) = (cos(2πnt), sin(2πnt)).

Then w(αn) = n.
(3) w is injective: suppose w(α) = 0. Then α̃(0) = α̃(1) = 0, so F (t, s) =

sα̃(t) is a homotopy of α̃ to 0 (see Example 4.1), then p ◦ F is a ho-
motopy of α to the constant path (1, 0), thus [α] = e ∈ π1(S1, (1, 0)).

�

This completes the proof of Theorem 4.5. �

4.7. Retractions and Deformation Retractions. Before giving appli-
cations of the computation π1(S1) ∼= Z we introduce some terminology.

Definition 4.8. Let A ⊂ X be a subspace, and let i : A→ X be the inclusion
map i(a) = a for all a ∈ A.

(1) A is called a retract of X if there exists a continuous map r : X → A
such that r ◦ i = idA. The map r is called a retraction of X to A.

(2) A is called a deformation retract of X if, in addition, i ◦ r ∼ idX
relative to A, in other words, there exists a continuous map F :
X × I → X such that F (x, 0) = i(r(x)), F (x, 1) = x and F (a, s) = a
for all a ∈ A. The map r is called a deformation retraction of X to
A.

Example 4.2. (1) S1 is a deformation retract of R2 \ {0}. Let i : S1 →
R2 \ {0} be the inclusion, and define r : R2 \ {0} by

r(x) =
x

||x||

Then r(i(x)) = x/1 = x if x ∈ S1, so r is a retraction. In addition,
if we let

F (x, t) = tx+ (1− t) x

||x||
,
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then F : R2 \ {0}× I → R2 \ {0} is continuos (since the straight line
segment from x to x/||x|| does not go through the origin), F (x, 0) =
i(r(s)), F (x, 1) = x and F (x, t) = x for all x ∈ S1.

(2) By the same reasoning, for any n, the unit sphere Sn is a deformation
retract of Rn+1 \ {0}.

(3) By the same reasoning, for any a, b, c so that 0 ≤ a < b < c, the
sphere of radius b, Sb = {||x|| = b} is a deformation retract of the
“annulus” a < ||x|| < c.

(4) Let X = R2 \ {(0, 1)}, let A be the x - axis and let r : X → A be
defined by r(x, y) = (x, 0). Then r(x, 0) = (x, 0), so r is a retraction,
but r is not a deformation retraction: if it were, then, by Theorem 4.6
the fundamental groups π1(A) and π1(X) would be isomorphic, but
we know that π1(A) is the trivial group, and, by part (1), X has a
circle as deformation retract, so π1(X) = Z.

Figure 4.7. The Retractions of Example 4.2

Theorem 4.6. (1) Suppose that A ⊂ X is a retract, with retraction r,
and x0 ∈ A. Then r∗◦i∗ = id : π1(A, x0)→ π1(A, x0). In particular,
i∗ : π1(A, x0)→ π1(X,x0) is injective and r∗ : π1(X,x0)→ π1(A, x0)
is surjective.

(2) If A ⊂ X is a deformation retract, then i∗ : π1(A, x0) → π1(X,x0)
is an isomorphism, with inverse r∗.

Proof. For (1), since r ◦ i = idA, we have that r∗ ◦ i∗ = idA. This formally
implies that i∗ is injective: if i∗(α) = e, then, on the one hand, r∗(i∗(α)) = α,
and also r∗(i∗(α)) = r∗(i∗(e)) = e, thus α = e, thus i∗ is injective. Similarly,
it formally follows that r∗ is surjective: if β ∈ π1(A, x0), then β = r∗(i∗(β)),
so β = r∗(α) where α = i∗(β).

Part (2) is immediate since, in addition, i∗ ◦ r∗ = id, so r∗ is a two - sided
inverse of i∗. �

4.8. Applications of Theorem 4.5. We can now one the example we
know of a non-trivial fundamental group to get some topological conse-
quences. Let, as usual, D denote the closed unit disk D = {x2 + y2 ≤ 1}
with boundary S1.

Theorem 4.7. There is no retraction r : D → S1.
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Proof. Suppose there were a retraction r : D → S1. Then r∗ ◦ i∗ = id on
π1(S1, x0) ∼= Z. But, since π1(D,x0) is the trivial group {e}, we get that for
all α ∈ π1(S1, x0), i∗(α) = e, thus r∗ ◦ i∗ is both the zero homomorphism
and the identity homomorphism of Z, which is impossible. �

.

The interest of this Theorem is the following famous consequence:

Corollary 4.4. (The Brouwer Fixed Point Theorem): Let f : D → D be
continuous. Then f has a fixed point. In other words, there exists an x ∈ D
so that f(x) = x.

Proof. Suppose, on the contrary, that there were a continuous map f : D →
D so that f(x) 6= x for all x ∈ D. Then we could construct a retraction
r : D → S1 by letting r(x) be the point of intersection of the directed ray
from f(x) to x with the boundary circle S1, see Figure 4.8 Note that if
x ∈ S1, this ray intersects S1 at x, so r is the identity on S1 and we would
indeed get a retraction. We do not give a formal proof of the continuity of
r, but observe that, parametrizing this ray as (1 − t)x + tf(x), t ≥ 0, the
value of t for which the ray meets S1 is the root of a quadratic equation that
is at least 1, so we need to show the continuity of this root as a function of
the coefficients. To give a rigorous proof, we can use the quadratic formula,
which gives us the continuity provided that the discriminant of this equation
is never zero. Checking this is a computation using the Cauchy-Schwarz
inequality. �

Figure 4.8. The Map p : R→ S1

Remark 4.3. Both the no-retraction theorem (Theorem 4.7) and the Brouwer
fixed point theorem are true for the closed unit ball in Rn for any n. For
n = 1 this just requires connectedness of the unit interval, for n = 2 we used
the fundamental group, for n > 2 it requires higher dimensional topological
invariants.

Theorem 4.8. Let H = {(x, y) ∈ R2 : y ≥ 0} be a closed half-plane in R2,
and let ∂H = {(x, 0)} (the x-axis). Let f : H → H be a homeomorphism.
Then f(∂H) ⊂ ∂H. (Consequently, applying the same to f−1, f(∂H) = ∂H,
and the restriction of f to ∂H is a homeomorphism.)
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Proof. Let p = (x0, 0) ∈ ∂H be arbitrary. We need to show that f(p) ∈
∂H. We argue as we did in Math 4510 with intervals and their boundaries.
Suppose f(p) = (x1, y1) is not in ∂H, that is, y1 > 0. Then f |H\{p} :
H\{p} → H\{f(p)} is a homeomorphism. Let’s prove that this is impossible
by computing their fundamental groups.

Take a basepoint in H \ {p}, say (x0, 1), and let α(t) = (x(t), y(t)) be
a loop based at (x0, 1). Then F (t, s) = (1 − s)(x(t), y(t)) + s(x0, 1) is a
homotopy of α to the constant loop at (x0, 1). We only need to check that
the paths always lie in H \ {p}, which means that its second coordinate is
always ≥ 0 and > 0 if its fist coordinate = x0. But the second coordinate
of F (t, s) is (1 − s)y(t) + s, which is > 0 when s > 0 (since y(t) ≥ 0),
and = y(t) for s = 0, so it clearly satisfies the required condition for all
(t, s) ∈ [0, 1] × [0, 1]. Therefore π1(H \ {p}) is the trivial group for this
basepoint, hence for any basepoint.

Now take a basepoint in H \ {f(p)}, say (x1,
y1
2 ). Let C be the circle

of radius y1
2 centered at (x1, y1), and note that C is a deformation retract

of H \ {f(p)}: each point (x, y) ∈ H lies in a unique ray from (x1, y1), let
r(x, y) be the point of intersection of this ray with C, see Figure 4.9. In
formulas

r(x, y) = (x1, y1) +
y1

2
√

(x− x1)2 + (y − y1)2
(x− x1, y − y1),

so r is continuous and r(x, y) = (x, y) for all (x, y) ∈ C, and homotopy

F ((x, y), s) = (x1, y1)+s(x−x1, y−y1)+
(1− s)y1

2
√

(x− x1)2 + (y − y1)2
(x−x1, y−y1)

from i◦r and id: F ((x, y), 0) = r(x, y), F ((x, y), 1) = (x, y) and F ((x, y), s) =
(x, y) for all (x, y) ∈ C. Thus, with this basepoint, π1(H\{f(p)}) = π1(C) =
Z.

Figure 4.9. Boundary of Half Plane is Topologically Invariant

Finally, if we had f(p) = (x1, y1) with y1 > 0, we would get that f∗(π1(H\
{p}, p0))) → π1(H \ {f(p)}) would be an isomorphism from a trivial group
to a group isomorphic to Z, which is impossible. Therefore we must have
y1 = 0, in other words, f(p) ∈ ∂H as desired. �

This theorem says that the boundary has topological significance, at least
in the case of a half-plane. Since any surface with boundary is locally homeo-
morphic to H, the same should be true of any surface with boundary. Recall
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Definition 1.1 for the meaning of surface with boundary S and let ∂S denote
the set of its boundary points. We are thinking of topological surfaces with
boundary and homeomorphisms. Similar (but easier to prove) statements
hold for differentiable surfaces with boundary and diffeomorphisms.

Theorem 4.9. Let S1 and S2 be surfaces with boundary and let f : S1 → S2

be a homeomorphism. Then f(∂S1) ⊂ ∂S2 (and, consequently, f(∂S1) =
∂S2.)

Proof. To use the same reasoning as in Theorem 4.8 we need the following
lemma:

Lemma 4.5. Let S be a surface, with or withoug boundary, let q be an
interior point of S, let φ : U → D be a coordinate chart centered at q,
where D ⊂ R2 is the open unit disk centered at the origin, and φ(q) = 0.
If V is any connected neighborhood of q contained in U (q ∈ V ⊂ U), then
π1(V \ {q}) is an infinite group.

Proof. By applying the homeomorphism φ, we may assume that U = D and
q = 0. Given any neighborhood V of 0, V ⊂ D, there exists a disk Dr of
radius r centered at 0 so that Dr ⊂ V . Let i : Dr → V and j : V → D
be the inclusion maps. Then j ◦ i is the inclusion of Dr in D and (j ◦ i)∗ :
π1(Dr \ {0}) → π1(D \ {0}) is an isomorphism, since both Dr \ {0} and
D \ {0} contain the circle C of radius r

2 as a deformation retract and j ◦ i
is the identity on C. Since (j ◦ i)∗ = j∗ ◦ i∗, and fixing a point in C as the
basepoint in the fundamental groups, we have:

π1(Dr \ {0})
i∗- π1(V \ {0})

j∗- π1(D \ {0})

π1(C) ∼= Z

∼=

? id - π1(C) ∼= Z

∼=

?

therefore i∗ is injective (and j∗ is surjective), therefore π1(V \ {0}) contains
a subgroup isomorphic to Z (and surjects to a group isomorphic to Z), so it
is an infinite group, as asserted, see Figure 4.10. �

We can now prove the theorem: Suppose f : S1 → S2 is a homeomor-
phism, suppose that p ∈ ∂S1, and suppose that q = f(p) is an interior point
of S2. Take a neighborhood U of q as in the Lemma, then f−1(U) is a
neighborhood of p, and there is a neighbohood W of p, p ∈ W ⊂ f−1(U)
that is the domain of a coordinate chart ψ : W → H where H is a half-
disk {x2 + y2 < 1, y ≥ 0} and ψ(p) = (0, 0). Then, just as in the proof
of Theorem 4.8, π1(H \ {(0, 0)}) is the trivial group, thus π1(W \ {p}) is
the trivial group. But f(W ) = V satisfies the assumptions of the Lemma
and f takes W \{p} homeomorphically to V \{q}, which is impossible since
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Figure 4.10. Fundamental Groups of Deleted Neighborhoods

the fundamental group of the latter is infinite, so, in particular, non-trivial.
Therefore f(p) must be a boundary point of S2. (See Figure 4.10.) �

4.9. Examples of Induced Homomorphisms. The applications of the
fundamental group to problems in topology, as the ones we have just seen
in section 4.8, require the computation of the induced homomorphisms on
the fundamental group (Definition 4.6). Facility in computing these homo-
morphisms is essential in this subject. Remember that the main idea is
that to continuous maps f : X → Y there is an induced homomorphism
f∗ : π1(X,x0) → π1(Y, f(x0)), and compositions go to compositions: if g :
Y → Z, then (g ◦ f)∗ = g∗ ◦ f∗. Thus the algebra mirrors the topology. It is
this property (called “functoriality”) that makes the subject work. This is
what is used in Theorems 4.6 and 4.7 to prove that certain maps do not exist.
It is also used in Lemma 4.5 to prove that certain spaces have non-trivial
fundamental group.

Example 4.3. For n ∈ Z, let fn : S1 → S1 be the map defined (for com-
plex numbers) by fn(z) = zn, in other words, fn(cos(2πt), sin(2πt)) =
(cos(2πnt), sin(2πnt)). Since fn wraps the circle around itself |n| times (in
the reverse direction if n < 0), it is reasonable to expect that, under the
winding number isomorphism of Lemma 4.4, fn corresponds to mutiplica-
tion by n, in other words, that we have the commutative diagram (4.9)

(4.9)

π1(S1, (1, 0))
(fn)∗- π1(S1, (1, 0))

Z

w

? n - Z

w

?

where w is the winding number isomorphism of Lemma 4.4 and the bottom
arrow is the map Z→ Z that sends x to nx (multiplication by n).

To prove that this is indeed the case, we have to go back to the definitions.
First, we need a generator of π1(S1, (1, 0)), and Lemma 4.4 gives us one,
namely the loop α1, where, for any n ∈ Z, αn(t) = (cos(2πnt), sin(2πnt)),
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0 ≤ t ≤ 1 is a loop in S1 based at (1, 0). Then, by definition, (fn)∗[α1] = [fn◦
α1] = [αn] since fn(α1(t)) = fn(cos(2πt), sin(2πt)) = (cos(2πnt), sin(2πnt))
= αn(t). Since, again by Lemma 4.4, w(αn) = n, we get the assertion of
Diagram 4.9. Or, in multiplicative notation, (fn)∗(α) = αn for all α ∈
π1(S1, (1, 0)).

Example 4.4. Let us look at maps of the torus T 2 = R2/Z2. Recall that
T 2 = S1 × S!. From a homework problem (or p. 77 of [9]) we know that
π1(X × Y ) ∼= π1(X) × π1(Y ), where the isomorphism is given by α →
((pX)∗α, (pY )∗α) for all α ∈ π1(X ×Y ), where pX , pY are the projections of
X × Y to X and Y respectively.

Putting these facts together with Lemma 4.4, we get the following de-
scription of π1(T 2). Let p1, p2 be the projections of S1 × S1 onto the first
and second factors respectively, and let α : I → S1 × S1 be a loop based
at ((1, 0), (1, 0)) To α we can assign two winding numbers: w(p1 ◦ α) and
w(p2 ◦ α). The map π1(T 2) → Z2 given by α → (w(p1 ◦ α), w(p2 ◦ α)) is a
group isomorphism.

To compute induced homomorphisms it will be easier to represent T 2 as
R2/Z2 ∼= (R/Z)× (R/Z), so we need to describe π1(T 2) also is this context.
Let p : R2 → R2/Z2 be the projection to the quotient space. Every loop in
T 2 at the point p(0, 0) is of the form p ◦α, where α : I → R2 is a path from
(0, 0) to some pont (m,n) ∈ Z2. The projections p1 and p2 of this loop are
the projections to R/Z of paths in R from 0 to m, n respectively. This shows
that (m,n) is the pari of winding numbers assigned to the loop p ◦ α in the
above isomorphism. A path with giving pair of winding numbers (m,n) is
p ◦ αm,n, where αm,n(t) = (mt, nt), 0 ≤ t ≤ 1, see Figure 4.11

Figure 4.11. The loop α3,2 in T 2.

If we let 0 denote the point p(0, 0) ∈ T 2, we can summarize this discussion:

Lemma 4.6. The Map φ : Z2 → π1(T 2, 0) defined by φ(m,n) = [p ◦ αm,n]
is a group isomorphism.
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Proof. Clear from the discussion. �

Now to maps of the torus. Let

A =

(
a b
c d

)
, where a, b, c, d ∈ Z

be an integral matrix. Define a map fA : R2 → R2 by

(4.10) fA(x, y) = (ax+ by, cx+ dy).

(if we wrote (x, y) as a column vector, which we hesitate to do for typo-
graphical reasons, fA would be left multiplication by A).

Then fA(Z2) ⊂ Z2, so there is a well defined map, still denoted fA,
on R2/Z2, defined by fA((x, y) + Z2) = fA(x, y) + Z2. Let’s compute the
induced homomorphism (fA)∗ : π1(T 2, 0) → π1(T 2, 0). Take a typical el-
ement [p ◦ αm,n] ∈ π1(T 2, 0). Then, by definition, (fA)∗([p ◦ αm,n]) =
[fA ◦ (p ◦ αm,n)] = [p ◦ (fa ◦ αm,n)], where the first equality is the defini-
tion of induced homomorphism, and the second equality is the definition
of maps on quotient spaces by taking representatives. Now, fA(αm,n(t)) =
(amt + bnt, cmt + dnt) = αam+bn,cm+dn(t). In other words, under the iso-
morphism φ of Lemma 4.6, (fA)∗ is the same as the restriction of the linear
transformation fA to Z2, as in Diagram 4.11

(4.11)

Z2 (φ)- π1(T 2, 0)

Z2

fA|Z2

?
φ- π1(T 2, 0)

(fA)∗

?

If the matrix A has determinant ±1: ad − bc = ±1, then A−1 is also an
integral matrix, so fA−1(Z2) ⊂ Z2. It is easy to check that (fA)−1 = fA−1 .
therefore (fA)−1 gives a well-defined map of T 2 and fA is a homeomorphism
of T 2.

4.10. Homotopy Equivalence. We know that the fundamental group is
invariant under homeomorphism, but it is also invariant under a weaker
equivalence relation between spaces, called homotopy equivalence:

Definition 4.9. Let X and Y be topological spaces (we do not need to assume
connected). We say that X and Y are homotopy equivalent or have the same
homotopy type if there exist continuous maps f : X → Y and g : Y → X so
that g ◦ f ∼ idX and f ◦ g ∼ idY .

Remark 4.4. (1) If instead of saying g ◦ f ∼ idX and f ◦ g ∼ idY we
had said g ◦ f = idX and f ◦ g = idY we would have defined the
notion of homeomorphism. Thus homotopy equivalence is a natural
weakening of homeomorphism.
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(2) If f and g are as in the definition, it is natural to say that f and
g are homotopy inverses to each other and that they are homotopy
equivalences.

(3) Note that it is not assumed that g ◦ f , f ◦ g are homotopic to the
identity relative to any basepoint. So, to see what homotopy equiva-
lence says about the fundamental group, we need to study the effect
on the fundamental group of homotopies that do not preserve the
basepoint.

Theorem 4.10. Let X,Y be connected and locally path connected, let f, g :
X → Y be continuous, suppose that F : X × I → Y is a homotopy from
f to g: F (x, 0) = f(x), F (x, 1) = g(x) (but not assumed to preserve any
basepoint), and suppose x0 ∈ X is a basepoint. Let γ : I → Y be the
path γ(s) = F (x0, s) traced by the basepoint under the homotopy, and let
φγ : π1(Y, f(x0)) → π1(Y, g(x0)) be the isomorphism φγ(β) = γ−1 · β · γ
as in Theorem 4.3. Then the induced homomorphisms f∗ : π1(X,x0) →
π1(Y, f(x0)) and g∗ : π1(X,x0)→ π1(Y, g(x0)) are related by g∗ = φγ ◦ f∗:

π1(Y, g(x0))

π1(X,x0)

g ∗

-

π1(Y, f(x0)),

φγ

6

f∗
-

or, more explicitly, g∗(α) = γ−1 · f∗(α) · γ for all α ∈ π1(X,x0).

Proof. Let α : I → X be a loop based at x0. Then the map G : I × I → Y
defined by G(t, s) = F (α(t), s) is a homotopy of f ◦ α to g ◦ α where the
basepoint moves tracing the path γ. To construct a homotopy between g ◦α
and γ−1 · f ◦ α · γ preserving the basepoint g(x0) we need a suitable map
p : I × I → I × I so that G ◦ p is such a homotopy. Figure 4.12 shows, on
the left, what the desired map does on the boundary of I × I, and, on the
right, how G and G ◦ p are related. Its explicit construction is left as an
exercise. �

Corollary 4.5. If f, g : X → Y are as in the theorem, and, in addition,
f(x0) = g(x0) = y0, then the map φγ in Diagram 4.10 is an inner automor-
phism of π1(Y, y0), in other words, γ ∈ π1(Y, y0) and φγ(β) = γ−1 · β · γ
conjugation by an element of this group.
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Figure 4.12. Effect of Homotopy Moving Basepoint

Proof. If f(x0) = g(x0) = y0, then γ(s) = F (x0, s) is a loop based at y0,
thus represents an element of π1(Y, y0). �

Example 4.5. Let A abd B be tow integral 2 by 2 matrices and let fA, fB :
T 2 → T 2 be the maps defined in Example 4.4. Since fA(0) = fB(0) = 0,
if fA were homotopic to fB, then, for some γ ∈ π1(T 2, 0), we would have
that for all α ∈ π1(T 2, 0), (fB)∗(α) = γ−1 · ((fA)∗(α)) · γ = (fA)∗(α), the
last equality because π1(T 2, 0) = Z2 is abelian. Thus (fA)∗ = (fB)∗, and by
Diagram 4.11 we see that A = B. Thus fA is homotopic to fB if and only
if A = B. Observe that we are not assuming that the homotopy preserves
the basepoint.

Corollary 4.6. If X and Y are homotopy equivalent, then, for any base-
points in X and Y , π1(X) ∼= π1(Y ). More precisely, g∗ ◦ f∗ and f∗ ◦ g∗
are isomorphisms obtained as in Diagram 4.10. In particular, f∗ and g∗ are
isomorphisms.

Proof. Clear. �

Example 4.6. (1) Any deformation retraction is a homotopy equivalence.
This applies to the first three parts of Example 4.2. In particular,
Sn and Rn+1 \ {0} are homotopy equivalent.

(2) A solid torus S1 ×D is homotopy equivalent to S1, see Figure 4.13.
(3) The solid Hg bounded by the standard picture of the surface Σg is

homotopy equivalent to a one-dimensional object, as in Figure 4.13
(4) All the previous examples are deformation retractions, and involve

spaces of different dimensions (here we are speaking intuitively about
dimension, its topological definition and its properties requires some
work). Here is an example of a homotopy equivalence, which is not
a homeomorphism, between two surfaces with boundary. Let S1

be a torus T 2 with an open disk removed, and let S2 be a closed
disk with two open disks removed, see Figure 4.14. Then both S1

and S2 deformation retract to the “figure 8 (more formally, the one-
point union of two circles, see Definition 4.11 below). Then S1 is
homotopy equivalent to S2, but they are not homeomorphic since
∂S1 is connected while ∂S2 has three connected components, and we
now know that homeomorphisms respect boundaries (Theorem 4.9)
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Figure 4.13. Solids Bounded by Surfaces

Figure 4.14. A Homotopy Equivalence of Surfaces with Boundary

(5) It is a fact that for compact surfaces with empty boundary, homotopy
equivalence implies homeomorphism. This follows from classification
of surfaces (which we know) and the homotopy invariance of Euler
characteristic and orientability (which we have not established).

Finally some terminology:

Definition 4.10. A connected, locally path connected space X is said to be
simply connected if πq(X) is the trivial group. The space X is said to be
contractible if it is homotopy equivalent to a point.

Remark 4.5. There are several equivalent characterizations of simply con-
nected spaces: X is simply connected if and only if:

(1) For all x1, x2 in X and for any two paths α, β from x1 to x2, α ∼ β
relative to the endpoints.

(2) Any continuous map f : S1 → X is homotopic to a constant map.
(3) Any continuous map f : S1 → X extends to a continuous map

g : D → X of the closed unit disk.

See, for instance, [5, 9] for more details. Moreover, a contractible space is
simply connected, but not conversely. We sill see later that Sn is simply
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connected for n ≥ 2, but it is not contractible (an intuitively clear fact that
we will not be able to prove here).

Finally, a construction mentioned above:

Definition 4.11. Let X, Y be (connected, locally path connected) spaces,
let x0 ∈ X and y0 ∈ Y . The one point union of X and Y , denoted X ∨ Y ,
is defined to be X ∨ Y = X t Y/x0 ∼ y0.

Example 4.7. The space S1∨S1 is the “figure 8” that we used in Example 4.6,
see Figure 4.14. Our next challenge is to compute π1(S1 ∨ S1).

5. Some Group Theory

We need to develop some group theory in order to describe fundamental
groups of spaces. Recall that we want to compute π1(S1), the fundamental
group of the figure eight. Let a and b denote loops going once around each of
the two circles, as in Figure 5.1. One plausible property of its fundamental
group is that all loops are obtained, up to homotopy, by composing these
any number of times, and that the only cancellations are the obvious ones.
Here is a precise algebraic structure that describes this idea:

Figure 5.1. S1 ∨ S1

5.1. Free Groups. Given two symbols a, b, define a group as follows. Its
elements are certain “words” in the “alphabet ” a, b, a−1, b−1. A word means
a string of these symbols. The empty word is included. A word is called
reduced if it does not contain any of these sub-strings:

(5.1) aa−1, a−1a, bb−1, b−1b.

For example, the following are words:

bbabb−1a−1b−1b−1aabba−1

baba−1a−1baabbaabbb

a−1a−1b−1aaabbababab

∅
where the first is not reduced, while the other three are reduced. For each
of these words you can trace a loop in π1(S1 ∨ S1), see Figure 5.1.
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Any word can be reduced by erasing any occurence of a substring (5.1)
and, if necessary, iterating the process. For example, for the unreduced word
above, this process

bbabb−1a−1b−1b−1aabba−1 → bbaa−1b−1b−1aabba−1 → bbb−1b−1aabba−1

produces a reduced word, called the reduction of the original word.

Define a group Fa,b, called the free group on the two generators a, b as
follows:

(1) The elements of the group are all the reduced words in the alphabet
a, b, a−1, b−1, including the empty word.

(2) If x, y ∈ Fa,b, their product xy is obtained by concatenating the two
words x and y and then reducing the concatenation.

(3) The unit e is the empty word.
(4) The inverse x−1 is obtained by the usual rule: spell x backwards,

interchange the letters a, b with a−1, b−1.

Let’s look at some examples. iI x = abaab−1abb and y = baabba−1,
then xy = abaab−1abbbaabba−1 while yx = baabbabaab−1abb (reducing the
concatenation). In particular xy 6= yx, so Fa,b is not Abelian. (This
can be seen more easily form the fact that ab 6= ba since they are dif-
ferent reduced words.) Since the abaab−1abbb−1b−1a−1ba−1a−1b−1a−1 re-
duces to the empty word, we see that x−1, the inverse of abaab−1abb, is
b−1b−1a−1ba−1a−1b−1a−1 (the usual formula for the inverse).

The group axioms are clear, except for associativity: we will later prove a
more general associativity result (Lemma 5.1 below). In the meantime, we
will accept that we have defined the free group.

The same reasoning applies to alphabets of any size (which we will keep
finite for simplicity):

Definition 5.1. Let S = {a1, . . . an} be any finite set. The free group on S,
denoted FS or Fa1,...,an , is the collection of all reduced words in the alphabet

a1 . . . an, a
−1
1 , . . . a−1

n , including the empty word, and where reduced mean
no successive occurrences aa−1 of a−1a, where a is one of a1, . . . an. The
operations are defined as for Fa,b: the product xy is concatenation followed
by reduction, the unit e is the empty word, and the inverse x−1 is defined
by the usual rule.

5.1.1. The Universal Mapping Property. Here’s a structural characterization
of the free group, called a universal mapping property.

Theorem 5.1. Let S = {a1, . . . , an}, and let i : S → FS be the inclusion
map: i(aj) = aj. Suppose G is any group and suppose f : S → G is a map.
Then there is a unique homomorphism φ : FS → G extending f , meaning
that φ ◦ i = f :
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(5.2)

S
f

- G

FS

i

?

φ

-

Proof. Given f : S → G, define φ first on the alphabet by

(5.3) φ(aj) = f(aj) and φ(a−1
j ) = f(aj)

−1,

where a−1
j is a letter in the alphabet (and, in particular, an element in

FS), and f(aj)
−1 is the inverse in the group G of the element f(aj) ∈ G.

Once φ is defined on the alphabet, then it can be easily defined on FS : let
φ(∅) = e ∈ G and, if x = x1x2 . . . xk is a word (so each xl is an aj or an

a−1
j ), then define

(5.4) φ(x1 . . . xk) = φ(x1) . . . φ(xk).

This defines a homomorphism φ : FS → G because, if x = x1 . . . xk and
y = y1 . . . yl are reduced words, then xy is the reduction of x1 . . . xky1 · · · yl =
x1 . . . xk−jyj+1 . . . yl say (if exactly j cancellations occur in the reduction,

that is, xk = y−1
1 , . . . , xk−j+1 = y−1

j in FS , but xk−j 6= yj+1. Possibly
j = k = l in which case xy is the empty word. Or it may happen that j = 0,
that is, there are no cancellations). Then

φ(xy) = φ(x1 . . . xk−jyj+1 . . . yl) = φ(x1) . . . φ(xk−j)φ(yj+1) . . . φ(yl)

= φ(x1) · · ·φ(xk)φ(y1) . . . φ(yl) = φ(x)φ(y),

where the second equality is the definition (5.4) of φ and the third equality
is because the same cancellations, if any, xky1 = e, etc, that occur in FS
imply φ(xk)φ(y1) = e, etc, in G. This proves the existence of φ.

To prove the uniqueness of φ, observe first that any homomorphism ex-
tending i must satisfy (5.3) and therefore must also satisfy (5.4). �

Example 5.1. (1) If S = {a} has cardinality one, then Fa is the infinite
cyclic group generated by a, The universal mapping property says
that to define, for any group G, a homomorphism Fa → G, is equiv-
alent to stating where the generator a goes: choose any g ∈ G, let
φ(a) = g, then φ(an) = gn ∈ G for any n ∈ Z.

(2) To see an example were the universal mapping property does not
hold, look at any finite cyclic group, say the group Z10 of order 10
generated by 1, and let G = Z. If we look at the map f : {1} → Z
defined by f(1) = 1, then f does not extend to a homomorphism
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φ : Z10 → Z, since we would have φ(2) = 2, φ(3) = 3, . . . φ(10) = 10.
But 10 = 0 in Z10, yet 10 6= 0 in Z, so we would get φ(0) = 0 and
φ(0) = 10, so φ is not defined. The problem is that the relation
10 = 0 holds in Z10 but does not hold in Z. The meaning of the
word free is that there are no relations other than the ones imposed
by the axioms of group theory. One way of making the meaning of
“no relations” precise is the universal mapping property (5.2).

(3) In (5.2), let’s take G = Zn and f(aj) = (0, . . . , 1, . . . 0) (the 1 in the
j-th posiition). Then the resulting homomorphism φ : Fa1,...,an → Zn
is given by

(5.5) φ(x1 . . . xk) = (m1,m2, . . . ,mn)

where mj is the number of occurrences of aj among the letters
x1, . . . , xk minus the number of occurrences of a−1 among the same
letters. This can be seen easily from the fact that all the elements
φ(xl) commute, this formula holds for each letter and is additive.

(4) Another example of a group that is not free is the group Z2. Take
for G any non-abelian group, say the symmetric group group S3

on three letters, and any two elements g, h ∈ G so that gh 6= hg,
say the transpositions g = (12) and h = (23) in S3. Define a map
f : {(1, 0), (0, 1)} → G by f(1, 0) = g and f(0, 1) = h (the standard
generators for Z2). Then f does not extend to a homomorphism
φ : Z2 → G because φ(1, 1) is forced to have two contradictory defini-
tions: φ(1, 1) = φ(1, 0)φ(0, 1) = gh and φ(1, 1) = φ(0, 1)φ(1, 0) = hg,
but gh 6= hg. The problem here is that relations of commutativity
hold in Z2, so Z2 is not free. These relations go beyond the require-
ments of group theory, as the existence of non-abelian groups such
as S3 or Fa,b show.

(5) The last example shows that Z2 is not a free group. But, if we stay
in the restricted class of Abelian groups, then it, as well as Zn for
any n = 1, 2, . . . has a freeness property expressed by a universal
mapping property similar to (5.2). One way of stating the theorem
is to say that Zn is free in the category of Abelian groups, meaning
that it satisfies no relations beyond those dictated by group theory
and commutativity.

Theorem 5.2. Let S = {a1, . . . , an} be the standard basis for Zn as in (3)
of Example 5.1, and let i : S → Zn be the inclusion. Then, given any Abelian
group A and any map f : S → A, there is a unique group homomorphism
φ : Zn → A extending f , meaning that φ(aj) = f(aj) for j = 1, . . . n:
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(5.6)

S
f

- A

Zn

i

?

φ

-

Proof. A simpler version of that of Theorem 5.1, left as an exercise. �

5.2. Free Products of Groups. We need another construction in group
theory. SupposeG1, . . . Gn are groups. We will define a new group as follows:

Definition 5.2. The free product of the groups G1, . . . Gn is the group, de-
noted G1 ∗ · · · ∗Gn,

(1) Its elements are reduced words in the alphabet which is the disjoint
union (G1 \ {e}) t · · · t (Gn \ {e}), including the empty word.
(a) A word means a string of symbols x1x2 . . . xk where each xi

belongs to one of the sets Gj \ {e}.
(b) Note that the indexing by j is essential to the meaning of dis-

joint union in the definition of the alphabet. We distinguish G1

and G2, etc, if they have different indices, even if they are the
same group. We may (and will) use products G ∗G ∗ . . . .

(c) A word is reduced if two successive letters xi and xi+1 never
belong to the same Gj \ {e}, meaning, as just explained, to the
same index j.

(d) The length of the reduced word x = x1 . . . xk is defined to be k,
and we write l(x) = k. The length of the empty word is defined
to be 0. Note that l(x) = 1 if and only if x is a letter in the
alphabet.

(2) The product xy of x = x1 . . . xk and y = y1 . . . yl is defined by

(5.7) xy =



x1 . . . xky1 . . . yl if xk, y1 /∈ same Gj ,

x1 . . . xk−1(xky1)y2 . . . yl if xk, y1 ∈ sameGj

and xky1 6= e,

(x1 . . . xk−1)(y2 . . . yl) if xk, y1 ∈ same Gj

and xky1 = e.

Note that in the second case the product xky1 takes place in the
group Gj and produces a letter in the alphabet. Thus in the first
case the length l(xy) = k+ l, in the second case l(xy) = k+ l−1. In
the third case the definition of xy is reduced to the definition of the
product of two words x′, y′ where l(x′) < l(x) and l(y′) < l(y), so
we could take this as an inductive definition of xy. Of course, in the
third case, it means continue applying case 1 or 2 as needed until
you get a reduced word.
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(3) The unit e is the empty word.
(4) The inverse x−1 is defined by the usual formula: if x = x1 . . . xk,

then x−1 = x−1
k . . . x−1

1 .

To know that we have indeed defined a group all that is needed is the
following lemma:

Lemma 5.1. The multiplication just defined is associative: (xy)z = x(yz)
for all x, y, z ∈ G1 ∗ · · · ∗Gn.

Proof. We sketch a proof by induction on the length l(y), see Proposition
12.5 of Chapter I of [8] for more details. For l(y) = 0 there’s nothing to
prove, and for l(y) = 1 it is a quick check using (5.7), there are seven cases
to check, left as an exercise. If l(y) > 1, then can write y = y1y2 where
l(y1) < l(y) and l(y2) < l(y). Then all the following computations involve
associativity with the middle element y1 or y2 of strictly smaller length:
(xy)z = (x(y1y2))z = ((xy1)y2)z = (xy1)(y2z) = x(y1(y2z)) = x((y1y2)z) =
x(yz). �

Example 5.2. (1) The free group Fa1,...,an of Definition 5.1 is isomorphic
to the free product Z ∗ · · · ∗Z (n factors). More precisely, Fa1,...,an is
the same as Fa1 ∗· · ·∗Fan , recalling, from Example 5.1 that Fa is the
infinite cyclic group generated by a, isomorphic to Z. In this descrip-
tion we are using a larger alphabet: {ak1 : k ∈ Z\{0}}t· · ·t{akn : k ∈
Z \ {0}} rather than the earlier alphabet {a1, . . . , an, a

−1
1 . . . , a−1

n }.
(2) The smallest non-trivial free product that can be formed is Z2 ∗ Z2,

the free product of two groups of order 2. Let’s call their generators
a and b respectively. Then the alphabet is {a, b} and, since a2 = e
and b2 = e, we can easily list all the elements of the group according
to their lengths: e (the empty word, length 0), a, b (of length 1), ab
and ba (of length 2), aba and bab (length 3), abab and baba (length
4), and so on. There are exactly two elements of any given length
l ≥ 1, the element is completely determined by the first letter. It is
easy to check that all elements of odd length have order 2, while all
elements of even length have infinite order.

There is a good way to picture this group as what is called the
infinite dihedral group D∞, see Figure 5.2. This is the group of
motions of R generated by two reflections α, β,where α(x) = −x
(reflection in 0) and β(x) = 1 − x (reflection in 1

2). Then αβ(x) =
−(1−x) = x− 1 is translation by −1 and βα(x) = 1− (−x) = x+ 1
is translation by 1. There is a homomorphism φ : Z2 ∗ Z2 → D∞
defined by φ(a) = α and φ(b) = β, illustrating the universal mapping
property of free products in Theorem 5.3 below. It is easy to check
that φ is an isomorphism, with elements of odd length going to
reflections in integers or half-integers, and elements of even length
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to translations by an integral amount. These are exactly all the
elements of D∞.

Figure 5.2. The Infinite Dihedral Group D∞ ∼= Z2 ∗ Z2

(3) The last example illustrates the fact that non-trivial (meaning at
least two factors, both with mote than one element) free products
always give infinite groups. The next smallest example would be
Z2 ∗ Z3. This is already quite complicated. If we let a generate
Z2 and b generate Z3, we have e of length 0, a, b, b2 of length 1,
ab, ab2, ba, b2a of length 2, aba, ab2a, bab, bab2, b2ab, b2ab2 of length
3, etc. We should meet this group again in relation to hyperbolic
geometry.

Theorem 5.3. Let G1, . . . Gn and G be groups, and suppose given homo-
morphisms φj : Gi → G for j = 1, . . . n. Let ij : Gj → G1 ∗ · · · ∗ Gn be
the inclusion of each factor in the free product. Then there exists a unique
homomorphism φ : G1 ∗ · · · ∗ Gn → G extending the φj, meaning that, for
each j, φ ◦ ij = φj.

Proof. This is just like the proof of Theorem 5.1. If x = x1 . . . xk is a reduced
word and xl ∈ Gjl\{e}, let φ(x) = φj1(x1) . . . φjk(xk) (and φ(empty word) =
e). As before this is well defined and gives the unique extension of φ1 . . . φn
to G1 ∗ · · · ∗Gn. �

Finally one useful fact about the universal mapping properties that we
have discussed: they uniquely define the structure of the group in question,
including the the inclusion of the distinguished subsets or subgroups.

Theorem 5.4. Fix one of the universal mapping properties of Theorem 5.1,
or 5.2 or 5.3. Given any two groups that property, there is a unique iso-
morphism between them that takes one inclusion to the other. In the case
of Theorem 5.1 this means the following: Suppose F ′S is another group such
that there is an inclusion i′ : S → F ′S with the property that for any group
G and any map f ′ : S → G there is a unique homomorphism φ′ : F ′S → G
extending f ′:
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(5.8)

S
f ′

- G

F ′S

i′

?

φ
′

-

Then there exists a unique isomorphism Φ : FS → F ′S so that Φ ◦ i = i′:

(5.9)

S
i′

- F ′S

FS

i

?

Φ

-

Similar statements hold for free abelian groups (Theorem 5.2) and free prod-
ucts of groups (Theorem 5.3 ).

Proof. In the case of the free group, take G = F ′S in (5.2), to get a unique
Φ : FS → F ′S as in (5.9). Then take G = FS in (5.8) to get Φ′ : F ′S → FS as
in (5.9) but with Φ′ in the opposite direction from Φ. Then Φ′◦Φ : FS → FS
and Φ′(Φ(i(a))) = Φ′(i′(a)) = i(a) for all a ∈ S, so Φ′ ◦ Φ and id are both
homomorphisms of FS to itself that are the identity on i(S) (in other words,
satisfy (5.2) with G = FS and f = i), so, by uniqueness, Φ′ ◦ Φ = id.
Similarly Φ ◦Φ′ = id, so we have the desired isomorphism. The other cases
are similar. �

6. Van Kampen’s Theorem

Now we state and prove a theorem that allows us to compute the funda-
mental group of a union of spaces. As usual, X is a connected, locally path
connected topological space.

Theorem 6.1. Suppose X = U ∪ V where U, V ⊂ X are open, and U , V
and U ∩ V are connected and non-empty. Fix a point x0 ∈ U ∩ V . The



56 TOLEDO

diagram of topological spaces and continuous maps (in this case inclusions)

(6.1)

U

U ∩ V
jU∩V -

i u

-

X

j
U

-

V

j V

-

iV
-

gives a diagram of fundamental groups and induced homomorphisms:

(6.2)

π1(U, x0)

π1(U ∩ V, x0)
(jU∩V )∗ -

(i u
) ∗

-

π1(X,x0)

(j
U )∗

-

π1(V, x0)

(j V
) ∗

-

(iV )∗ -

Then

(1) The homomorphism of the free product φ : π1(U, x0) ∗ π1(V, x0) →
π1(X,x0) given by Theorem 5.3 is surjective.

(2) The kernel K of φ is the smallest normal subgroup of π1(U, x0) ∗
π1(V, x0) that contains {((iU )∗α)((iV )∗α)−1 : α ∈ π1(U ∩ V, x0)}.

Remark 6.1. Recall the definition of the homomorphism φ from Theorem 5.3:
If α1 . . . αk is a reduced word representing an element of π1(U, x0)∗π1(V, x0).
then φ(α1 . . . αk) = φ1(α1) . . . φk(αk) where

φi =

{
(jU )∗ if αi ∈ π1(U, x0),

(jV )∗ if α ∈ π1(V, x0).

Since we know from Theorem 5.3 that φ is well-defined, non-reduced words
coud be used as well.

For simplicity, let G = π1(U, x0) ∗ π1(V, x0). Since the first assertion says
that φ : G→ π1(X,x0) is surjective, we must have π1(X,x0) = G/K, where
K = ker(φ), in other words, π1(X,x0) is a quotient group of G. Diagram 6.2



5520 NOTES 57

gives that for all α ∈ π1(U ∩ V, x0), (jU )∗(iU )∗(α) = (jV )∗(iV )∗(α) (both
equal to (jU∩V )∗(α)). Therefore

(6.3) φ((iU )∗(α)) = φ((iV )∗(α)) for all α ∈ π1(U ∩ V, xo).

In other words, π1(X,x0) is a quotient group of G in which (6.3) holds. This
is the same as saying that the following set S is contained in K:

(6.4) S = {((iU )∗(α))((iV )∗(α))−1 : α ∈ π1(U ∩ V, x0)} ⊂ K.

The second assertion of the theorem says that K is as small as possi-
ble given the constraint (6.3) (which is equivalent to the constraint (6.4)).
Equivalently, this says that G/K = π1(X,x0) is as large as possible given
the constraint (6.3) (equivalently, to constraint (6.4)).

The phrase “K is as small as possible” has he usual meaning: if N is any
normal subgroup of G containing S, then K ⊂ N . Equivalently, K is the
intersection of all normal subgroups of G containing S. Since K and G/K
are , so to speak, “inversely proporional”, this is also a reasonable definition
of the phrase “G/K is as large as possible”, and in many situations this is
the best definition of this phrase. But in some situations it may be desirable
to have a definition that does not mention K explicitly, so it is reasonable
to use the following definition of “as large as possible”:

Suppose H is any group such that there is a surjective homomorphism
ψ : G→ H satisfying the same constraint (6.3) that φ satisfies. Then there
is a surjective homomorphism f : π1(X,x0) → H so that f ◦ φ = ψ. The
equivalence of the two formulations is easy to see: if H is as stated, then
H = G/N where N = ker(ψ) is normal subgroup of G containing S, hence
containing K, and f is the natural map G/K → G/N . This formulation is
also equivalent to the universal mapping property used by Massey on p. 114
of [9] to formulate Van Kampen’s theorem, while the formulation we have
chosen is as used by Hatcher on p. 43 of [5].

Proof of Van Kampen’s Theorem. For the first statement, let α : I → X
be a loop based at x0. We must show that [α] is in the image of φ. Let
ε > 0 be a Lebesgue number for the cover α−1(U), α−1(V ) of I, and let
0 = t0 < t1 < · · · < tn = 1 be a partition of I so that ti − ti−1 < ε for all i.
For each i = 1, . . . , n choose Wi = U or V so that α([ti−1, ti]) ⊂ Wi. Since
Wi ∩Wi+1 is, by assumption, connected, and contains x0, there is a path βi
from x0 to α(ti) in Wi ∩Wi+1, for i = 1, . . . , n− 1. Let αi be the restriction
of α to [ti−1, ti], linearly reparametrized to [0, 1]. Then we can write

(6.5) [α] = [α1 · β−1
1 ] · [β1 · α2 · β−1

2 ] · · · [βn−1 · αn] = [γ1] · · · [αn]

where γi is the loop β−1
i−1 · αi · βi in Wi (defined by one of the two possible

associations, the choice is irrelevant), see Figure 6.1
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Figure 6.1. Surjectivity of π1(U, x0) ∗ π1(V, x0)→ π1(X,x0).

This equation can be read in two ways. If we consider the [γi] ∈ π1(Wi, x0),
let’s denote it [γi]Wi in this case, then [γ1]W1 · · · [γn]Wn is a word, not neces-
sarily reduced, whose reduction represent an element g of the free product
π1(U, x0) ∗ π1(V, x0). If we interpret the [γi] as elements of π1(X,x0), let’s
denote them [γi]X in this case, then, by definition of φ, [αi]X = φ([γi]Wi),
and (6.5) then reads [α]X = φ(g), thus [α] is in the image of φ and the first
part of the theorem is proved.

The proof of the second statement is much more involved. We give a quick
sketch and refer to [5, 9] for more details. To have a reasonable notation,
let

G1 = π1(U, x0), G2 = π1(V, x0), A = π1(U ∩ V, x0),

and

i1 : A→ G1, i2 : A→ G2

the induced homomorphisms on fundamental groups. Let

S = {((i1)∗a)((i2)∗a)−1 : a ∈ A}
and

N = smallest normal subgroup of G1 ∗G2 containing S.

Let φ : G1 ∗G2 → π1(X,x0) be the surjective homomorphism given by the
first parr. We want to show that if a1 . . . ak ∈ G1 ∗G2 and φ(a1 . . . ak) = e,
then a1 . . . ak ∈ N . It will be more convenient to prove the equivalent
statement: if φ(a1 . . . ak) = e, then ψ(a1 . . . ak) = e, where ψ : G1 ∗ G2 →
G1 ∗G2/N is the natural projection.

We need to know some ways of changing the word a1 . . . ak without chang-
ing its image ψ(a1 . . . ak). Here are two ways:

Move I: In a1 . . . aj . . . ak, replace aj by a′ja
′′
j if aj , a

′
j , a
′′
j are in the same

group Gj (= G1 or G2) and aj = a′ja
′′
j in Gj , and also its inverse operation.

This move one does not change the element a1 . . . ak ∈ G1 ∗G2.

Move II: In a1 . . . aj . . . ak, if aj ∈ G1 and aj = i1a for some a ∈ A, replace
aj by a′j = i2a ∈ G2 (and similar operation if aj ∈ G2 and aj = i2a). This
operation may change the element a1 . . . ak ∈ G1 ∗G2, but does not change
ψ(a1 . . . ak) ∈ G1 ∗G2/N .
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So take a word a1 . . . ak ∈ G1 ∗ G2 so that φ(a1 . . . ak) = e. Each aj is
represented by a loop (also called aj) in U or V so that a1 · · · ak is homotopic

to x0. Represent this homotopy class by a loop a1 . . . ak where aj : [ j−1
k , jk ]→

X. Let F : I × I → X be a homotopy of this loop to x0:

F (t, 0) = x0, F (t, 1) = a1 · · · ak(t), F (0, s) = F (1, s) = x0.

By the usual Lebesgue number argument plus a bit n=more refinement, we
can find subdivisions 0 = t0 < t1 < · · · < tm = 1 and 0 = s0 < s1 < · · · <
sn = 1 of I so that:

(1) The partition t0, t1, . . . , tm of I refines the partition 0, 1
k ,

2
k , . . . , 1

used to define the loop a1 · · · ak.
(2) Let Ri,j = [ti−1, ti] × [sj−1, sj ]. Then for all i, j, F (Ri,j) ⊂ Wij ,

where Wij = U or V .

Let vi,j = F (ti, sj), and let Vi,j be the intersection of the sets Wk,l containing
vi,j , so Vi,j is one of U, V, U∩V . Define paths ai,j , bi,j to be the images under
F of the sides of the rectangles as in Figure 6.2.

Figure 6.2

Then in Wi,jwe have a homotopy relative endpoints:

(6.6) bi−1,j · ai,j ∼ ai,j−1 · bi,j (rel endpoints).

To convert this to an equation involving loops, choose a path γi,j lying in
Vi,j from x0 to vi,j . Then to the a’s and b’s we can assign loops α, β by

αi,j = γi−1,j · ai,j · γ−1
i,j and βi,j = γi,j−1 · bi,j · γ−1

i,j .

Then (6.6) implies the equation

(6.7) [βi−1,j αi,j ]Wi,j = [αi,j−1 βi,j ]Wi,j ,

the subscriptWi,j meaning that the equality takes place in the group π1(Wi,j , x0),
which we recall is one of G1, G2.



60 TOLEDO

Let’s look at the subdivision of I × I. At the bottom edge we have the
element α1,0α2,0 . . . αm,0 = e in G1 ∗G2 since each αi,0 is the constant path
x0. The last letter αm,0 of this word is the same as αm,0βm,1 since βm,1
is also the constant path x0. Looking at (6.7) for the rectangle Rm,1 (the
bottom right hand corner of the subdivision), we get [βm−1,1αm,1]Wm,1 =
[αm,0βm,1]Wm,1 , which means that, by moves of type I, we can replace the
lower edge α1,0 . . . αm,0 by the path αm,0 . . . αm−1,0βm−1,1αm,1 from the bot-
tom left hand corner of the subdivision to the vertex on the right edge one
above the bottom, as pictured in the left of Figure 6.3. Since it only involves
Move I, this is an equality in G1 ∗ G2. (note that βm−1,1αm,1 = e, and all
elements with j = 0 or i = m are also e since they are the constant loop at
x0).

Figure 6.3

Now we proceed to the left. We look at [βm−1,1]Wm,1 , replace it by
[βm−1,1]Wm−1,1 , which is a move of type I if Wm,1 = Wm−1,1 but is a move of
type II otherwise. Then we use the relation (6.7) applied to Rm−1,1 to “move
the path over this rectangle”, that is, replace αm,0 . . . αm−1,0βm−1,1αm,1 by
αm,0 . . . αm−2,0βm−2,1αm−1,1αm,1 (pictorially, move the β one unit to the
left), as shown in Figure 6.3. Since only moves of type I and II are involved,
this doesn’t change the element of G1 ∗G2/N .

Continue this way until you reach the left-hand edge, then move to the
next layer on the right hand edge by using βm,2 = e since again it is the
constant loop at x0, then move to the left as before by “lifting the path”
over each rectangle. The general step requires a replacement as shown in
Figure 6.4, namely moves of (possibly) type II

[βi,j ]Wi+1,j ↔ [βi,j ]Wi,j and [αi,j−1]Wi,j−1 ↔ [αi,j−1]Wi,j ,

followed then by the move (6.7) of type I. Continue this way until we cover
the whole subdivision of I×I. Since these moves do not change the element
of G1 ∗G2/N , we get that the top edge of the rectangle represents the same
element of G1 ∗G2/N as the bottom edge:

e = α1,0 . . . αm,0 = α1,n . . . αm,n in G1 ∗G2/N.

Finally the condition above that the partition t0, t1, . . . tn refines the parti-
tion 0, 1

k . . . 1 says that α1,n . . . αm,n is a finer factorization of the original
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Figure 6.4

a1 . . . ak, thus equivalent to it by moves of type I. Thus we have proved
that a1 . . . ak ∈ N , in other words, ker(φ) ⊂ N , concluding the proof of the
second statement.

�

6.1. Applications of Van Kampen’s Theorem. We are now in the po-
sition to compute many more examples of fundamental groups. We start
with a simple example that only uses the first statement of Van Kampen’s
theorem.

Example 6.1. The unit sphere Sn ⊂ Rn+1 is simply connected for n ≥ 2.

Proof. Let U+ = {xn+1 > −1
2} and U− = {xn+1 <

1
2} and let U = U+ ∩ Sn,

V = U− ∩ Sn. It is easy to check that, for any n ≥ 1, U and V are
both homeomorphic to an n- disk, in particular, both are simply connected,
and U ∩ V has the equator {(x1, . . . , xn, 0) : x2

1 + . . . x2
n = 1} = Sn−1 as a

deformation retract, see Figure 6.5 Since, for n ≥ 2, Sn−1 is connected, U∩V
is connected, and the first part of Van Kampen’s theorem gives a surjection
of the trivial group {e} ∗ {e} to π1(Sn), thus Sn is simply connected for
n ≥ 2. �

Figure 6.5. π1(S2) and π1(S1 ∨ S1).

The principle behind this example is the following immediate corollary of
Van Kampen’s theorem:
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Corollary 6.1. Suppose X = U ∪ V where U, V are open and simply con-
nected, and U∩V is non-empty and connected. Then X is simply connected.

Proof. The first part of Van Kampen’s theorem gives a surjection of the
trivial group to π1(X). �

Example 6.2. π1(S1 ∨S1, x0) = Z ∗Z, the free group on two generators Fa,b,
where a, b are loops going once around each of the two circles.

Proof. Let’s take S1 ∨ S1 to be the union X of two circles C1, C2 ⊂ R2 of
radius 1 and center at (−1, 0) and (0, 1) respectively, and x0 = (0, 0) their
intersection. Let U = X ∩ {x < 1} and V = X ∩ {x > −1}. Then U, V
and U ∩ V satisfy the hypotheses of Van Kampen’s theorem, U has C1 as a
deformation retract, V has C2 as a deformation retract, and U ∩ V has x0

as deformation retract, see Figure 6.5. Therefore π1(U, x0) = π1(V, x0) = Z
and π1(U∩V ) = {e}, therefore Z∗Z surjects to π1(X,x0) with trivial kernel,
in other words, π1(X,x0) = Z ∗ Z. �

The principle behind this example is the following corollary of Van Kam-
pen’s theorem:

Corollary 6.2. Suppose X = U ∪V where U, V are open, connected, U ∩V
is non-empty, (connected) and simply connected, and let x0 ∈ U ∩ V . Then
π1(X,x0) = π1(U, x0) ∗ π1(V, x0).

Proof. Since π1(U ∩V, x0) = {e}, the surjective map π1(U, x0) ∗π1(V, x0)→
π1(X,x0) is also injective. �

Of course, to use this Corollary effectively in examples such as π1(S1∨S1)
we have to choose open sets of the correct homotopy type. We would like
to decompose S1 ∨ S1 as the union of the two obvious circles, but these
are not open. We choose slightly bigger open sets of the same homotopy
type, and with their intersection of the homotopy type of x0, and then
apply the theorem. This type of adjustment is typical of the applications of
Theorem 6.1.

Example 6.3. We could use the same reasoning, inductively, to show the
following: Let S1 ∨ · · · ∨ S1 (n times) be the one-point union of n circles, in
other words, choose a point xi in each S1 and define

X = S1 ∨ · · · ∨ S1 = S1 t · · · t S1/(x1 ∼ x2 ∼ · · · ∼ xn).

Then π1(X) = Z ∗ · · · ∗ Z = Fa1,...,an , the free group on n generators (see
Definition 5.1), where ai is a loop going once around the i-th circle.

Example 6.4. Let P 2 be the projective plane (see (6) and (7) of Example 1.1).
Then π1(P 2) = Z2, the cyclic group of order two.
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Proof. Present P 2 as the close unit disk D with antipodal points on its
boundary S1 identified. Divide the boundary into two semicircles from
(−1, 0) to (0, 1), label them a. Then, in the notation for presenting sur-
faces explained in (9) of Example 1.1, P 2 is presented as aa. The half-circle
a projects to a loop in P 2. Cover P 2 by two open sets: U = the projection
to the quotient space of the annulus 1

4 < |x| ≤ 1 and V = projection to

quotient space of |x|, 3
4 . Then U is an open Móbius band which deformation

retracts to the circle which is the projection of a, and V is an open disk.
U ∩V is an annulus that deformation retracts to the circle |x| = 1

2 . Then U
and U ∩V are both homotopy equivalent to a circle, thus have infinite cyclic
fundamental group, isomorphic to Z, while V is simply connected. We need
to take Take the base-point at the point x0 = (1

2 , 0) ∈ U ∩ V . Then, by
sending a path c from x0 to (1, 0) we can take for generator of π1(U, x0)
the loop cac−1 and for generator of π1(U ∩ V ) the loop b formed by the
circle |x| = 1

2 counterclockwise. Then it is easy to see (and checked in a
homework problem) that the homomorphism induced by inclusion sends b
to c ·a2 ·c−1, see Figure 6.6. Theorem 6.1 tells us that π1(P 2) is the quotient
of π1(U, x0)∗π1(V, x0) = Z∗{e} = Z buy the smallest normal subgroup con-
taining twice the generator. Since Z is abelian, every subgroup is normal,
so this is the same as the subgroup 2Z, so π1(P 2) = Z/2Z = Z2 as asserted.

�

Figure 6.6. π1(P 2) and π1(T 2)

Remark 6.2. To see shortly a general pattern, it is more suggestive to express
the answer in terms of the generator a of π1(U, (1, 0)): π1(P 2) =< a > / <
a2 > were < c > stands for the cyclic group generated by c. All we need to
do is to change the base-point to (1, 0), the image of π1(U ∩V, x0) then goes
to the subgroup generated by c−1 · b · c = c−1 · c · a2 · c−1 · c = a2.

Example 6.5. We already know that π1(T 2) = Z2, see Example 4.4. Let’s
see that Theorem 6.1 gives the same result. Present T 2 as a quotient of the
unit square with identification aba−1b−1 and cover T 2 by U = neighborhood
of the boundary, and V = interior of the square. Then U deformation
retracts to a space homeomorphic to S1 ∨ S1 formed by the two loops a, b
in T 2, while V is simply connected, and U ∩ V is homotopy equivalent to
a circle. So the groups in question in Diagram 6.2 are Z = π1(U ∩ V, x0),
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Fa,b = Z∗Z = π1(U), and π1(V ) is trivial. Then, after an argument changing
base-points as in the last remark, we see that the image of π1(U ∩ V ) in
π1(U) = Fa,b is the subgroup generated by aba−1b−1, see Figure 6.6. Thus
Theorem 6.1 tells us that π1(T 2) = Fa,b/N where N is the smallest normal
subgroup of Fa,b containing the word aba−1b−1. This subgroup N is called
the commutator subgroup of Fa,b, and we will study these subgroups shortly.
Let’s just say for now that there is a map Fa,b/N → Z2 that is clearly
surjective and it must be an isomorphism because we have an independent
proof that the loops a and b generate the group π1(T 2) ∼= Z2.

Definition 6.1. Let a1, . . . an be symbols and let r1, . . . rm be words in the
alphabet a1, . . . , an. The symbol

< a1, . . . , an | r1, . . . rm >

denotes the group

G = Fa1,...,an/N(r1, . . . rm),

where Fa1,...,an is the free group on a1, . . . an and N(r1, . . . rm) is the smallest
normal subgroup of Fa1,...,an containing the elements r1, . . . , rm. We say
that a1, . . . an are generators of G, that r1, . . . rm are relations in G, and
that < a1, . . . , an | r1 . . . , rm > is a presentation of G by generators and
relations.

Example 6.6. (1) < a | a2 > is a presentation for Z2, the cyclic group
of order 2, as in Example 6.4 and Remark 6.2.

(2) < a, b | a2, b2 > is a presentation of the infinite dihedral group D∞
of Example 5.2

(3) < a, b | aba−1b−1 > is a presentation of the free abelian group in two
generators, Z2, as in Example 6.5.

(4) The same reasoning that we used in Example 6.5 to derive a presen-
tation of π1(T 2) can be used to derive a presentation of π1(K), where
K is the Klein bottle: present K as the quotient of the unit square by
the identification aba−1b (see Figure 1.2): π1(K) =< a, b | aba−1b >.

(5) It is now easy to see the pattern, with the same proof, in the case
that there is only one vertex in the quotient space: if w is a word in
a1, . . . , an representing identifications on the boundary of a disk (or
2n-gon) to get a surface X, then π1(X) =< a1, . . . , an | w >. For
example

(6.8) π1(Σg) =< a1, b1, a2, b2, . . . ag, bg | a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g > .

where Σg is as defined in Example 1.1. The common reason to
all these computations of the fundamental group of a surface is:
we can cover the quotient space X by two open sets U , V , where
U has the homotopy type of a one- point union of n circles, V is
simply connected, and U ∩ V deformation retracts to a circle. The
induced homomorphism π1(U ∩ V ) → π1(U) is the homomorphism
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Z→ Fa1,...,an that sends the generator of Z to the word w. Thus the
situation of Figure 6.6 is typical.

6.2. Some properties of π1(Σg). .

We have given a way of defining groups, called a presentation by gener-
ators and relations, see Definition 6.1, and we have given a presentation of
π1(Σg). In general, giving a presentation of a group does not say very much
about the group, for instance, is it trivial, abelian, etc. The reason is that it
is, in general, not easy to tell what the smallest normal subgroup containing
r1, . . . rm is. For all we know it could be all of Fa1,...,an . But in the case of
the presentation (6.8) a lot more can be said. We study this presenation in
more detail.

Theorem 6.2. Let Fg denote a free group on g generators. Then there
are homomorphisms i : Fg → π1(Σg) and j : π1(Σg) → Fg so that the
composition ji : Fg → Fg is the identity, thus i is injective and j is surjective.
In particular, π1(Σg) is non-abelian if g > 1.

Proof. Recall the presentation (6.8):

π1(Σg) =< a1, b1, · · · , ag, bg | a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g >

Let Fg = Fa1,...,ag . Since Fa1,...,ag is free, there is a unique homomorphism

i : Fa1,...,ag →< a1, b1, · · · , ag, bg | a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g >

with the property that i(al) = al for l = 1, . . . , g. We want to define a
homomorphism

j :< a1, b1, · · · , ag, bg | a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g >→ Fa1,...,ag

by setting j(al) = al and j(bl) = e for l = 1, . . . , g. We can certainly define a
homomorphism j : Fa1,b1,...,ag ,bg with this property, the question is whether
it gives a well defined homomorphism on the quotient group

Fa1,b1,...,ag ,bg/N → Fa1,...,ag ,

where N is the smallest normal subgroup of Fa1,b1,...,ag ,bg containing the word

a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g , see Definition 6.1. This happens if and only if
j(N) = {e}. Since the kernel of j is a normal subgroup, by the definition
of N this happens if and only if j(a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g ) = e. But

j(a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g ) = a1a
−1
1 . . . aga

−1
g = e, so j is well defined on

the quotient group. Since ji(al) = al for l = 1, . . . , g, it follows that ji is
the identity of Fa1...,ag . The remaining statements follow immediately. �

Remark 6.3. There is a geometric picture corresponding to the algebraic
proof just given. Using a symmetric model of Σg, we can decompose Σg =
Σ+
g ∪ Σ−g , where each Σ±g is homeomorphic to a disk with g holes, so each

π1(Σ±g ) is a free group Fg. Pick one of the pieces, say Σ+
g , observe that it is a
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retract of Σg and that the loops a1, . . . , ag can be chosen to lie in Σ+
g , while

the loops b1, . . . , bg go to trivial loops under the retraction, See Figure 6.7.

Figure 6.7. Fa1,...,ag is a Subgroup of π1(Σg).

6.2.1. Abelianization of a Group. To finish our discussion of π1(Σg) we need
another concept from group theory. Given any group G, there is an abelian
group Gab, called the abelianization of G, with the following universal prop-
erty: There is a homomorphism p : G→ Gab, and, given any abelian group
A and any homomorphism φ : G→ A, there exists a unique homomorphism
φab : Gab → A so that φab ◦ p = φ:

(6.9)

G
φ

- A

Gab

p

?
φ a
b

-

An equivalent formulation of this property is to say that Gab is the largest
abelian quotient group of G.

To construct Gab, we need the commutator subgroup G′ of G: Given any
group G, let G′ be the subgroup generated by {ghg−1h−1 : g, h ∈ G}. This
is a normal subgroup of G because, for any k ∈ G, k(ghg−1h−1)k−1 =
(kgk−1)(khk−1)(kgk−1)−1(khk−1)−1, therefore kG′k−1 ⊂ G′ for all k ∈ G.
ThusG/G′ is a group and there is a surjective homomorphism p : G→ G/G′.

Theorem 6.3. The group Gab exists and Gab ∼= G/G′.
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Proof. First, note that for all g, h ∈ G, we have that p(g)p(h) = p(h)p(g)
because p(ghg−1h−1) = e by definition of G′. Since p is surjective we get
that G/G′ is an abelian group. Next, given any abelian group A and any ho-
momorphism φ : G → A, we have that G′ ⊂ ker(φ), because, for all g, h ∈
G, since A is abelian, we have φ(ghg−1h−1) = φ(g)φ(h)φ(g)−1φ(h)−1 =
φ(g)φ(g)−1φ(h)φ(h)−1 = e. Thus, if p : G → G/G′ is the quotient homo-
morphism, we see that G/G′ has the universal mapping property of Gab in
Equation (6.2.2). Putting A = Gab and G/G′ for Gab in (6.2.2) we get a
map G/G′ → Gab, then, putting A = G/G′ we get a map Gab → G/G′, and
it is easy to check that these are inverses of each other, so Gab and G/G′

are isomorphic.

�

Remark 6.4. This construction of Gab makes it clear that it is “functorial”
or “natural”, meaning that if G and H are groups and φ : G → H is a
homomorphism, then there is an induced homomorphism φab : Gab → Hab.
Moreover, whenever we have compositions defined, then (φ ◦ ψ)ab = φab ◦
ψab. Also idab = id. From this it follow formally that isomorphic groups
have isomorphic abelianizations. To construct φab, we just need to observe
that φ(G′) ⊂ H ′, since φ(ghg−1h−1) = φ(g)φ(h)φ(g)−1φ(h)−1. Therefore
φ : G → H induces a well defined homomorphism G/G′ → H/H ′. This
homomorphism is, by definition, φab.

Here is one useful example of the abelianization:

Theorem 6.4. Let Fn be the free group on n generators and let Zn be the
free abelian group on n generators. Then (Fn)ab ∼= Zn.

Proof. Let S = {a1, . . . , an} be free generators for Fn, as in Equation (5.2)
Then it is easy to check that the inclusion of p(S) in (Fn)ab satisfies the
universal mapping property of Equation (6.2.2). Thus the two groups in
question are isomorphic. �

Remark 6.5. The computation of π1(T 2) in Example 6.5 gives us a way to
visualize the commutator subgroup of the free group Fa,b on two genera-
tors a, b. Present T 2 = R2/Z2, and also, as in Example 6.5 as S1 ∨ S1,
with fundamental group Fa,b with relation aba−1b−1 corresponding to the
boundary of the square. Let X be the pre-image in R2 of S1 ∨ S1. Thus
X = {(x, y) : x ∈ Z or y ∈ Z}. Then it is easy to see that any loop in
X based at the origin projects to a loop in the commutator subgroup F ′a,b,

since it becomes trivial in π1(T 2) which is the abelianization of Fa,b. Later,
when we discuss covering spaces, we will see that π1(X) is actually isomor-
phic to the kernel of π1(S1∨S1)→ π1(T 2). The word aba−1b−1 corresponds
to the loop shown in Figure 6.8, while a conjugate is shown in the same
figure, and an arbitrary element of π1(X) is a product of conjugates. Thus



68 TOLEDO

the commutator subgroup F ′a,b is quite complicated. Van Kampen’s theo-

rem implies that it is the smallest normal subgroup containing aba−1b−1,
and this picture indicates why it can be difficult to compute this normal
subgroup.

Figure 6.8. The Commutator Subgroup of F2.

6.2.2. Topological Invariance of the Genus. With the concept of abelianiza-
tion we can finish the proof of Theorem 1.1.

Theorem 6.5. π1(Σg)ab ∼= Z2g.

Proof. Recall the presentation (6.8) of π1(Σg). Let F = Fa1,b1,...,ag ,bg and
let N be the smallest normal subgroup of F containing the word w =
a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g , so that π1(Σg) = F/N . Since w ∈ F ′, we see
that there is a map F/N → F/F ′ = Fab. We get diagrams:

F/N
φ
- F/F ′ = Fab

(F/N)ab

p1

?
φ a
b

-

and

F
ψ
- (F/N)ab

Fab

p2

?
ψ a
b

-
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Since all these maps send the generators a1, b1, . . . , ag, bg of F to their images
in the respective groups, it is easy to check that φab◦ψab and ψab◦φab are the
identity, hence (F/N)ab ∼= Fab, and, by the previous theorem, Fab ∼= Z2g. �

Corollary 6.3. If Σg is homotopy equivalent to Σh, then g = h.

Proof. By Remark 6.4, if π1(ΣG) ∼= π1(Σh), then Z2g ∼= Z2h. By standard
theory of abelian groups, two free abelian groups are isomorphic if and only
if they have the same rank, thus g = h. �

Note that this concludes the proof of Theorem 1.1: the only part that
was missing was being able to distinguish Σg and Σh for g 6= h.

7. Differential Geometry of Surfaces

Recall, from Definition 1.1 and from Section 6 of [12] what is meant by S
being a smooth surface. We now turn our attention to geometric concepts
that can be defined on smooth surfaces. We will often need to refer to Section
6 of [12] for some of these concepts. In the references there are several books
that cover these topics, [4, 7, 11, 13, 14, 15, 16, 17, 18], although often in
more detail and with different points of view.

7.1. Riemannian Metrics on Surfaces. The concept of Riemannian met-
ric is motivated by the study of the intrinsic geometry of smooth surfaces
S ⊂ R3, in particular, the intrinsic distance dS , as defined in Section 6..1 of
[12]. Recall that for x, y ∈ S, dS(x, y) is defined to be

(7.1) inf{L(γ) : γ a piecewise differentiable path in S from x to y},

where L(γ) denotes the length of γ: if γ : [a, b]→ S, then

(7.2) L(γ) =

∫ 1

0
|γ′(t)| dt =

∫ 1

0

√
x′(t)2 + y′(t)2 + z′(t)2 dt,

which is often abbreviated as

(7.3) L(γ) =

∫
γ

√
dx2 + dy2 + dz2 =

∫
γ
ds,

where ds2 = dx2 + dy2 + dz2.

If the surface S is parametrized by an open set U ⊂ R2, meaning that
there is a smooth map x : U → R3 so that x is a homeomorphism from U to
S and it is non-singular in the sense that, if (u1, u2) are the coordinates of
u ∈ U , the partial derivatives xu1 and xu2 are linearly independent at each
u ∈ U , equivalently, the cross-product xu1 × xu2 6= 0 at each u ∈ U . Let us
abbreviate x1 = xu1 and x2 = xu2 .
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The curve γ(t) = x(u(t)) for some curve u(t), a ≤ t ≤ b in U . Then
γ′(t) = u′1x1 + u′2x2, so

γ′(t) · γ′(t) = (u′1x1 + u′2x2) · (u′1x1 + u′2x2)(7.4)

= g11(u(t))(u′1)2 + 2g12(u(t))u′1u
′
2 + g22(u(t))(u′2)2,

where the gij are the smooth functions of u defined on U by

(7.5) gij(u) = xi(u) · xj(u), i = 1, 2, j = 1, 2.

Using (7.5), we usually abbreviate (7.4) as

(7.6) ds2 = g11du
2
1 + 2g12du1du2 + g22du

2
2,

compare with Equations (6.4) and (6.5) of [12] and the discussion of these
equations. The length of the curve γ can then be computed in terms of the
curve u(t) by

(7.7) L(γ) =

∫ b

a
ds =

∫ b

a

√
g11(u′1)2 + 2g12u′1u

′
2 + g22(u2)2 dt.

The interpretation of Equation (7.6) is the following: The matrix of
smooth functions

(7.8) g =

(
g11 g12

g21 g22

)
, where g12 = g21,

is a symmetric, positive definite matrix that gives an inner product on the
tangent vectors based at each point u ∈ U , and this inner product is the
same as the usual dot product in R3 of the corresponding tangent vectors
to S at x(u). In fact, Equation (7.4) is the same as

(7.9) (a1x1 + a2x2) · (a1x1 + a2x2) =
(
a1 a2

)( g11 g12

g21 g22

)(
a1

a2

)
,

where the left hand side is the usual dot product of vectors in R3. These
vectors are actually in Tx(u)S, the tangent space to S at the point x(u), and
the vectors x1(u),x2(u) form a basis for this space (recall the assumption
that x1 and x2 are linearly independent at each u ∈ U). (See Section 7.1.1
below for a quick review of inner products.)

We have seen examples of this, say the parametrization of S2 by spherical
coordinates: x(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ). To make x a homeo-
morphism onto its image we could take U = (0, π) × (0, 2π) with image S2

with a meridian removed. Then ds2 = dφ2 + sin2 φ dθ2, see Example 6.6 of
[12].

Another interesting example is given by stereographic projection:

Example 7.1. Recall from the homework from Math 4510 the map x : R2 →
S2\{N}, where N = (0, 0, 1) is the north pole, that assigns to u = (u1, u2) ∈
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R2 the point of intersection with S2 of the straight line segment uN from u
to N . We have seen the formula

(7.10) x(u1, u2) = (2u1, 2u2, u
2
1 + u2

2 − 1)/(1 + u2
1 + u2

2).

From this it is not hard to get the formulas for the partial derivatives:

x1 =
2

(1 + u2
1 + u2

2)2
(−u2

1 + u2
2 + 1, −2u1u2, 2u1)(7.11)

x2 =
2

(1 + u2
1 + u2

2)2
(−2u1u2, u

2
1 − u2

2 + 1, 2u2).

Taking dot products and simplifying find formulas for the xi ·xj : x1 ·x2 = 0
and x1 · x1 = x2 · x2 = 4/(1 + u2

1 + u2
2)2. So we get the following expression

for g, which, for future reference, we will call gS (the spherical metric):

(7.12) gS =
4(du2

1 + du2
2)

(1 + u2
1 + u2

2)2
=

4 du · du
(1 + |u|2)2

,

where u = (u1, u2). We will study the meaning of this expression in more
detail once we put this discussion into a more general context.

7.1.1. Review of Inner Products. We quickly review some of the linear al-
gebra concepts just used. Refer to any textbook on linear algebra for more
details. We will concentrate on two dimensions, but all works the same way
in any dimension.

Recall that a symmetric matrix g is said to be positive definite if the right
hand side of (7.9) is positive for all a1, a2 not both 0. Since the left had side
of (7.9) clearly has this property, we get that the matrix in the right hand
side is positive definite.

Given such a positive definite matrix g, and given two vectors a = a1e1 +
a2e2 and b = b1e1 + b2e2, in R2, where e1 and e2 are the standard basis
vectors in R2, we can define a function R2 × R2 → R by assigning to the
vectors a,b the number < a,b > defined by

(7.13) < a,b >=
(
a1 a2

)( g11 g12

g21 g22

)(
b1
b2

)
= at g a,

where at means the matrix transpose. This function is called an inner
product in R2, and every inner product in R2 is obtained in this way. The
definition of inner product on a vector space is a real valued function of two
vectors a,b, denoted < a,b >, that satisfies the following properties:

(1) Is bilinear: linear in each variable.
(2) Is symmetric: < a,b >=< b,a > for all a,b.
(3) Is positive definite: < a,a >≥ 0 for all a and < a,a >= 0 only if

a = 0.
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Given a positive definite 2 × 2 matrix g, the formula (7.13) clearly defines
an inner product on R2. The first two conditions are clear, and the third
is equivalent to the assumption that the matrix g is positive definite. Con-
versely, if we are given an inner product < , > on R2, let

(7.14) g =

(
< e1, e1 > < e1, e2 >
< e2, e1 > < e2, e2 >

)
,

briefly, gij =< ei, ej >. Using this matrix in (7.13) gives back the inner
product < a,b >. Thus every inner product on R2 is obtained by (7.13), in
other words, (7.13) establishes a one to one correspondence between inner
products on R2 and symmetric, positive definite 2× 2 matrices.

The standard example of an inner product is the usual dot product in R2,
which correspond to g = I, the unit 2× 2 matrix. Any inner product allows
to define lengths and angles by using the same formulas as for the usual dot
product:

Definition 7.1. If < , > is an inner product on R2 (corresponding to a
symmetric positive definite matrix g)), and if a,b ∈ R2, we define:

(1) The magnitude of a (with respect to g), denoted ||a||, by ||a|| =√
< a,a >.

(2) The angle between a and b (with respect to g) to be the number
∠(a,b) ∈ [0, π] that satisfies

(7.15) cos(∠(a,b)) =
< a,b >

||a|| ||b||
.

Remark 7.1. It is a fact that the Cauchy - Schwarz inequality holds for any
inner product, so the number in the right hand side of (7.15) has absolute
value at most one, hence it is the cosine of some angle.

We will need the following construction, which again works in any dimen-
sion, but we need only in two dimensions: if A : R2 → R2 is an invertible
linear transformation, given by a matrix A = (aij) in the standard basis for
R2, and < , > is an inner product with matrix g = (< ei, ej >), then we
can define a new inner product << , >> or A∗g, called the pull-back by A,
by the formula

(7.16) << a,b >>=< Aa, Ab > .

Theorem 7.1. The pull-back << , >> just defined is an inner product on
R2 and its matrix A∗g is given by A∗g = AtgA.

Proof. It is clear that << , >> is bilinear and symmetric, to prove positive
definite observe that << a,a >>=< Aa, Aa > ≥ 0, and, since < , > is an
inner product, it = 0 if and only if Aa = 0. Since A is invertible this means
a = 0, hence << , >> is positive definite. Now, << a,b >>=< Aa, Ab >=
(Aa)tg(Aa) = (atAt)g(Aa) = at(AtgA)a, thus by the formula (7.13) for the
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correspondence between matrices and inner products, the matrix of <<
, >> is as asserted. In the above chain of equalities, the second one is
Equation (7.13) while the third is the standard formula for the transpose of
the product of two matrices. �

Remark 7.2. As we mentioned, the concept of pull-back works in all gener-
ality for injective linear maps A : Rm → Rn, which of course only exist for
m ≤ n. Equation (7.9) for the two-dimensional inner product obtained from
tangent vectors in R3 is an example of a pull-back by an injective linear map
A : R2 → R3.

7.1.2. Local Riemannian Metrics. The structure we have been using to com-
pute lengths of curves for surfaces in R3 in terms of parametrizations of the
surface can be abstracted into the following definition:

Definition 7.2. Let U ⊂ R2 be an open set.

(1) A Riemannian metric on U is defined in one of the following two
equivalent ways:
(a) An inner product on the tangent vectors to U at each point

u ∈ U , varying smoothly with u. If a,b are tangent vectors,
denote their inner product by < a,b >u.

(b) A symmetric positive definite matrix g of smooth functions on
U as in Equation (7.8).

(2) If g is a Riemannian metric on U and a,b are tangent vectors to U
at u, then the g-length ||a||u, of a and the g-angle ∠(a,b)u between
a and b are defined as in Definition 7.1: ||a||u =

√
< a,a >u and

cos(∠(a,b)u) =
< a,b >u
||a||u||b||u

.

(3) If g is a Riemannian metric on U and α(t) = (u1(t), u2(t)), a ≤ t ≤ b
is a piecewise smooth curve in U , then the length of α (with respect
to g) is

L(α) =

∫ b

a

√
< α′(t), α′(t) >α(t) dt(7.17)

=

∫ b

a

√
g11(u′1)2 + 2g12u′1u

′
2 + g22(u′2)2 dt,

and, if U is connected, the g-distance or Riemannian distance be-
tween two points in U is defined to be the infimum of the g - lengths
of all piecewise smooth curves in U joining the two points.

(4) If g is a Riemannian metric on U and D ⊂ U is a domain over which
double integrals are defined (rectangles, regions between the graphs
of two continuous functions, etc), then A(D), the area of D with
respect to the metric g, is defined to be

(7.18) A(D) =

∫∫
D

√
det(g) du1 du2,
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equivalently, we could define the “area element” dA by

(7.19) dA =
√

det(g) du1 du2.

(5) If D ⊂ U is as above, and f : D → R is a continuous function, then
we define its integral (with respect to g- area) by

(7.20)

∫∫
D
f dA =

∫∫
D
f(u1, u2)

√
det(g) du1 du2.

Remark 7.3. Some comments on these definitions:

(1) The equivalence between the two versions of the definition of Rie-
mannian metric follows from the discussion of the equivalence be-
tween inner products and positive definite matrices in Section 7.1.1.
We just need to apply the correspondence at each u ∈ U .

(2) The definition of angles is the straightforward analogue of the usual
one in the Euclidean plane.

(3) The definition of length of curves and of intrinsic distance are the
straightforward extension of the corresponding definitions for sur-
faces in R3.

(4) The same is true of the definition of area: recall that if x : U → S ⊂
R3 is a parametrization of a surface S, then the usual infinitesimal
arguments for the distortion of area give that the area of x(D) is
given by ∫∫

D
||x1 × x2|| du1 du2,

and the usual formulas for magnitudes of cross-products give

||x1 × x2|| =
√

(x1 · x1)(x2 · x2)− (x1 · x2)2 =
√
g11g22 − g2

12,

which, by Equation 7.5, agrees with Equation 7.18 in this case. (Con-
sult any advanced calculus textbook for the formulas for area, as well
as for surface integrals).

(5) The definition of integral of a function agrees with the usual defi-
nition of surface integral in the case of q parametrized surface S =
x(D) ⊂ R3:∫∫

S
f dA =

∫∫
D
f(u1, u2) ||x1 × x2|| du1 du2.

Example 7.2. The basic example of these definitions is the Riemannian met-
ric on U resulting from a smooth, non-singular parametrization x : U → S ⊂
R3 of a smooth surface S ⊂ R3. Non-singular means that the cross-product
x1 × x2 is never zero, that is, x1 and x2 are linearly independent at each
u ∈ U , thus they give a basis of the tangent plane Tx(u)S of S at x(u). The
Riemannian metric is defined by
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< a,b >u= (a1x1 + a2x2) · (b1x1 + b2x2)(7.21)

or < a,b >u= dux(a) · dux(b),

or, what is the same, gij = xi · xj .
In the second line dux denotes the differential at u of the map x. This is
a linear map that takes tangent vectors to U at u to tangent vectors to
S at x(u), thus dux : TuU → Tx(u)S. By definition, dux(e1) = x1 and
dux(e2) = x2, thus the linearity of dux implies that dux(a) = dux(a1e1 +
a2e2) = a1x1 + a2e2, similarly dux(b) = b1x1 + b2x2. Thus, in this class of
examples, the interpretation of the inner product < a,b >u is the usual dot
product dux(a) · dux(b) in Tx(u)S ⊂ R3. But the inner product given by
Riemannian metric need not be obtained in this way.

Example 7.3. The metric du2
1 +du2

2 is the standard inner product (dot prod-
uct) of vectors in R2. This is called the Euclidean (Riemannian) metric on U .
If f is a positive smooth function on U , then the metric g = f(u)(du2

1 +du2
2)

is called a conformally Euclidean metric, because the angle measurements
are the same as in the Euclidean metric. If we use the subscript g for the
measurements using g and the subscript E for the Euclidean measurements,
we get

< a,b >g
||a||g||b||g

=
f < a,b >E

(
√
f ||a||E)(

√
f ||b||E)

=
< a,b >E
||a||E ||b||E

,

hence cos∠(a, b)g = cos∠(a,b)E , so ∠(a, b)g = ∠(a,b)E . In particular,
we see from Equation (7.12) that the metric resulting from stereographic
projection is conformally Euclidean. This is equivalent to the well - known
fact that stereographic projection is conformal (preserves angles between
curves).

Example 7.4. A very important example is the Poincaré metric or hyperbolic
metric on the unit disk {u2

1 + u2
2 < 1} defined by a formula with some

remarkable similarities to the stereographic formula (7.12) for the spherical
metric gS :

(7.22) gP =
4(du2

1 + du2
2)

(1− u2
1 − u2

2)2
=

4 du · du
(1− |u|2)2

,

where u = (u1, u2). Observe that this is a conformally Euclidean metric (as
defined in Example 7.3) on the disk. It is a fact, which we will not prove
(but was proved by Hilbert in the early 1900’s) that this metric is not the
metric of any surface in R3. We will study this metric in more detail later
on.

7.1.3. Review of Differentials. We quickly review the notations for deriva-
tives of maps between Euclidean spaces Rm and Rn. More details can be
found in any advanced calculus book. Let u1, . . . um denote the coordinates
of a point u ∈ Rm and v1, . . . , vn coordinates of a point v ∈ Rn.
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Let U ⊂ Rm be an open set, let f : U → Rn be a differentiable map (say
smooth, of class C∞). At each u ∈ U the map f has a linear approximation,
namely a linear map

duf : Rm → Rn,
called the differential of f at u, whose value duf(h) at a vector h based at u
(thought of as a tangent vector to U at u) gives the best linear approximation
to f(u+ h)− f(u) in the sense that

f(u+ h)− f(u) = duf(h) + o(|h|) as h→ 0,

where o(|h|) denotes a function of h that goes to zero faster than |h| (equiv-

alently, faster than any linear function of h), meaning limh→0
o(|h|)
|h| = 0.

Being a linear transformation Rm → Rn, the differential duf has a matrix
with respect to the standard bases e1, . . . , em and e1, . . . , en of Rm and Rn
respectively. This matrix is the Jacobian matrix

(7.23) J(f) =


∂v1
∂u1

. . . ∂v1
∂um

. .

. .
∂vn
∂u1

. . . ∂vn
∂um


Thus the columns of the Jacobian matrix give the components of the vector
duf(ej):

duf(ej) =
∂f

∂uj
=
∂v1

∂uj
e1 + . . .

∂vn
∂uj

en, for each j = 1, . . . ,m,

while the rows of the Jacobian matrix represent the differentials of the com-
ponent functions vi of v = f(u),

dvi =
∂vi
∂u1

du1 + · · ·+ ∂vi
∂um

dum for each i = 1, . . . , n.

Here du1, . . . , dum are the differentials of the component functions in Rm
(which, being linear functions, are the same as the ui, but, when we write
dui we think of them as operating on vectors based at u). This is the basis
for the dual space of Rm (the space of linear functions on Rm) dual to the
standard basis ei:

dui(ej) =
∂ui
∂uj

= δij =

{
1 if i = j

0 otherwise.

7.1.4. Induced Metrics and Isometries. Suppose U and V are open subsets
of R2, and f : U → V is a diffeomorphism (a smooth, invertible map with
smooth inverse). Suppose we have a Riemannian metric g on V , given by
a smoothly varying inner product < , >v, equivalently, a positive definite
matrix g(v) of smooth functions, as in Definition 7.2. Then we get a Rie-
mannian metric on U , called the pull - back metric, denoted f∗g, that can
be described in one of the following two equivalent ways:
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Definition 7.3. The inner product << , >> of the metric f∗g is defined by
Equation (7.16), explicitly,

<< a,b >>u=< duf(a), duf(b) >f(u)

for all vectors a,b based at u ∈ U . The matrix of the pull - back metric f∗g
is

(f∗g)(u) = (J(f)(u))t g(f(u)) (J(f)(u)),

where J(f)(u) is the Jacobian matrix of f at u ∈ U as in Equation (7.23).

The equivalence of the two definitions is clear from Theorem 7.1 applied to
the linear map duf whose matrix is the Jacobian matrix of Equation (7.23).
Since, by assumption, f is a diffeomorphism, the linear transformation duf
is an isomorphism, so Theorem 7.1 does indeed apply.

Definition 7.4. Let U and V be open sets in R2, let h and g be Riemannian
metrics on U , V respectively (denote this briefly by: (U, h), (V, g) are Rie-
mannian open sets in R2), and let f : U → V be a diffeomorphism. We say
that f is an isometry if f∗g = h.

Remark 7.4. We have earlier defined the concept of isometry of metric spaces
as a map that preserves distance. We have now defined another concept
with the same name. It turns out that there is no conflict. It is clear that if
f : (U, h)→ (V, g) is an isometry in the sense just defined, and dh, dg denote
the intrinsic distance functions as in Definition 7.2, then f is an isometry in
the sense of metric spaces, that is, dg(f(p), f(q)) = dh(p, q). This is clear for
quite formal reasons: f gives a one-to-one correspondence between piecewise
smooth curves γ in U and f ◦γ in V which preserves length: L(f ◦γ) = L(γ),
because, using the chain-rule (f ◦ γ)′(t) = dγ(t)f (γ′(t)), therefore we get

L(f ◦ γ) =

∫ b

a
< dγ(t)f (γ′(t)), dγ(t)f (γ′(t)) >

1
2

f(γ(t)) dt

=

∫ b

a
<< γ′(t), γ′(t) >>

1
2

γ(t) dt = L(γ),

so the two sets of lengths used to define dh(p, q) and dg(f(p), f(q)) coincide,
so they have the same infimum. The converse is also true: any metric isom-
etry f : (U, dh)→ (V, dg) is smooth and f : (U, h)→ (V, g) is a Riemannian
isometry in the sense just defined. This is harder to prove and we will not
prove it here. From now on, the word isometry, in any Riemannian context
where it would make sense, will always mean isometry as in Definition 7.4.

Example 7.5. A very familiar example of isometry results from changing
variables to polar coordinates. Let U ⊂ R2 be any open subset on which
the map f(r, θ) = (r cos θ, r sin θ) is a diffeomorphism onto its image, for
instance, (0,∞) × (−π, π). The easiest and most practical way, in this
and most examples, to compute the pull-back metric is to use differential
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notation: Let dx2 + dy2 denotes the Euclidean metric in R2, then

f∗(dx2 + dy2) = (d(r cos θ))2 + (d(r sin θ))2

= (cos θ dr − r sin θ dθ)2 + (sin θ dr + r cos θ dθ)2

= (cos2 θ + sin2 θ)dr2 + 2(−r sin θ cos θ + r cos θ sin θ) drdθ

+r2(sin2 θ + cos2 θ) dθ2 = dr2 + r2dθ2,

which is the familiar expression for arclength in polar coordinates. We have
carried the computation in detail to illustrate how they can be done. An
equivalent way to do the calculation would of course be to use the Jacobian
matrix

J = J(f) =

 ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

 =

(
cos θ −r sin θ
sin θ r cos θ

)
thus f∗g has matrix

J tIJ =

(
cos θ sin θ
−r sin θ r cos θ

)(
cos θ −r sin θ
sin θ r cos θ

)
=

(
1 0
0 r2

)
(where I is the unit matrix, the matrix of dx2 +dy2), which gives the matrix
for dr2 + r2dθ2.

Note that the definition of area from Equation (7.19) gives the familiar
formula for area in polar coordiantes:

dA =

√
det

(
1 0
0 r2

)
drdθ = rdrdθ,

7.1.5. Two Important Examples. To give an idea of how Riemannian metrics
can be used, we study in more detail the metric spherical metric gS of Ex-
ample 7.1, see Equation (7.12), and the Poincaré metric gP of Example 7.4,
see Equation (7.22).

Let’s see what conclusions we can get from the formula (7.12), forgetting,
for the moment, that it is describing the unit sphere S2:

Theorem 7.2. The metric gs = 4(du2
1 +du2

2)/(1+u2
1 +u2

2)2 = 4(du ·du)(1+
|u|2)2 on R2, where u = (u1, u2), has the following properties:

(1) It is conformally Euclidean: angle measurements in gS are the same
as in du2

1 + du2
2

(2) It is rotationally symmetric about the origin and is also invariant
under reflections on lines through the origin, meaning that, if A is
an orthogonal 2× 2 matrix, then A∗gS = gS.

(3) Its restriction to R2 \ {0} is invariant under inversion in the unit
circle |u| = 1: if φ : R2 \ {0} → R2 \ {0} is defined by φ(u) = u/|u|2,
then φ∗gS = gS.
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(4) Let Cr = {|u| = r} be the Euclidean circle of radius r. Then its
length in gS is L(Cr) = 4πr

1+r2
. In particular L(Cr) ≤ 2π and = 2π

if and only if r = 1. Also, L(C1/r) = L(Cr) in agreement with (3).
See Figure 7.1

(5) If γ is a line through the origin: γ(t) = tu for some fixed u ∈ R2\{0}
and −∞ < t <∞, then L(γ) = 2π.

(6) The area of R2 in the metric gS is 4π.

Proof. Statement (1) was observed in Example 7.3. For (2) observe that if
A is an orthogonal matrix, by Theorem 7.1 the matrix of A∗(du2

1 + du2
2) is

AtIA = AtA = I where I is the unit matrix. Therefore A∗gS = 4A∗(du ·
du)(1 + |Au|2)2 = 4(du · du)(1 + |u|2)2 = gS because |Au| = |u| for an
orthogonal matrix A. The proof of (3) is a homework problem. For (4),
parametrize the circle Cr by u(t) = r(cos t, sin t), 0 ≤ t ≤ 2π. Then

L(Cr) =

∫ 2π

0

2|u′(t)|
1 + |u(t)|2

dt =

∫ 2π

0

2r

1 + r2
dt =

4πr

1 + r2
.

Differentiating, we see that its maximum is at r = 1, where the value is
2π, see Figure 7.1. For (5), using the rotational symmetry from (2) it is
enough to consider one line through the origin, for instance, the u1-axis,
parametrized as γ(t) = (t, 0), −∞ < t <∞ and its length is

L(γ) =

∫ ∞
−∞

2 dt

1 + t2
dt = 2 arctan(t)|∞−∞ = 2π.

Finally, to compute the area, we need to use the formula (7.18) for area:

A(R2) =

∫∫
R2

4 du1du2

(1 + |u|2)2
=

∫ 2π

0

∫ ∞
0

4rdrdθ

(1 + r2)2
= 2π

( −2

1 + r2

)∞
0

= 4π.

�

Figure 7.1. The Graph of L(Cr).

Remark 7.5. Note that the properties listed in this Theorem are all familiar
properties of the spherical metric. Note the following points:
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(1) Recall that a 2× 2 orthogonal matrix A is of one of the two forms

A =

(
cos θ − sin θ
sin θ cos θ

)
or A =

(
cos θ sin θ
sin θ − cos θ

)
,

see Section 2.1 of [12], formulas (2.1) and (2.2). The first is orien-
tation preserving (its determinant is 1) and is a counterclockwise
rotation about the origin by an angle θ, while the second one is ori-
entation reversing (its determinant is −1) and is a reflection about
the line through the origin making an angle θ/2 with the x-axis.

(2) These and the inversion symmetry in (3) are the only symmetries of
S2 that are visible in the formula for gS . But we know that S2 has
many more symmetries. By the nature of stereographic projection,
we only see the symmetries that preserve the z-axis. The symmetries
of (2) preserve the north and south poles, while (3) interchanges
them.

(3) The circles Cr correspond to parallels in S2, and only C1 corresponds
to a great circle (the equator). We see in Figure 7.1 the unique
maximum of the circumferences of these parallels, and that they
shrink to a point as you approach one of the poles.

(4) The straight lines through the origin correspond to meridians: great
circles through the north and south poles.

Remark 7.6. The Poincaré metric gP = 4(du ·du)/(1−|u|2)2 of Example 7.4
shares the conformal property of (1) and the symmetry property of (2) of
Theorem 7.2, but not the inversion symmetry of (3). We will soon see that,
as in the case of gS , it has many more symmetries that are not visible in
the formula for gP . In fact, the Poincaré metric, along with the spherical
metric gS and the Euclidean metric gE share the property of being the most
symmetric metrics possible in two dimensions. We will see that each has a
three-dimensional group of isometries. For the Poincaré metric we do not
have the analogues of (4), (5), and (6) of Theorem 7.2: The function L(Cr)
is not bounded and has no critical points, the rays through the origin have
infinite length, and the area is infinite, just as it happens in the Euclidean
metric of R2.

7.1.6. Global Riemannian Metrics. Now we are in a position to define Rie-
mannian metric on any smooth surface. The definition we give is rather
primitive, but will be a workable definition.

Definition 7.5. Let S be a smooth surface as in Definition 1.1. Let S be
covered by coordinate charts φα : Uα → Vα, where Vα ⊂ R2 is open, and let
φαβ = φα ◦ φ−1

β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ) denote the transition maps,

which are smooth. By a Riemannian metric g on S we mean:

(1) A Riemannian metric gα on each Vα ⊂ R2.
(2) The Riemannian metrics gα are compatible in the following sense:

whenever Uα ∩ Uβ 6= ∅, we have that gβ = φ∗αβgα.
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Example 7.6. Let S = S2 covered by two open sets U1 = S2 \ {(0, 0, 1)} and
U2 = S2 \ {(0, 0,−1)}. For i = 1, 2, let φi : Ui → R2 = Vi be stereographic
projection. Let g1 = g2 = gS , the spherical metric of Example 7.1, see
formula (7.12). Then we know that φ12 = φ21 = φ : R2 \ {0} → R2 \ {0} is
inversion in the unit circle. This is the map that in polar coordinates would
be given by φ(r, θ) = (1

r , θ). It is a homework problem to check that φ is an
isometry.

Remark 7.7. This last example is just describing the usual Riemannian met-
ric on S2, as a surface in R3, in terms of a cover of S2 by coordinate charts.
Thus the conditions of Definition 7.5 are clear since we already know the
object that we are trying to describe, so the existence of the local metrics
gα and their compatibility are both clear in this situation. Ideally a Rie-
mannian metric on a surface would be a structure that we know in some
other way, that locally is isometric to some metric in the plane. In this sense
Definition 7.5 is a primitive one, in that it does not really define the object,
it just says how to describe it locally, and what is needed from the local
descriptions for a global object to exist.

Example 7.7. Let T 2 = R2/Z2 be the torus, and let p : R2 → T 2 be the
projection, that assigns to (x, y) ∈ R2 its equivalence class p(x, y) = {(x +
m, y + n) : m,n ∈ Z} ∈ T 2. Define the following subsets of R2:

V0,0 = {(x, y) :
1

8
< x <

7

8
,
1

8
< y <

7

8
},

an open square centered at the point (1
2 ,

1
2). Then let

V1,0 = V0,0 + (
1

2
, 0), V0,1 = V0,0 + (0,

1

2
), and V1,1 = V0,0 + (

1

2
,
1

2
),

each of which is a translate of V0,0. For i, j = 0, 1, let Ui,j = p(Vi,j) ⊂ T 2.,
see Figure 7.2. Then it is easy to check that for each i, j, p : Vi,j → Ui,j
is a homeomorphism, and that the four open sets Ui,j cover T 2. Let φi,j =

p|−1
Vi,j

: Ui,j → Vi,j . The (Ui,j , φij) give four coordinate charts covering

T 2. Let us look at the transition functions. Take, for example, the set
U0,0 ∩ U1,0. It is not connected, it has two connected components W1,W2,
that is, U0,0 ∩ U1,0 = W1 ∪W2 where

W1 = p((
1

8
,
3

8
)× (

1

8
,
7

8
)) and W2 = p((

5

8
,
7

8
)× (

1

8
,
7

8
)),

therefore φ0,0(U0,0 ∩ U1,0) = φ0,0(W1) ∪ φ0,0(W2), where

φ0,0(W1) = (
1

8
,
3

8
)× (

1

8
,
7

8
),(7.24)

φ0,0(W2) = (
5

8
,
7

8
)× (

1

8
,
7

8
)
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are both subsets of V0,0, while φ1,0(U0,0∩U1.0) = φ1,0(W1)∪φ1,0(W2), where

φ0,1(W1) = (
9

8
,
11

8
)× (

1

8
,
7

8
),(7.25)

φ0,1(W2) = (
5

8
,
7

8
)× (

1

8
,
7

8
)

are both subsets of V1,0. Finally the transition function φ1,0 ◦φ−1
0,0 restricted

to the first component of (7.24) is translation by (1, 0):

φ1,0 ◦ φ−1
0,0|(( 1

8
, 3
8

)×( 1
8
, 7
8

))(x, y) = (x+ 1, y),

while its restriction to the second component of (7.24) is the identity. Simi-
larly the restriction of φ0,0◦φ−1

1,0 to the first component of (7.25) is translation

by (−1, 0), while it is the identity on the second component, see Figure 7.2.

Figure 7.2. Transition Functions for T 2.

In the same way we can check that each intersection Ui,j ∩Uk,l has several
components (at most 4) and the transition functions are, on each component,
translation by a vector (m,n) where m,n ∈ Z (possibly (m,n) = (0, 0) as we
have seen), and where the vector (m,n) can be different in each component.

In any case, all the transition functions are isometries of the Euclidean
metric. Thus, if we let g0,0, g1,0, etc, denote the restriction of the standard
Euclidean metric dx2 +dy2 to V0,0, V0,1, etc, (we use superscripts to label the
metrics in each chart to avoid conflict with the subscripts used in defining the
coefficients of a metric) this collection of local metrics defines a Riemannian
metric on T 2 in the sense of Definition 7.5. This metric is locally Euclidean
in the sense that it is locally isometric to the Euclidean metric on R2.

Example 7.8. We can easily generalize the preceding example to a descrip-
tion of all Riemannian metrics on T 2. Use the same charts φi,j : Ui,j →
Vi,j , i, j = 0, 1 as in the last example. Let G be any Riemannian met-
ric on R2 that is invariant under translation by Z2. This means that
G = G11dx

2 + 2G12dxdy + G22dy
2 where G11, G12, G22 are doubly periodic
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functions on R2: Gij(x+m, y + n) = Gij(x, y) holds for all (x, y) ∈ R2 and
for all (m,n) ∈ Z2. Then, for all (m,n) ∈ Z2, if T(m,n) : R2 → R2 is trans-
lation by (m,n): T(m,n)(x, y) = (x + m, y + n), then T ∗(m,n)G = G because

T ∗(m,n)G = G11(x+m, y+n)d(x+m)2 +2G12(x+m, y+n)d(x+m)d(y+n)+

G22(x+m, y+n)d(yn)2 = G11(x, y)dx2+2G12(x, y)dxdy+G22(x, y)dy2 = G.

Given such a Z2-translation invariant metric G on R2, since the transition
functions of the collection of charts of Example 7.7 are, on each connected
component, translations by elements of Z2, then we can proceed as follows:
For i, j = 0, 1 let Gi,j = G|Vi,j (again superscripts to avoid a clash of no-

tation). Then the collection Gi,j satisfy Definition 7.5 and thus we get a
Riemannian metric on T 2. It is easy to see that the process can be reversed
and that this process establishes a one-to-one correspondence between Rie-
mannian metrics on T 2 = R2/Z2 and Z2-invariant Riemannian metrics on
R2.

Remark 7.8. The last three examples illustrate all the examples of Rie-
mannian metrics that we will need: either the metric of a surface in R3 as
S2 ⊂ R3, or the Riemannian metric on a quotient surface S/ ∼ where S has
a Riemannian metric which is compatible with the equivalence relation. We
will see more examples later.

7.1.7. Length and Area for Global Riemannian Metrics. We need to see that
the concepts of Definition 7.2 still make sense. We will avoid defining tangent
vectors and restrict ourselves to length and area,

Suppose S is a surface, for simplicity we will assume compact and covered
by a finite collection of charts φα : Uα → Vα, and with metrics gα on each
Vα as in Definition 7.5. In addition, for the definition of integrals, is is
convenient to assume that S is oriented in the following sense: the Jacobian
determinants of all the transition functions φαβ are positive.

Let γ : [a, b]→ S be a piecewise smooth curve. Define L(γ), the length of
γ, as follows: Using the usual Lebesgue number argument for the cover
{γ−1(Uα)}, find a = t0 < t1 < t2 · · · < tn = b so that, for each i,
γ([ti−1, ti]) ⊂ Uαi , let Li be the length, in the metric gαi , of the curve
φαi ◦ γ : [ti−1, ti]→ Vαi , and then define L(γ) by

(7.26) L(γ) = L1 + L2 + · · ·+ Ln.

We need to check that this definition is independent of all choices. This
follows easily from the following considerations:

(1) Suppose one of the intervals [ti−1, ti] is mapped by γ to Uα ∩ Uβ. If
we compute Li by using φα ◦ γ or φβ ◦ γ we get the same answer

because the transition function φαβ = φα ◦φ−1
β takes φβ ◦γ to φα ◦γ

and by (2) of Definition 7.5, φαβ is an isometry, so these two curves
have the same length and we get the same answer for Li.
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(2) If we use two different partitions of the interval, take a common
refinement, use a longer sum in (7.26) and apply the reasoning ad-
ditivity of length and the reasoning just used to get L(γ) to be well
defined.

(3) If we use two different collections of charts, take the collection which
is their union and apply the previous reasoning.

To define area and, more generally, integrals of functions, we need a trick
called the partition of unity subordinate to a collection of charts. This means
the following: a collection of smooth functions ρα with the property that
there is a (finite) collection of charts φα : Uα → Vα as in Defintion 7.5 so
that the support of each ρα is contained in Uα, ρ ≥ 0, and

(7.27)
∑
α

ρα = 1.

The support of a real valued function f means the closure of {x : f(x) 6= 0}.
There is a standard construction of partitions of unity that can be quickly

summarized as follows: We can assume that the charts have the following
properties: for each α there is an open subset U ′α ⊂ U ′α ⊂ Uα so that the
{U ′α} covers S, that the Vα ⊂ R2 are diffeomorphic to disks D of radius 2
and that the images φα(U ′α) are concentric disks D′ ⊂ D of radius 1. We
can construct a function ψ : D → R with support D′ by taking the “bump
function” of Lemma 6.1 (pictured in Figure 6.3) of [12], putting it on a
radius of D with its maximum at the center and support exactly at distance
one (that is, using (a, b) = (−1, 1) in Lemma 6.1 of [12]), then extending it
in a rotationally symmetric way to D. Then let ψα : S → R be defined as
follows: on Uα, ψα = ψ ◦ φα, and then extend it to be zero on the rest of
S. This gives a smooth function on S because it is smooth on Uα and its
support is contained in Uα. Finally, for each α in the index set A of the
cover, let

ρα =
ψα∑

α′∈A ψα′
.

Then these functions, by construction, are ≥ 0, have the required support,
and satisfy (7.27)

If f : S → R is a smooth function, then, for each α, ραf has support in
Uα, so we can define a function fα : Vα → R by fα = (ρf) ◦ (φ−1

α ). Then we
can define

(7.28)

∫∫
S
f dA =

∑
α

∫∫
Vα

fα
√

det gα du1du2.

Again, we have to check, by refinement and change of variable formulas, that
this is independent of all choices. Finally, the area of S is A(S) =

∫∫
S 1 dA.
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7.2. Geodesics. We next quickly review the definition and basic properties
of geodesics from Section 6.2 of [12] and also show that the same definitions
and properties hold in any Riemannian metric on a surface.

7.2.1. Review of First Variation Formula and Geodesic Equation. Recall
form Section 6.2.1 of [12] the First Variation Formula for arclength, in the
context of a parametrized surface x : U → S ⊂ R3, where x is smooth and
x1 × x2 6= 0, so that x1 and x2 are linearly independent at each point and
form a basis for the tangent plane Tx(u)S at each u ∈ U . We considered a
smooth curve γ : [0, L0]→ S, parametrized by arclength, and a variation

γ̃ : [0, L0]× (−ε, ε)→ S with γ̃(s, 0) = γ(s) for all s ∈ [0, L0].

We computed the length L(t) of the curve γ̃( , t), and found the following
formulas for L′(t). With the view of generalizing them to any Riemannian
metric, we will write each formula in two ways: first, just as they appeared in
[12], using the dot product in R3 and ordinary derivatives, and then using
the Riemannian inner product < , > and covariant derivatives. Recall
that these were defined in Definition 6.3 of [12]: if V (s) is a smooth vector
field along a smooth curve γ(s) in S, then its covariant derivative DV

Ds , also
denoted Dγ′V , is, by definition

(7.29) Dγ′V =
DV

Ds
= V ′(s)T = the tangential component of V ′(s).

Here are the formulas, written in the two notations. First

L(t) =

∫ L0

0
(γ̃s(s, t) · γ̃s(s, t))1/2 ds =(7.30) ∫ L0

0
< γ̃s(s, t), γ̃s(s, t) >

1/2 ds.

Differentiating with respect to t:

dL

dt
=

∫ L0

0

1

2
(γ̃s(s, t) · γ̃s(s, t))−1/2(2 γ̃st(s, t) · γ̃s(s, t)) ds =(7.31)∫ L0

0

1

2
< γ̃s(s, t), γ̃s(s, t) >

−1/2 (2 <
D

Dt
γ̃s(s, t), γ̃s(s, t) >) ds.

Note that in this formula we replaced γ̃st by its tangential component D
Dt γ̃s

because we are taking its dot product with the tangential vector γ̃s, so
only the tangential component of γ̃st contributes to the formula: γ̃st · γ̃s =
γ̃Tst · γ̃s. The same reasoning applies to all the formulas below where we
replace ordinary derivatives by covariant ones.
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Evaluating (7.31) at t = 0 and using that |γs| = 1 we get

dL

dt
(0) =

∫ L0

0
γ̃st(s, 0) · γ̃s(s, 0) ds =(7.32) ∫ L0

0
<

D

Dt
γ̃s(s, 0), γ̃s(s, 0) > ds.

Then, integrating by parts, using the formula

(γ̃t(s, 0) · γ̃s(s, 0))s = γ̃ts(s, 0) · γ̃s(s, 0) + γ̃t(s, 0) · γ̃ss(s, 0) or(7.33)

< γ̃t(s, 0), γ̃s(s, 0) >s=<
D

Ds
γ̃t(s, 0), γ̃s(s, 0) > + < γ̃t(s, 0),

D

Ds
γ̃s(s, 0) >,

where, in order to apply (7.33) to (7.32), we need to use the equality of
mixed second partial derivatives:

(7.34) γ̃st(s, t) = γ̃ts(s, t) or
D

Dt
γ̃s(s, t) =

D

Ds
γ̃t(s, t),

where the second part follows from the first since γ̃st = γ̃ts implies equality
of tangential components: γ̃Tst = γ̃Tts.

Using (7.34) to change the order of differentiation in (7.32) and then using
(7.33) to integrate by parts the interchanged version of (7.32), we get the
First Variation Formula

dL

dt
(0) = V (s) · γ′(s)|L0

0 −
∫ L0

0
V (s) · γ′′(s)T ds =(7.35)

< V (s), γ′(s) > |L0
0 −

∫ L0

0
< V (s),

Dγ′

Ds
(s) > ds,

where V (s) = γ̃t(s, 0) is the variation vector field .

From this equation we proved Theorem 6.5 of [12]: if L′(0) = 0 for all
variations γ̃ that keep the endpoints fixed, then γ satisfies the geodesic equa-
tion

(7.36)
Dγ′

Ds
= 0.

To study this equation more closely, in particular, to apply the standard
theory of second-order ordinary differential equations, we wrote it down
more explicitly in local coordinates. Namely, if γ(s) = x(u1(s), u2(s)), then
γ′(s) = u′1x1 + u′2x2, so

γ′′ = u′′1x1 + u′′2x2 + (u′1)2x11 + 2u′1u
′
2x12 + (u′2)2x22.

Since the tangential component of γ′′ vanishes if and only if γ′′ · x1 = 0 and
γ′′ · x2 = 0, we get that γ satisfies (7.36) if and only if

u′′1x1 · x1 + u′′2x2 · x1 + (u′1)2x11 · x1 + 2u′1u
′
2x12 · x1 + (u′2)2x22 · x1 = 0

u′′1x1 · x2 + u′′2x2 · x2 + (u′1)2x11 · x2 + 2u′1u
′
2x12 · x2 + (u′2)2x22 · x2 = 0,
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which, in our current notation, can be written as

g11u
′′
1 + g12u

′′
2 + Γ11,1u

′2
1 + 2Γ12,1u

′
iu
′
2 + Γ22,1u

′2
2 = 0(7.37)

g21u
′′
1 + g22u

′′
2 + Γ11,2u

′2
1 + 2Γ12,2u

′
iu
′
2 + Γ22,2u

′2
2 = 0,

where the gij = xi · xj as before and the Γij,k = xij · xk are some smooth
coefficient functions.

7.2.2. The Geodesic Equations in any Riemannian Metric. Let us examine
the Equations (7.37) more closely. We have that Γ11,1 = x11 · x1 = 1

2(x1 ·
x1)1 = 1

2
∂g11
∂u1

which we abbreviate as 1
2(g11)1. Continuing in this way we

find the following formulas for the Γij,k:

Γ11,1 =
1

2
(g11)1, Γ12,1 =

1

2
(g11)2,(7.38)

Γ22,1 = (g21)2 −
1

2
(g22)1, Γ11,2 = (g12)1 −

1

2
(g11)2

Γ12,2 =
1

2
(g22)1, Γ22,2 =

1

2
(g22)2.

which can be summarized as Γij,k = 1
2((gjk)i + (gik)j − (gij)k). Observe, in

particular, the symmetry Γij,k = Γji,k

The point of these formulas is that the coefficients of the geodesic equa-
tions (7.37) depend only on the functions gij and their derivatives (gij)k,
therefore they make sense in any Riemannian metric. This illustrates the
general principle that we will use several times: Any concept or formula that
is well defined for surfaces in R3, and that is intrinsic in the sense that it
involves only the Riemannian metric, is also well defined and holds for any
Riemannian metric on any smooth surface.

We give three illustrations of this principle, one in each of the following
three sections:

7.2.3. Covariant Derivatives and Variation Formula for any Riemannian
Metric. The derivation of the first variation formula for a surface in R3

used not just the geodesic equation, but also the covariant derivatives and
various properties of these derivatives. Since length makes sense in any
Riemannian metric, all parts of the reasoning should also make sense. We
give more details.

Given any local Riemannian metric g, we not only have the geodesic
equations (7.37), but we have covariant derivatives and the whole derivation
of the first variation formula (and the second variation formula later on).
We can, as in Equation (6.12) of [12], solve (7.37) for u′′1, u

′′
2 by multiplying

by the matrix g−1 (inverse to g) and get the system

u′′1 + Γ1
11(u′1)2 + 2Γ1

12u
′
1u
′
2 + Γ1

22(u′2)2 = 0(7.39)

u′′2 + Γ2
11(u′1)2 + 2Γ2

12u
′
1u
′
2 + Γ2

22(u′2)2 = 0
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where the coefficient functions Γkij have some explicit expression in the co-

efficients Γij,k of (7.37) and the entries of the inverse matrix g−1. We can

view the left hand side as the definition of Dγ′

Ds , and take one more step:
look at this formula as a special case of the definition of the covariant de-
rivative DV

Ds of any vector field V (s) along γ. If γ(s) = (u1(s), u2(s)) and
V (s) = ξ1(s)e1 + ξ2(s)e2 is a vector based at γ(s), then we replace the
Equation (7.29) that only makes sense for a surface in R3 by the expression
that we would get for this same object if we were to compute it in a local
parametrization, that is,

DV

Ds
=

(
ξ′1 + Γ1

11ξ1u
′
1 + Γ1

12ξ1u
′
2 + Γ1

21ξ2u
′
1 + Γ1

22ξ2u
′
2

)
e1(7.40)

+
(
ξ′2 + Γ2

11ξ1u
′
1 + Γ2

12ξ1u
′
2 + Γ2

21ξ2u
′
1 + Γ2

22ξ2u
′
2

)
e2.

Note that (7.40) reduces to (7.39) when V = γ′, thus ξi = u′i. This reduction
relies on the symmetry

(7.41) Γkij = Γkji

which results from the symmetry Γij,k = Γji,k noted after (7.38).

In order to derive the first variation formula (8.6), we need Equation
(7.31) that in turn requires the identity

(7.42)
d

dt
< V (t),W (t) >=<

DV

Dt
,W (t) > + < V (t),

DW

Dt
>

for any two vector fields along a curve γ(t). Next, for Equation (7.34) we
need the identity

(7.43)
Dγs
Dt

=
Dγt
Ds

for any mapping γ : R → U where R is a rectangle with coordinates s, t.
These two formulas hold if we define the covariant derivatives by Equation
(7.40). In more detail, (7.42) holds because, if the two vector fields V,W
have components ξ1, ηi respectively, if gives an identity for d

dt

∑
(gijξiηj)

that involves derivatives of the gij and can be seen to be equivalent to
the definition (7.38) of the Γij,k in terms of these derivatives. Formula
(7.43) follows from the symmetry of the second partial derivatives and the
symmetry Γkij = Γkji of (7.41).

Finally, we record the identity

(7.44)
D(fV )

Dt
= f ′V + f

DV

Dt
,

where f is any smooth function along γ. This easily verified identity is not
needed for the first variation formula but that we will need below for the
second variation and Jacobi’s differential equation.

With these formulas we can derive the first variation formula for any
Riemannian metric on any U ⊂ R2. Moreover, these formulas are invariant
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under isometry: An isometry between f : (U, h) → (V, g) between two
Riemannian metrics carries the structures from one to those of the other.
This is the basic principle that allows us to extend the local definitions on
open sets in R2 to any smooth surface S by using a covering by coordinate
charts and giving the definition chart by chart. This works because the
transition functions are isometries. This is what we did in Section 7.1.7 to
check that the length of curves is well-defined.

To check that vector quantities, like the covariant derivative, are well
defined requires more elaborate formulas than for scalar quantities like the
length of a curve. For example, if V is a vector field along a curve γ in U ,
then the covariant derivatives Dh along γ for h and Dg along f ◦ γ for g are
related by

Dg
df(γ′)(df(V )) = df(Dh

γ′V ), where df = dγ(s)f and V = V (γ(s)).

Here it is convenient to use the first (and sometimes more accurate) notation
in (7.29) for the covariant derivative. The textbooks in differential geometry
develop the mechanism for verifying such formulas, but we will not go into
these details. But, as in Remark 7.8, we will not need this generality.

7.2.4. Existence and Uniqueness of Geodesics. Here is one useful example
of the principle just explained. In any Riemannian metric the system (7.39)
of second order ODE’s has the same properties studied in Section 6.2 of [12].
In particular, given any Riemannian metric on U ⊂ R2, any point p ∈ U
and any tangent vector v to U at p, there exists unique geodesic γ(s, p,v),
defined perhaps only for |s| small, but depending smoothly on all variables
s, p,v, so that γ(0, p,v) = p and γs(0, p,v) = v.

Moreover, the uniqueness implies the identity (6.13) of [12]: γ(rs, p,v) =
γ(s, p, rv), and, just as in Theorem 6.7 of [12], we get the following conse-
quences: there is some b > 0 so that γ(1, p,v) is defined on the ball Bg(0, b)
in the tangent plane to U at p, the superscript g to emphasize that the size
is being measured by the inner product g on this space. We therefore can
define the exponential map expp : Bg(0, b)→ U by expp(v) = γ(1, p,v) and
there is an ε > 0 so that the restriction of expp to Bg(0, ε) is a diffeomor-
phism onto its image.

The geodesic equation, and thus its solutions, must be invariant under
isometries: if f : (U, g) → (V, h) is an isometry, then, using superscripts to
denote the metrics, we have the identities

γh(s, f(p), dpf(v)) = f(γg(s, p,v)) and(7.45)

therefore exphf(p)(df (v)) = f(expgp(v))

This invariance has a useful consequence:
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Theorem 7.3. Let U ⊂ R2 be an open set, let g be a Riemannian metric
on U , let f : (U, g)→ (U, g) be an isometry, and let F be its fixed-point set:
F = {p ∈ U : f(p) = p}. Then, for every p ∈ F , there is a neighborhood V
of p in U and a neighborhood V ′ of 0 in TpU so that V ∩F = expp(V

′∩F ′),
where F ′ = {v ∈ TpU : dpf(v) = v} is the fixed-point set of dpf , where TpU
is the space of tangent vectors to U at p.

Proof. Let p ∈ F and choose ε > 0 so that expp maps Bg(0, ε) diffeomorphi-
cally to its image, as explained above. Let V ′ = Bg(0, ε) and V = exp(V ′).

Suppose q ∈ V . then q = expp(v) for a unique v ∈ V ′ and (7.45) implies
that f(q) = expp(dp(v)). Therefore f(q) = q if and only if dpf(v) = v. �

Corollary 7.1. Let S be a smooth, connected surface with a Riemannian
metric, let f : S → S be an isometry, and let C be a connected component
of its fixed point set F . Then either

(1) C consists of a single point.
(2) C is a non-singular curve in S and is a geodesic.
(3) C = S.

Proof. Let p ∈ C, take a coordinate chart U so that p ∈ U , thus reducing
to U ⊂ R2, and apply the Theorem. Since the fixed-point set F” of dpf is
a linear subspace of TpU , it is either 0, a line L through 0 or all of TpU . So
locally we have one of the three possibilities of the Corollary. Here, non-
singular curve means that locally it is like a line in the plane, which is he
case here, and note that C ∩ V is a geodesic in this case.

If F ′ = 0 we have clearly C = p. If F ′ is a line, let q ∈ C, take a path
from p to q in C, cover it by finitely many V1, . . . , Vk as in the Theorem, so
that Vi ∩ Vi+1 6= ∅, and argue that for all such Vi we must be in case (2)
since V1 is and Vi ∩ Vi+1 is of the same case as Vi and Vi+1.

If F ′ = TpU , and q ∈ C, again send a path from p to q and argue in
exactly the same way to get that F ′ = TqU , thus F = id, equivalently, since
S is connected, F = S. �

Example 7.9. Let gS be the spherical metric of Equation (7.12). By Theo-
rem 7.2 we know that the isometries fixing the origin of the Euclidean metric
are isometries of gS . In particular, for each line L through the origin, the
reflection in this line is an isometry of gS , and has L as its fixed-poiint set.
Therefore every line L through the origin is a geodesic of gS , meaning that,
when reparametrized by arclength it satisfies the geodesic equation. These
lines parametrize the great circles through the north and south poles of S2,
hence we know independently that the must be geodesics.

Similarly, for the Poincaré metric gS of Equation (7.22) on {|u| < 1} also
has the reflections in the lines L through the origin as isometries (same proof
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as for gS in Theorem 7.2), thus the intersections of this lines with the disk
are fixed point sets of isometries, hence geodesics.

Similarly, we know from Theorem 7.2 that the circle |u| = 1 is the fixed
point set of another isometry: inversion in the unit circle.

Finally, another useful consequence of Theorem 7.3. Note that we have
not defined tangent spaces to arbitrary surfaces, nor the differential of a
smooth map of surfaces. But the condition that dpf = id could be defined
as dpf = id in any coordinate chart containing p. This condition makes
sense since it is independent of the chart.

Corollary 7.2. Let S be a smooth, connected surface with a Riemannian
metric, and suppose f : S → S is an isometry, and suppose there is a point
p ∈ S so that dpf = id. Then f = id.

Proof. Since dpf = id, by (7.45) we see that f = id in some neighborhood of
p. Then Corollary 7.1 only leaves the possibility F = S, that is, f = id. �

7.2.5. Geodesic Equations in Geodesic Polar Coordinates. Recall that in
Section 6.2.4 of [12] we defined geodesic polar coordinates (also called normal
coordinates) and used them to study the minimizing properties of geodesics.
More precisely, given any point P in a surface (and now we can say in any
surface with a Riemannian metric) we can introduce, in some neighborhood
of P , a polar coordinates system (r, θ) centered at P in which the metric g
takes the form

(7.46) ds2 = dr2 + f(r, θ)2dθ2

where f(r, θ) is a positive smooth function that satisfies

(7.47) f(r, θ) = r − K(P )

6
r3 +O(r4),

see Theorem 6.2 of [12] (where the function we call f is denoted by g). The
significance of the number K(P ), which we called the Gaussian curvature,
will be discussed shortly.

This was all derived in Sections 6.2 and 6.3 of [12] for surfaces in R3 by
using the first variation formula and the theory of second order ODE’s. In
particular we proved Theorem 6.7 to derive the existence and of normal
coordianates, and Gauss’s Lemma, Theorem 6.8, to derive the special form
(7.46) of the metric in geodesic polar coordinates. The discussion of the last
section (7.2.3) means that the same results hold for any Riemannian metric
on any surface.

It is clear from (7.46) that the geodesics through the pole P , in other
words, through the origin r = 0 of the polar coordinate system, are given
by the lines θ = const. The geodesics not through the center are harder
to determine. We will use Equations (7.37) to get some information on
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these other geodesics. Note that (7.46) mean that g11 = 1, g12 = 0 and
g22 = f2. Thus in the geodesic equations (7.37) we get that any coefficient
that involves only g12 or derivatives of g11 or g12 has to vanish. Thus the
only Γij,k that do not vanish are Γ22,1,Γ21,2 and Γ22,2. A short computation
gives that the equations simplify to

r′′ − ffr(θ′)2 = 0(7.48)

fθ′′ + 2frr
′θ′ + fθ(θ

′)2 = 0.

This is the only explicit computation of the geodesic equation that we will
need.

8. The Gauss-Bonnet Theorem

In this Chapter we will prove the Gauss-Bonnet theorem that will unify
much of the course. This is the formula (1.2) that involves relates the
topology and geometry of surfaces. We have now defined all the individual
elements of the formula, but the definition of K is, at the moment, not very
illuminating. We begin by giving the original definition.

8.1. The Gauss Map and the Gaussian Curvature. Let S ⊂ R3 be a
smooth surface. At every point p ∈ S there are two unit normal vectors to
S, differing by sign. Choose one, call it N(p), and assume that it is possible
to choose N(p) so that it is a continuous function of p. This happens to
be equivalent to orientability, so it may not always be possible (say, for a
Möbius band). But locally it is always possible. If x : U → S is a regular
parametrization then (following the notation of Section 7.1)), the partial
derivatives x1 and x2 are linearly independent at each point, in other words,
the cross product x1 × x2 6= 0 and we can take N = x1 × x2/|x1 × x2|. For
the present purposes we cajn say that to orient a surface it means to make a
continuous choice of normal vector field N. We can move the normal vectors
to be based at the origin and this gives the Gauss map:

Definition 8.1. Let S ⊂ R3 be a smooth, oriented surface.

(1) The Gauss map of S is the map N : S → S2 that assigns to p ∈ S the
unit normal vector N(p). Explicitly, if x : U → S is a parametriza-
tion of (part of) S, we choose

N =
x1 × x2

|x1 × x2|
.

(2) The Gaussian curvature K(p) of S at p is defined to be the signed
area distortion of N at p, namely

(8.1) ± lim
r→0

A(N(Dr))

A(Dr)
,

where Dr is a geodesic disk of radius r centered at p, choosing the
+ sign if N is orientation preserving at p, and the − sign otherwise.
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Example 8.1. (1) Let S = S2(R) be the sphere |x| = R of radius R
centered at the origin, Then the Gauss map is N(x) = x

R , the map

is orientation-preserving, and the ratios in (8.1) are 1/R2 since the
area measurements in S2(R) are R2 times those in S2 = S2(1). Thus
the Gaussian curvature K ≡ 1/R2 for S2(R).

(2) If S is contained in a plane in R3 then N is a constant map and
K ≡ 0.

(3) More generally, if S is a “cylinder” x(u1, u2) = (x(u1), y(u1), u2) on
a plane curve γ(s) = (x(s), y(s)) as in (6.21) of [12], then, assuming
γ′(s) ≡ 1, we get

N(u1, u2) =
(x′(u1), y′(u1), 1)√

2
,

which is a curve in S2. Thus the Gauss map has one-dimensional
image, encloses no area and the numerator in (8.1) vanishes, thus
K ≡ 0 also in this case, see Figure 8.1.

(4) Even though it is difficult from (8.1) to find the exact value of K, it is
easy to see when K > 0, K ≡ 0 or K =< 0. We have seen examples
of the first two situations, and a saddle illustrates the third, see
Figure 8.1.

Figure 8.1. sign of the Gaussian Curvature.

To get an explicit formula for K, recall the formulas for area from Re-
mark 7.3. The numerator in (8.1) is

∫∫
D |N1 × N2| du1du2 (for suitable

domains D ⊂ U) while the denominator is
∫∫
D |x1 × x2| du1du2. It follows

that their ratio converges, as the domains D shrink to a point u ∈ U , to the
ratio of the integrands at u, in other words,

(8.2) K(u) = ± |N1 ×N2|
|x1 × x2|

= ± |N1 ×N2|√
det g

,
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where the second equation results from the computation discussed in Re-
mark 7.3 (and taken as the definition of dA in Equation (7.19) of Defini-
tion 7.2).

It remains to determine the sign ±. Note that the orientation of S is
given by the vector x1 × x2 which is parallel to N , and the orientation in
S2 given by the map N is that of N1×N2. So the two orientations agree if
N1×N2 is a positive multiple of N, and disagree if this multiple is negative.
Observing that this multiple is (N1 ×N2) ·N and that its absolute value is
|N1 ×N2|, we see that the correct signed denominator is the “scalar triple
product” (N1 ×N2) ·N and we get the final formula for K:

(8.3) K =
(N1 ×N2) ·N√

det g
.

8.1.1. Gauss’s Theorema Egregium. In Remark 6.4 and Section 6.4 of [12]
we quickly explained the distinction between the intrinsic and the extrin-
sic geometry of surfaces in R3. Extrinsic geometry is basically the study
of the shape of the surface in R3 while intrinsic geometry is the study of
the Riemannian metric, not distinguishing two surfaces of different shapes
if their Riemannian metrics are isometric. For example, the cylinders of
Example 8.1 have infinitely many different shapes, as many as the shapes
of the plane curves γ used to define them, but they are all isometric to a
subset of the plane, so they are all intrinsically equal.

There is a very detailed theory of the extrinsic geometry of surfaces, base
on the following technique: at each p ∈ S, write S as the graph of a function
f (depending on p)) from the tangent plane TpS to the normal line at p
(multiples of N(p)). This is a quadratic form, called the second fundamental
form of S at p. (In the classical terminology, the Riemannian metric is called
the first fundamental form). Properly interpreted, the second fundamental
form is the differential dN of the Gauss map, and the Gauss curvature is
the determinant of dN.

Thus the definition of K in Definition 8.1 is extrinsic. Gauss discovered
that K is actually intrinsic and called this the “Theorema Egregium” (usu-
ally translated as “Remarkable Theorem’). The book [4] is a good source
for its history, which goes as follows:

(1) Gauss discovered the following formula: Let ∆ be a geodesic triangle
in S with interior angles α, β, γ. Then

(8.4)

∫∫
∆
K dA = α+ β + γ − π.

(2) Since every member of this equation, except K, is clearly intrinsic,
it follows that K must be intrinsic.

(3) Since K is intrinsic, it must have an explicit expression in terms of
the gij .
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(4) To find such an expression, Gauss first tried an easier special case,
geodesic normal coordinates dr2 +f(r, θ)2 dθ2 as in Equation (7.46).
He found the formula

(8.5) K = −frr
f
.

(5) He then found a formula valid in any coordinate system.

Gauss, however, did not publish his results in this way, his famous pub-
lished paper presents these developments in exactly the opposite order, see
[4] for more information. Most books in differential geometry follow this
reverse order of presentation.

Here we will prove that K is intrinsic and the formula (8.4) in a different
way: will use the second variation formula to prove that K is intrinsic, then
will derive (8.5), and (8.4) will follow easily from this and the equations
(7.48) for geodesics not through the pole.

8.2. The Second Variation Formula. We know that geodesics are crit-
ical points of the length function, but not necessarily minima. To better
understand the nature of critical points we know, from calculus, that we
should look at second derivatives at critical points. This is called the second
variation formula. We will follow the notation of Section 7.2.1.

We now consider a geodesic γ : [0, L0] → S, parametrized by arclength,
and a variation

(8.6) γ̃ : [0, L0]× (−ε, ε)→ S with γ̃(s, 0) = γ(s) for all s ∈ [0, L0].

To simplify some formulas we will assume that the variation is normal
meaning that < γ̃t(s, 0), γ̃s(s, 0) >≡ 0. We will choose a unit vector n
along γ perpendicular to the tangent vector γ′, and, if we have chosen an
orientation on S, we will assume that the pair γ′,n is positively oriented,
that is, n is obtained by a counterclockwise rotation of γ′ by a right angle.
In this notation we get that the variation vector field V (s) satisfies

(8.7) V (s) = γ̃t(s, 0) = f(s)n(s)

for some smooth real-valued function f defined along γ.

We start with the same formula (7.30)for the length L(t) and get the
formula (7.31) for L′(t), but, in order to find L′′(0) we cannot go on to (7.32)
which sets t = 0 at this point, we have to first take one more derivative.
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In order to do this, we work with (7.31): we replace Dγ̃s
Dt with Dγ̃t

Ds in the
integrand, then integrate by parts, obtaining the formula

L′(t) =< γ̃s, γ̃s >
1
2< γ̃t, γ̃s > |L0

0(8.8)

+

∫ L0

0
< γ̃s, γ̃s >

− 3
2<

Dγ̃s
Ds

, γ̃s >< γ̃t, γ̃s > ds

−
∫ L0

0
< γ̃s, γ̃s >

− 1
2< γ̃t,

Dγ̃s
Ds

> ds

Next we take L′′(t) and observe that most terms will vanish when setting
t = 0: any term of the derivative of the first line would contain a factor
of < V, γ′ >= 0 by assumption, or of < DV

Ds , γ
′ >= 0 by differentiating

< V, γ′ >= 0. Similarly every term of the derivative of the second line

has a factor either as just discussed, or one containing Dγ′

Ds = 0 again by
assumption. The same applies to two of the three terms of the third line.
In summary, setting t = 0 we get

(8.9) L′′(0) = −
∫ L0

0
< γ̃t(s, 0),

D

Dt

Dγ̃s
Ds

(s, 0) > ds.

Next, in order to interpret this formula, we would like to change the order
of the derivatives in order to integrate by parts, just as we did before to
interpret L′(0). The question is: if V (s, t) is a vector field along γ̃(s, t), how
are D

Dt
DV
DS and D

Ds
DV
Dt related? It turns out they are not equal, let’s see what

happens.

Recall that DV
Ds = V T

s = Vs − (V ·N)N, therefore

D

Dt

DV

Ds
= (Vs − ((Vst ·N) + (Vs ·Nt))N− (Vs ·N)Nt)

T

= (Vs − ((Vst ·N) + (Vs ·Nt))N)T − (Vs ·N)Nt,

because Nt is tangential: differentiate N ·N = 1 to get Nt ·N = 0. Next,
observe that the terms in parenthesis are symmetric in s, t, therefore so is
its tangential component, therefore we get

D

Dt

DV

Ds
− D

Ds

DV

Dt
= −(Vs ·N)Nt + (Vt ·N)Ns = (V ·Ns)Nt − (V ·Nt)Ns,

the last expression resulting from the identities Vs ·N+V ·Ns = (V ·N)s = 0
and the similar identity in t.

Next, we need to recognize this last expression as (Ns ×Nt)× V . Since
Ns×Nt = ((Ns×Nt)·N)N, this looks somewhat similar to the numerator of
(8.3), except that γ̃ is not necessarily a parametrization of S, it can happen
that γ̃s × γ̃t vanishes, and, when it doesn’t vanish, it may be a positive or
negative multiple of N. The correct interpretation of equations (8.2) and
(8.3) in this situation, to avoid dividing by 0 and always having the correct
sign, is

(8.10) Ns ×Nt = K (γ̃s × γ̃t),
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which gives us the formula

(8.11)
D

Dt

DV

Ds
− D

Ds

DV

Dt
= K (γ̃s × γ̃t)× V.

Let us apply this formula to (8.9) by choosing V (s, t) = γ̃s(s, t). Observe
that (γ̃s × γ̃t) × γs(s, 0) = (γ̃s × γ̃t) × γ′(s) = f(s)n(s) where F and n are
as defined in (8.7). Therefore (8.11) becomes

(8.12)
( D
Dt

Dγ̃s
Ds
− D

Ds

Dγ̃s
Dt

)
(s.0) = Kfn.

Using this formula, we can change the expression D
Dt

Dγ̃s
Ds (s, 0) in the inte-

grand of (8.9), to D
Ds

Dγ̃s
Dt (s, 0) + K(s)f(s)n(s), and then change the first

term to D
Ds

Dγ̃t
Ds (s, 0) = f ′′(s)n(s) by two uses of the identity (7.44) and the

fact that Dn
Ds = 0 (which follows from the fact that its two components

< Dn
Ds ,n >=< Dn

Ds , γ
′ >= 0, obtained by differentiating < n,n >= 1 and

< n, γ′ >= 0 and using Dγ′

Ds = 0). Then rewrite (8.9) as

(8.13) L′′(0) = −
∫ L0

0
(f ′′ +Kf)f ds,

and, integrating by parts,

(8.14) L′′(0) =

∫ L0

0
(f ′)2 ds −

∫ L0

0
Kf2 ds.

From this we see that, since every quantity, other than K, appearing in
these expressions is intrinsic, we get the rough form of Gauss’s Theorema
Egregium:

Corollary 8.1. The Gaussian curvature K is intrinsic.

Also, the following is immediate from (8.14):

Corollary 8.2. If K(p) ≥ 0 for all p ∈ S, then L′′(0) > 0 for all non-trivial
normal variations γ̃ that keep the endpoints fixed.

Proof. The first term of (8.14) is ≥ 0 and = 0 if and only if f is constant.
If K ≥ 0 the second term is also ≥ 0, hence the sum L′′(0) ≥ 0 and = 0 if
and only if f is constant. For a normal variation with fixed endpoints must
have f(0) = f(L0) = 0, hence f ≡ 0 if L′′(0) = 0. �

8.2.1. Jacobi’s Equation and Theorema Egregium in Geodesic Polar Coordi-
nates. We now derive Gauss’s formula (8.5) for K. We will not logically use
the second variation formulas (8.13) and (8.14) but these formulas provide
the motivation for the arguments that follow.

Suppose now that the variation γ̃(s, t) of (8.6) is always normal and always
by geodesics, that is, for all t, the curve γ̃( , t) is a geodesic, and for all s, t
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we have γ̃t(s, t)⊥γ̃s(s, t). Write n(s, t) for the unit normal of the geodesic
γ̃( , t) at the point (s, t), chosen counterclockwise in the given orientation,

and let f(s, t) be defined by γ̃t(s, t) = f̃(s, t)n(s, t), which makes sense since
the variation is always normal.

Theorem 8.1. Let γ̃(s, t) be a variation of a geodesic γ(s) = γ̃(s, 0) that
is always normal and always geodesic as just defined, and let γ̃t(s, t) =

f̃(s, t)n(s, t) as above. Then the function f(s) = f̃(s, 0) satisfies Jacobi’s
differential equation

f ′′ +Kf = 0,

where K = K(γ(s)).

Proof. Since γ̃(s, t) is a geodesic for all t we have that Dγ̃s
Ds (s, t) = 0, hence

D
Dt

Dγ̃s
Ds (s, t) = 0, hence, by (8.12) D

Ds
Dγ̃s
Dt (s, t) + K(γ̃(s, t))f̃(s, t)n(s, t) = 0.

Changing Dγ̃s
Dt to Dγ̃t

Ds by (7.43) and then D
Ds

Dγ̃t
Ds = D

Ds
D(f̃n)
Ds = f̃ ′′n, this

last identity as in the derivation of (8.13). Finally, setting t = 0, we obtain
(f ′′ +Kf)n = 0, hence the desired equation. �

The application we have in mind is the following natural example of an
always normal, always geodesic variation:

Corollary 8.3. Let p ∈ S, let U be a neighborhood of p on which a system
of geodesic polar coordinates (r, θ) is defined, (as in Section 7.2.5 above or
theorem 6.9 of [12]), thus ds2 = dr2 + f(r, θ)2 dθ2 (as in (7.46)). Then, for
each θ, the function f(r, θ) is the unique solution of Jacobi’s Equation

frr(r, θ) +K(r, θ)f(r, θ) = 0

satisfying the initial conditions f(0, θ) = 0 and fr(0, θ) = 1.

Proof. For each θ the curve (r, θ) is a geodesic (parametrized by arclength),
so this is an always geodesic variation of any of its members. By Gauss’s
Lemma (Theorem 6.8 of [12]) it is an always normal variation and the vari-
ation vector field is f(r, θ)n(r, θ). Therefore, for any fixed θ, f(r, θ) satisfies
Jacobi’s Equation.

The expansion (7.47): f(r, θ) = r − K(0)
6 r3 + O(r4) = r + O(r3) shows

that the stated initial conditions are satisfied. �

Corollary 8.4. Gauss’s Theorema Egregium in geodesic polar coordinates:

K(r, θ) = − frr
f

(r, θ),

This identity also holds at the origin of the coordinate system, in the sense
that limr→0(−frr

f ) = K(0).



5520 NOTES 99

Proof. The formula away from the origin is clear. At the origin, even though

the coordinates become singular, the expansion (7.47): f(r, θ) = r−K(0)
6 r3+

O(r4) = r +O(r3) gives

frr
f

=
−K(0)r +O(r2)

r +O(r3)
= −K(0) +O(r)→ −K(0) as r → 0.

�

8.2.2. Definition of Gaussian Curvature for any Riemannian Metric. Hav-
ing proved that K is intrinsic for surfaces in R3, it is reasonable to say that
K can be defined for any Riemannian metric. It is enough to define it for
metrics (U, g) on open subsets of R2 in a manner invariant under isometries.
The favorite definition at present is to start from formula (8.11). Take as
ususal coordinates u1, u2 on U and consider a vector field V (u1, u2) on U .
Then one has to prove that

(8.15)
D

Du2

DV

Du1
− D

Du1

DV

Du2
= K

√
det g V ⊥

for some smooth function K, where V ⊥ is the tangent vector to U at u
that is perpendicular to V and obtained by counterclockwise rotation. (The
problem is to show that the right hand side is of the form f V ⊥ for some
smooth function f , then we can divide this function by the positive function√

det g and call the result K). This is the fact and can be derived from the
equations (7.42), (7.43) and (7.44).) Once this fact is verified, we can define
K by (8.15) and all intrinsic formulas involving K that we have derived so
far are valid in any Riemannian metric.

We will adopt this definition, and observe that the formula of Corollary 8.4
remains valid, in paarticular, we also have K(0) = limr→0(−frr/f) that we
used in [12].

8.2.3. Metrics of Constant Curvature. We can view Corollary 8.3 as a method
of constructing a Riemannian metric with prescribed curvature. This is very
practical in case that K is a constant. It is convenient to normalize to three
values of this constant: K ≡ 0, 1, −1. We obtain the following:

(1) K ≡ 0: We need to solve frr = 0 with initial conditions f(0) = 0
and fr(0) = 1. The solution is f(r) = r and the expression for the
metric is

(8.16) dr2 + r2 dθ2,

which is valid in all of R2 and is the familiar expression for the
Euclidean metric dx2 + dy2 in polar coordinates.

(2) K ≡ 1: We need to solve frr +f = 0 with initial conditions f(0) = 0
and fr(0) = 1. The solution is f(r) = sin r and the expression for
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the metric is

(8.17) dr2 + sin2 r dθ2

which gives a positive definite metric only on the disk {r < π} and
is the familiar expression for the metric of the unit sphere S2 in
spherical coordinates, as in Section 7.1 above, or, in more detail, in
Example (6.6) of [12] (see formula (6.7)), where r is the angle from
the north pole, which is the same as arclength on the great circles
through the north pole.

This metric is isometric to the spherical metric gS of (7.12). In
fact, writing gS in polar coordinates ρ, θ, where u1 = ρ cos θ and
u2 = ρ sin θ, then gS becomes

gS =
4(dρ2 + ρ2 dθ2)

(1 + ρ2)2
,

and the maps φ(ρ, θ) = (2 arctan ρ, θ) and ψ(r, θ) = (tan r
2 , θ) are

isometries and inverses to each other. (These computations are
equivalent to the computations in homework problems of radii and
circumferences in gS of circles centered at 0.)

(3) K ≡ −1: We need to solve frr−f = 0 with initial conditions f(0) = 0
and fr(0) = 1. The solution is f(r) = sinh r and the expression for
the metric is

(8.18) dr2 + sinh2 r dθ2,

which is valid in all of R2 and is isometric to the Poincaré metric
gP of Example 7.4. To see an explicit isometry, introduce polar
coordinates ρ, θ in the unit disk: u1 = ρ cos θ and u2 = ρ sin θ as
above, then the formula (7.22) becomes

gP =
4(dρ2 + ρ2 dθ2)

(1− ρ2)2
,

and we get inverse isometries φ(ρ, θ) = (ln 1+ρ
1−ρ , θ) = (2 tanh−1(ρ), θ)

and ψ(r, θ) = (tanh r
2 , θ), whose verification is equivalent to home-

work problems.

Remark 8.1. For arbitrary positive constants K, (8.17) would change to

dr2 +
( 1√

K
sin(
√
Kr)

)2
dθ2,

and, for a negative constant K,(8.18) would change to

dr2 +
( 1√
−K

sinh(
√
−Kr)

)2
dθ2,

which, in either case, are asymptotic to dr2 + r2 dθ2 as |K| → ∞.
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8.3. Total Curvature or Geodesic Triangles. We now prove Gauss’s
formula (8.4). We assume given a smooth surface S with a Riemannian
metric, but restrict ourselves to a geodesic triangle ∆ lying in a small enough
open set U on which a system of geodesic polar coordinates r, θ, centered at
one of the vertices, is defined:

Theorem 8.2. Let S be a smooth surface with a Riemannian metric, let ∆
be a geodesic triangle with vertices P,Q,R, and assume that ∆ is contained
in the domain of a geodesic polar coordinate system centered at P . Let α, β, γ
be the interior angles of ∆ at the points P,Q,R respectively. Then

(8.19)

∫∫
∆
K dA = α+ β + γ − π.

Proof. Using the definition (??) of dA, and observing that
√

det g = f(r, θ),
we get ∫∫

∆
K dA =

∫ θ2

θ1

∫ r(θ)

0
K(r, θ)f(r, θ) drdθ,

where θ = θ1 and θ = θ2 are the equations of the geodesic rays containing
the sides PQ and PR of ∆, and (r(θ), θ), θ1 ≤ θ ≤ θ2, is a parametrization
of the third side QR of ∆, see Figure ??.

Using Corollary 8.4 we get∫ θ2

θ1

∫ r(θ)

0
(−frr) drdθ =

∫ θ2

θ1

(−fr(r(θ), θ) + fr(0, θ)) dθ.

Since Corollary 8.3 gives fr(0, θ) = 1, this becomes∫ θ2

θ1

(−fr(r(θ), θ) + 1) dθ = α−
∫ θ2

θ1

fr(r(θ), θ) dθ.

To evaluate this last integral we need the following lemma:

Lemma 8.1. Let (r(s), θ(s)) be a geodesic, parametrized by arclength, in the
domain of the coordinate system used above, and suppose it does not pass
through the center (θ not constant). Let φ(s) be the angle at (r(s), θ(s)) that
its tangent vector (r′(s), θ′(s)) makes with the forward tangent vector to the
ray θ = θ(s) from the origin, see Figure ??. Then

dφ

dθ
= −fr(r(θ), θ).

Proof. Since the tangent vector to the geodesic is (r′, θ′), the tangent vector
to the ray from the origin is (1, 0) and the length squared r′2 + f2θ′2 = 1 ,
we get

cosφ = r′ and sinφ = fθ′,

the second resulting from sinφ being the cosine of the angle between (r′, θ′)
and (0, 1), and these vectors have inner product f2θ′ and magnitudes 1, f
respectively.
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Differentiating the first of these equations, then using the first differen-
tial equation r′′ − ffr(θ′)2 = 0 of (7.48) and the second of the above two
equations, we get

− sinφ φ′ = r′′ = ffrθ
′2 = −fθ′φ′,

and dividing the last equality by fθ′ (which is valid by the assumption that
the geodesic is not through the pole, therefore neither f nor θ′ vanishes), we
get

dφ

dθ
=
φ′

θ′
= −fr.

�

We can now resume the computation of the integral:

α−
∫ θ2

θ1

fr(r(θ), θ) dθ = α+ φ(θ2)− φ(θ1)

= α+ γ − (π − β) = α+ β + γ − π,
see Figure 8.2. �

Figure 8.2. Angles of the Geodesic Triangle ∆ = PQR.

8.4. The Gauss - Bonnet Theorem. Theorem 8.2 was stated and proved
for small geodesic triangles. But it holds for triangles of any size by sub-
dividing into small triangles to which Theorem 8.2 applies, and adding all
the contributions. The result is again the formula (8.4). A similar formula
holds for any geodesic n-gon P with interior angles α1, . . . , αn:

(8.20)

∫∫
P
K dA = α1 + · · ·+ αn − (n− 2)π,

where the term (n− 2)π in the right hand side is the sum of interior angles
of a Euclidean n-gon. This formula also follows from Theorem 8.2 by subdi-
viding P into sufficiently small triangles and adding, using a variation of the
argument in the proof of Theorem 8.3 below. There are also formulas for
arbitrary regions, not necessarily with geodesic sides, involving extra terms
of integrals of the geodesic curvatures of the edges.
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We will not pursue these directions, but will prove another theorem,
promised in (1.2), and that follows from Theorem 8.2 by the method of
subdivision. This theorem relates topology and curvature of the compact
surfaces. For simplicity, we will state it only for orientable ones, but it also
holds for non-orientable surfaces.

Theorem 8.3. Let S be a compact oriented smooth surface with a Riemann-
ian metric, and let K : S → R be the Gaussian curvature of this metric.
Then

(8.21)

∫∫
S
K dA = 2πχ(S) = 4π(1− g),

where χ(S) is the Euler characteristic (see Definition 3.4 ) and g is the
genus of S (as in Theorem 1.1).

Remark 8.2. Strictly speaking, we should have written χ(triangulation of S)
in the right - hand side, rather than χ(S). With enough care in the proof
(which we only hint at) this theorem could be used to prove that χ is inde-
pendent of the triangulation (since the left-hand side is).

Proof. We will prove this theorem under the assumption that S has a trian-
gulation S = T1∪· · ·∪Tn (as in Definition 3.1), where all the Ti are geodesic
triangles (meaning that the edges are geodesic). Also, assume that each Ti
is contained in the domain of a geodesic polar coordinate system centered at
one vertex. This can actually be proved from the existence of triangulations,
with subdivision and approximation arguments, but we will not do this here.
We will just say that it is best to do this using Definition 3.3, in terms of
a simplicial complex C with geometric realization |C| (see Definition 3.2)
and a homeomorphism φ : |C| → S. There is a process of subdviding a
complex C to get a new complex C ′, called its barycentric subdvision that
makes the simplices smaller. Using this process and approximations, one
can first assume that the map φ is smooth on each simplex, then subdivide
enough times to make the simplices small enough so they lie in the domain
of polar coordinate systems, and replace the simplices by geodesic one.

So write S = T1∪· · ·∪Tn where each Ti is a geodesic triangle with interior
angles αi, βi, γi, and each Ti is small enough so that the proof of Theorem 8.2
is valid. Then∫∫

S
K dA =

n∑
i=1

∫∫
Ti

K dA =

n∑
i=1

(αi + βi + γi − π).

Writing, as in Chapter 3, V,E, F for the number of vertices, edges, triangles
(faces) in the triangulation, this is

F∑
i=1

(αi + βi + γi)− Fπ
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since n = F . The first term can be reorganized as a sum over the vertices
p1, . . . , pV and gives

V∑
j=1

(sum of the angles at pj of the triangles with vertex pj) = 2πV

because, for each j, these angles cover a neighborhood of pj , so their sum
is the same as the sum of the angles between their tangent vectors in the
Euclidean space of tangent vectors at pj , so this sum is 2π. Therefore∫∫

S
K dA = 2πV − πF = 2π(V − 3

2
F + F ) = 2π(V − E + F ) = 2πχ(S),

using the identity 2E = 3F of Corollary 3.1. Finally, χ(S) = 2 − 2g is
Equation (3.4).

�

9. The Geometries of Constant Curvature

We look more closely at the Riemannian metrics of constant curvature.
We gave models for them in Section 8.2.3 by giving their geodesic polar
coordinate expressions. In all these formulas there is a distinguished point,
the pole, and the metric is rotationally symmetric around that point, and
also has reflectional symmetry about all the geodesics passing through the
pole. But we know, both in the case K ≡ 0 of Euclidean geometry and
K ≡ 1 of spherical geometry, that there are more symmetries that are not
visible in the formulas of Section ??. It is reasonable to expect the same to
be true of the case K ≡ −1 of the Poincaré metric. This metric will also be
called the hyperbolic metric and its geometry hyperbolic geometry.

To discuss the symmetries more precisely, we have to consider more than
just the value of the curvature, since there can be several Riemannian metrics
with the same curvature. For example, a proper open subset of the Euclidean
plane R2 has K ≡ 0 but is not isometric to all of R2 and it will not be
invariant by all translations of R2. One way of excluding these examples is
to talk about complete metrics, meaning either complete as a metric space
or, what turns out to be equivalent for Riemannian metrics, is the condition
of geodesic completeness, meaning thatall geodesics are defined for all time.
This excludes proper open subsets of R2, and similar examples.

Another situation of different spaces with the same curvature occurs, for
example, the torus T 2 = R2/Z2 and all of R2 both have K ≡ 0, the sphere
S2 and the projective plane P 2 both have metrics with K ≡ 1. What
distinguishes R2 and S2 in this situation is that they are simply connected.

The examples of Section 8.2.3 are complete, simply connected surfaces of
constant curvature. It can be proved that, up to isometry, they are the only
ones. In the case of K ≡ 1, we have to interpret the formula (8.17) as
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defining a metric on S2 by presenting S2 as the quotient space of the disk
{r ≤ π} ⊂ R2 by identifying its boundary to a point.

9.1. Groups of Isometries. We know from Section 2.1 of [12] that the
group of isometries of R2 is the Euclidean group E(2) consisting of all affine
linear transformations x → Ax + b where A ∈ O(2) is an orthogonal 2 ×
2 matrix and b ∈ R2. Recall the homeomorphism (Remark 2.6 of [12] )
of E(2) with the topological space R2 × O(2), which has two connected
components, each homeomorphic to R2×S1. Thus the group E(2) is three-
dimensional. This is the largest possible dimension of the group of isometries
of a Riemannian metric on a surface. We do not want to make this precise,
but intuitively it can be seen as follows: If G is the group of isometries of
S, then for any p ∈ S, the subgroup Gp of isometries fixing the point p is at
most one-dimensional, because the differential at p gives a homomorphism
of this group to the group, isomorphic ot O(2), of linear isometries of the
tangent space TpS. By Corollary 7.2 this homomorphism is injective, hence
the dimension of Gp is at most one. Since S is two dimensional, this leaves
at most two more possible dimensions for G, hence at most three dimensions
in total.

Similarly, the group of isometries of S2 is the group O(3) of orthogonal
3×3 matrices, see Definition 2.4 of [12]. It is clear that any matrix A ∈ O(3)
gives an isometry of R2 fixing the origin, hence leaves S2 invariant and if
gives an isometry of S2. This can be seen as follows. For any x ∈ S2,
the tangent space TxS

2 = x⊥ = {y ∈ R3 : x · y = 0} the orthogonal
complement of x, and orthogonal matrices preserve orthogonality. Hence
A|x⊥ : x⊥ = TxS

2 → (Ax)⊥ = TAxS
2 is an isometry.

Theorem 9.1. Let G be the group of isometries of S2. The restriction map
ρ : O(3)→ G defined by ρ(A) = A|S2 is a group isomorphism.

Proof. We have just remarked that for all A ∈ O(3), ρ(A) is an isometry of
S2, so ρ : O(3) → G, and it is clear that ρ is homomorphism. If ρ(A) = id
then, since S2 contains bases for R3, A = I, thus ρ is injective. So it is
harmless to simplify notation and not distinguish A and ρ(A). To prove
that ρ is surjective, fix a point x0 ∈ S2. Given any g ∈ G, that is, given any
isometry g : S2 → S2, there exists A ∈ O(3) so that Ax0 = g(x0). Then
f = A−1g is an isometry of S2 fixing x0. Then dx0f is an isometry of Tx0S

2,
and (using an orthonormal basis for R3 with x0 as one of its members, the
other two then being an orthonormal basis for x⊥o = Tx0S

2), we can find
B ∈ O(3) with Bx0 = x0 and B|x⊥0 = dx0f . Then B−1f is an isometry of

S2 that fixed x0 and is the identity on Tx0S
2, hence, by Corollary 7.2 we

have that B−1f = −id, hence f = B, hence A−1g = B or g = AB ∈ O(3)
and ρ is surjective. �

Remark 9.1. It can be proved that O(3) has two connected components,
distinguished by the value ±1 of the determinant. Composition with a
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fixed reflection gives a bijection between the subgroup SO(3) of rotations
(orthogonal matrices with det = 1) and the coset of orthogonal matrices
with det = −1. It is not hard to work out the topology of SO(3): it is
homeomorphic to the projective space P 3, defined to be P 3 = S3/(x ∼ −x) =
B3/(x ∼ −xifx ∈ ∂B3) (in analogy with the definition and alternative
description of P 2 in Example 1.1) This can be seen as follows: a rotation is
determined by its its axis, its angle of rotation, and the sense of rotation.
This can be encoded by a vector v ∈ R3 chosen to point along the axis and
related to the direction of rotation by the right-hand rule. The magnitude |v|
is chosen to be the angle α of rotation, and can choose 0 ≤ α ≤ π by choosing
the direction of v appropriately: α and v give the same rotation as 2π−α and
−v. In this way we get a continuous, surjective map p : B(0, π) → SO(3),
that is injective on the open ball B(0, π) and identifies v and −v if |v| = 1.

This gives a homeomorphism between B(0, π)/(v ∼ −v if |v| = π) and
SO(3). In particular, we see that SO(3) is connected and that O(3) has two
connected components.

To study the group of isometries of the Poincaré metric, it is convenient
to have other models of hyperbolic geometry.

9.2. Möbius Transformations and Hyperbolic Geometry. Let a, b, c, d ∈
C with ad− bc 6= 0 and let f be the transformation

(9.1) f(z) =
az + b

cz + d

it is defiined for cz + d 6= 0, that is, z 6= −d
c , but it is harmless to say

that f(−d
c ) = ∞ and that f : C+ = C ∪ {∞} → C+ and that f(∞) =

a
c . We can identify C+ with S2 by stereographic projection, view these as

transformations of S2. These are conformal transformations of the spherical
metric and of the usual Euclidean metric of C, see ??. The basic fact here is
that f is differentiable in the complex sense, that is, it is a complex analytic
function, and such functions are conformal. These are the basic facts we
need about Möbius transformations, see, for example, Section 3 of Chapter
3 of [1] for more details.

9.2.1. Basic Properties of Möbius Transformations. LetG1 denote the group
GL(2,C) of invertible 2× 2 complex matrices

(9.2) A =

(
a b
c d

)
, a, b, c, d ∈ C, det(A) = ad− bc 6= 0.

Let fA be the transformation of C+ given by formula (9.1). Then

(1) For all A ∈ G1, fA is a conformal transformation of C+ (it preserves
angles between curves). This is a consequence of the fact that it is a
complex analytic function, that is, it is differentiable in the complex
sense.
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(2) The derivative of fA is

(9.3) f ′A(z) =
ad− bc

(cz + d)2
.

(3) Let G2 denote the group (under composition) of conformal trans-
formations of C+. Then, the map G1 → G2 given by the assign-
ment A → fA is a group homomorphism : fAB = fA ◦ fB. Its
kernel is {λI : λ ∈ C, λ 6= 0}, the group of non-zero multiples of
the unit matrix. In particular, for all A ∈ G1, fA is invertible and
fA−1 = (fA)−1.

(4) Let C ⊂ C+ be either a circle or a straight line (= circle through
∞). Then fA(C) is either a circle or a straight line. Briefly: fA
takes circles to circles. Warning: But they need not take centers of
circles to centers. We will see many examples later.

(5) G2 is the group of all transformations of C+ that take circles to
circles and preserve orientation.

9.2.2. Two Models of Hyperbolic Geometry. We have introduced the Poincaré
metric gP . Let us call it the disk model of hyperbolic geometry. We could
write D = {w ∈ C : |w| < 1} where w = u + iv and dw = du + idv. Then,
in complex notation,

(9.4) gP =
4|dw|2

(1− |w|2)2
=

4(du2 + dv2)

(1− (u2 + v2))2

We want the upper half-plane model, defined as follows:

Definition 9.1. The upper half plane model of hyperbolic geometry is the
open set H = {z = x+ iy ∈ C : y > 0}, with Riemannian metric

(9.5) gH =
|dz|2

y2
=
dx2 + dy2

y2
.

To see that (D, gP ) and (H, gH) are isometric, we need to find a map. The
theory of Möbius transformations easily provides such maps. For example,
let h+

C → C+ be defined by

(9.6) h(z) =
z − i
z + i

.

It is clear that h(i) = 0 and that, if z = x ∈ R, |h(x)| = |(x−i0/(x+ii))| = 1,
so h(R) ⊂ S1, thus h(R) = S1 (by invertibility and the circle-preserving
property), therefore the connected component H of C+ \ {R} containing i
must be mapped to the component D of C+ \ {S1} containing 0 = h(i), and
diffeomeorphically because of the invertibility of h. It remains to check:

Theorem 9.2. The transformation h : H → D defined in (9.6) is an isom-
etry: h∗(gP ) = gH .
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Proof. Let w = h(z). From Equation (9.3) dw = h′(z) dz = 2i(z + 1)−2 dz,
so

h∗gP =
4|h′(z)|2|dz|2

(1− |h(z)|2)2
=

16|z + i|−4|dz|2

( (|z+i|2−|z−i|2)
|z+i|2 )2

=
16|dz|2

(4y)2
= gH ,

the equality next to last being |z + i|2 − |z − i|2 = (x2 + (y + 1)2) − (x2 +
(y − 1)2) = 4y. �

The value of this identification is that H has a visible set of isometries:

Theorem 9.3. Let a, b ∈ R and a > 0. Then the transformation fa,b : H →
H defined by fa,b(z) = az + b is an isometry of (H, gH). In particular, H
is homogeneous: given any two points z1, z2 ∈ H there exists an isometry
f : H → H with f(z1) = z2.

Proof. Let z = x+ iy with y > 0. then fa,b(z) = (ax+b)+ i(ay) has positive
imaginary part since a > 0, so fa,b : H → H. To show it is an isometry,
compute:

f∗a,b(gH) =
d(ax+ b)2 + d(ay)2

(ay)2
=
a2(dx2 + dy2)

a2y2
=
dx2 + dy2

y2
= gH .

Given any point z0 = x0 + iy0 ∈ H, fy0,x0(i) = y0i + x0 = z0, thus there is
a transformation taking i to any z0 ∈ H. To take z1 to z2, take z1 to i and
i to z2, that is, use f = fy2,x2 ◦ f−1

y1,x1 . �

With this information we can find all the geodesics in hyperbolic geometry,
both in the H-model and the D-model.

Theorem 9.4. (1) The geodesics in H are the vertical lines and the
semi-circles with center on the real axis R.

(2) The geodesics in D are the straight lines through the origin and the
circle arcs perpendicular to the boundary circle S1.

(3) Given any two points P,Q ∈ H, there is a unique geodesic segment
from P to Q. The length of this segment is d(P,Q), the hyperbolic
distance between P and Q. (Therefore the same statement holds in
D).

Proof. We know that the geodesics through the origin in D are the straight
line segments through the origin. Since these meet the boundary at right
angles, the isometry h−1 : D → H takes these segments to circles through i
perpendicular to the real axis. These are exactly the semicircles with center
on the real axis, including the imaginary axis (which is h−1(D ∩ R)). Since
the transformations fa,b take i to any other point b+ ai ∈ H, and they take
the geodesics through i to those through ai + b, we see that we get all the
vertical lines and all the semicircles centered in the real axis in this way.
Since we have found geodesics through every point and every direction, we
have found all geodesics.
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Figure 9.1. Geodesics in Both Models, Their Correspondence

This proves part (1). Part (3) is then checked by elementary geometry:
if P and Q are on the same vertical line, then the vertical segment between
them is the unique geodesic connecting them, which therefore must realize
the distance. Otherwise, there is a unique semi-circle centered on the real
axis connecting P and Q, thus we reach the same conclusion.

Finally, the images by h of all the geodesics we have found in H gives us
all geodesics in D. These must be circle arcs perpendicular to the boundary
circle, since all the geodesics in H have the similar property. See Figure 9.1.
There are several beautiful renderings by Escher of the Poincaré disk model
that show geodesics and some of the isometries of D, for example Figure 9.2.

�

We have, in the Poincaré model D, the isometries fθ defined by fθ(z) =
eiθz, rotations about the origin, and now in the upper half plane model
H we have the fa,b just defined (fixing ∞). So we have transformations
depending on the three parameters a, b, θ, and we expect a three-dimensional
group of symmetries, so it is reasonable to expect that we have found all
isometries (by composing the above). The only problem is that we have
them in different models. To bring them to one model, in H we could use
the fa,b and the h−1 ◦ fθ ◦ h, or, in D, the fθ and the h ◦ fa,b ◦ h−1, with h
as in (9.6).

Theorem 9.5. Let A be as in (9.2) with a, b, c, d ∈ R and det(A) = ad−bc >
0. Then fA : H → H is an isometry, and every orientation preserving
isometry of (H, gH) is obtained this way.

Proof. Let A have real coefficients. Then fA(R) ⊂ R, so fA(H) the con-
nected component of C+ \R containing i, which is either H or the lower half
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Figure 9.2. Escher’s Circle Limit 1.

plane L = {y < 0}. Now

fA(i) =
ai+ b

ci+ d
=

(ai+ b)(−ci+ d)

c2 + d2
=

(ac+ bd) + i(ad− bc)
c2 + d2

,

which has positive imaginary part if and only if ad−bc > 0. Thus fA(i) ∈ H,
so fA(H) = H.

To check that fA is an isometry of gH is a computation along the lines of
Theorem 9.2. An alternative proof is given in a homework problem.

Suppose fA(i) = i. This means a+ bi = i(ci+d) = d− ci, thus a = d and
b = −c, in other words

(9.7) A =

(
d −c
c d

)
,

in particular detA = c2 + d2 and, using the formula (9.3), we have

f ′A(i) =
c2 + d2

(ci+ d)2
= e−2iθ where cos θ =

d

c2 + d2
, sin θ =

c

c2 + d2
.

This implies that we can get every rotation of TiH, the space of tangent
vectors to H at i by a suitable fA, for instance, to get rotation by α we
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can take θ = −α/2. Therefore we get every rotation about the origin in
TiH from a suitable fA fixing i. then, exactly the same argument as in the
proof of the corresponding theorem for S2, Theorem 9.1, we get that every
orientation-preserving isometry of H is obtained in this way.

�

Remark 9.2. (1) If we know all the orientation preserving isometries,
then all isometries are obtained by composing these with one fixed
orientation-reversing isometry, for instance, reflection in the y-axis:
x+ iy → x− iy. Or, noting that both z → z̄ and fA for a, b, c, d ∈ R
but detA = ad − bc < 0 interchange the upper and lower half-
planes, we see that z → fA(z̄) = fA(z) preserves H and is orientation
reversing, and we obtain them all this way. Thus all isometries of
H are either of the form z → fA(z) for real A with detA > 0 or
z → fA(z̄) for real A with detA < 0.

(2) Just as in the case of isometries of S2 we get a map H × S1 to
the group of orientation preserving isometries of H by sending (b, a)
with a > 0 and θ ∈ [0, π] to the composition fa,bfA where A is
as in (9.7), normalizing c2 + d2 = 1 and choosing θ as indicated
there. Since fA = f−A, there is a choice of θ in [0, π] that gives
us fA, and we get a map {(b, a) : a > 0} × ([0, π]/0 ∼ π) to the
group of orientation preserving isometries is a bijection (actually a
homeomorphism). In particular, this group is homotopy equivalent
to S1, therefore connected. Thus the full group of isometries has
two connected components, as in the case of R2 and S2, and, as is
the case for R2 (but not for S2), each component is homeomorphic
to the cartesian product of the space with S1.

(3) There are two standard notations for the group of orientation pre-
serving isometries of H. One is PGL+(2,R), meaning: take the
group 2×2 real matrices with positive determinant, denotedGL+(2,R),
and take the quotient by the normal subgroup of scalar matrices The
letter “P” stands for “projective”, meaning that you only look at how
the group acts on lines through the origin (projective space), where
the scalar matrices act trivially. The other is PSL(2,R), meaning:
take the group of 2 × 2 real matrices A with detA = 1, usually de-
noted SL(2,R), the special linear group, and take the quotient by
the normal subgroup ±I. This subgroup is the intersection with
SL(2,R) of the subgroup of scalar matrices in GL+(2,R).

One common feature of the three geometries of constant curvature is the
following property, sometimes called two point homogeneity.

Theorem 9.6. Let X be one of R2, S2 or H with its metric of constant
curvature. Given any four points P,Q, P ′, Q′ ∈ X such that d(P,Q) =
d(P ′, Q′) there exists an orientation preserving isometry f : X → X such
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that f(P ) = P ′ and f(Q) = Q′. The isometry f is unique except in the case
X = S2 and P,Q are antipodal points.

Proof. Let D = d(P,Q) and let γ : [0, D] → X be the geodesic arc from P
to Q realizing the distance. This arc is unique except in the case X = S2

and P,Q are antipodal points. Let γ1 : [0, D]→ X be the geodesic arc from
P ′ to Q′ realizing the distance. Then, as we have seen in each case, there
exists an orientation preserving isometry f : X → X so that f(P ) = P ′

and dP f(γ′(0)) = γ′1(0). Since geodesics are determined by these initial
conditions, must have f◦γ = γ1, which gives f(γ(D)) = γ1(D) or f(Q) = Q′.
The proof of the uniqueness statement is left as an exercise.

�

9.3. Existence of Metrics of Constant Curvature. Now comes the final
theorem:

Theorem 9.7. Let S be a compact, connected, orientable surface. Then S
has a Riemannian metric of constant Gaussian curvature.

Proof. Using the classification theorem for surfaces, Theorem 1.1, we only
need to consider S2(= Σ0) and the surfaces Σg or g = 1, 2, 3, . . . .

Case 1 :The sphere S2: we know that it has a metric of constant curvature
1, so there is nothing to prove.

Case 2: The torus T 2 = Σ1. We know from Example 7.7 that it has a
Riemannian metric. This metric was constructed to be dx2 + dy2 on each
coordinate chart , so it is locally isometric to the Euclidean plane R2. Since
K is invariant under isometries and K ≡ 0 for the Euclidean plane R2, it
follows that this metric on T 2 has K ≡ 0.

In order to prepare for the more difficult proof of the theorem in the case of
Σg for g ≥ 2, let us repeat the proof of Case 2 using the same considerations
as we will use in Case 3. Let us start with T 2 defined as the unit square
[0, 1] × [0, 1] by the identifications (0, y) ∼ (1, y) and (x, 0) ∼ (x, 1). Let
us realize the unit square in the usual way as the subset {(x, y) : 0 ≤ x ≤
1, 0 ≤ y ≤ 1} of R2, with the metric of R2. The identifications of opposite
edges can be realized by isometries of R2, because opposite edges have equal
length, and, by Theorem 9.6, there exists an isometry, say a, of R2 with
a(0, 0) = (1, 0) and a(0, 1) = (1, 1), thus taking the left vertical edge to
the right one. Similarly there is an isometry b with b(0, 1) = (0, 0) and
b(1, 1) = (1, 0), thus taking the upper horizontal edge to the bottom one.

We cover T 2 = [0, 1]× [0, 1]/ ∼ by the following open sets: (0, 1)× (0, 1),
then (H1 t H2)/ ∼ where H1 and H2 are the vertical half-disks as shown
in Figure 9.3, and (H3 t H4)/ ∼ the similar horizontal ones, finally by
(Q1 t Q2 t Q3 t Q4)/ ∼, where Q1, . . . , Q4 are the quarter disks shown in
the same Figure. It is clear that each of these sets has a natural metric that
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Figure 9.3. Charts on the Torus

is isometric to an open subset of R2, and that in each intersections these
metrics agree. The reason is that these sets are assembled from subsets of
R2 that, by the very definition of the identifications, can be assembled into
disks.

Even though this is abstractly clear, also visually clear, we will give more
details for two reasons: to warm up to Case 3, and also to see more precisely
why this metric gives a tesselation of R2. Let us look make the metric explicit
in each chart:

(1) Clear for (0, 1)× (0, 1), since it is already a subset of R2.

(2) For (H1 tH2)/ ∼, note that it is isometric to aH1 ∪H2 ⊂ R2. This
can be checked in the usual way: The map f : H1 tH2 → aH1 ∪H2

defined by

f(x) =

{
a(x) if x ∈ H1,

x otherwise.

is constant on equivalence classes {x, a(x) : x ∈ H1 ∩ (0× [0, 1]), so
it defines a map, still denoted f , f : ((H1 t H2)/ ∼) → aH1 ∪ H2.
We define the Riemannian metric on (H1 t H2)/ ∼ by declaring
that f is an isometry. This agrees with the metric already defined
on (0, 1)× (0, 1) on each connected component of their intersection,
namely, the interiors Ho

1 and Ho
2 because they agree on Ho

2 and
a : Ho

1 → a(Ho
1) is an isometry, This is the same verification as in

Example 7.7 that the transition function is an isometry.

(3) Similarly (H3 tH4)/ ∼ is isometric to bH3 tH4 ⊂ R2.
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(4) Finally we need to check that (Q1 t · · · t Q4)/ ∼ is isometric to a
disk. This can be done by matching edges: each Qi has one vertex
and two edges, we need to match the edges in pairs to get a disk.
Concretely, start at any vertex, say 1 in Figure ??, and choose an
edge of Q1, say the vertical one. Then a takes this vertical edge to
the vertical edge of Q4. The horizontal edge of Q4 is taken by b−1 to
the horizontal edge of Q3, then the vertical edge of Q4 to the vertical
edge of Q2 by a−1, finally the horizontal edge of Q2 to the horizontal
one of Q1 by b, thus getting back to Q1 by way of all the Qi, thus
assembling a disk as shown in Figure 9.4.

Figure 9.4. Assembling Disks Around a Vertex

Otherwise said, there is a natural isometry Q1 t · · · tQ4 → Q2 ∪
a−1Q3∪a−1b−1Q4∪a−1b−1aQ1 ⊂ R2, the latter being a disk centered
at the vertex 2. We could of course do this ii other ways, for instance
apply b to this and use the relation ba−1b−1a = e to move this disk to
vertex 1: b(Q2 ∪ a−1Q3 ∪ a−1b−1Q4 ∪ a−1b−1aQ1) = bQ2 ∪ ba−1Q3 ∪
ba−1b−1Q4 ∪Q1, etc.

The most difficult part is checking that the four pieces fit around the vertex
to make a metric disk. Here it clearly works because the angles at each
vertex of the square is a right angle. The same argument would work more
generally using a parallelogram rather than a square, the sectors around the
four corners will still fit isometrically into a disk because the sum of the
angles is 2π (for any Euclidean quadrilateral, in particular, any Euclidean
parallelogram).

Case 3: The surfaces Σg of higher genus g ≥ 2. We will concentrate in the
case g = 2 that gives all the essential ideas.

First of all, we know, from the Gauss - Bonnet Theorem 8.3 that K < 0,
let us normalize the situation to K ≡ −1. Recalling from (8) to (10) of
Example 1.1 the presentation of the surface Σ2 as a quotient of the octagon
by identifications on the boundary, see Figure 1.1, and the definition of
topological charts on the surface as in Figure 1.3 , it is not hard to see that
the identifications on the charts centered at the interior points of edges,as in
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the first part of Figure 1.3 can be done using Euclidean geometry. But the
identifications needed for the charts around a vertex, as in the second part
of Figure 1.3 cannot be done in Euclidean geometry, since the sum of the
angles of an octagon is 6π, so the pieces cannot metrically fit into a disk.

This is where hyperbolic geometry is needed. Gauss - Bonnet not only
gives us a necessary condition, but the formula (8.20) tells us that for K ≡
−1 the sum of interior angles of a hyperbolic octagon is less than 6π. We
need to find octagons whose interior angle sum is 2π, in other words, by
(8.20), of area 4π, compare also with Theorem 8.3, which would also give
area 4π to the quotient if g = 2.

The easiest way would be to use regular octagons. We want one with area
4π and interior angles all π/4. That one exists follows from a continuity
argument: The maximum area is 6π, which is not attained by any finite
octagon but is attained by the “asymptotic octagon” , shown in the left of
Figure 9.5.

Figure 9.5. Regular Octagons of Area 6π, 4π, 2π/3

There are also octagons of small area, whose angles are close to the Eu-
clidean angles, as in the right of Figure 9.5, where the angles are about
2π/3 = 120o, getting closer to the Euclidean angle of 3π/4 = 145o. By
the intermediate value theorem there must be a regular octagon of area 4π,
therefore interior angles π/4, as in the center of Figure 9.5.

Choose this regular octagon of area 4π. We want to make the identifica-
tions as in Figure 1.1. Since all the sides have equal lengths, by Theorem 9.6
we can make the identifications by hyperbolic isometries. Let us call these
isometries a1, b1, a2, b2, as in Figure 9.6. We could, as in Case 2 above, cover
the quotient space by open sets isometric to open sets in D (the disk model
of hyperbolic geometry as follows (see Figure 9.6):

(1) The interior O of the octagon.

(2) Half-disks Hi centered at the midpoints of the edges. Pairs of such
half-disks assemble into disks in D just as was done in the corre-
sponding steps of Case 2. For example, (H1 t H3)/ ∼ is isometric
to a1(H1)∪H3 ⊂ D, (H2 tH4)/ ∼ is isometric to b1(H2)∪H4 ⊂ D,
etc.
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Figure 9.6. Charts for Genus Two Surface

(3) An “octant” Oi, or eighth of a disk, centered at the i-th vertex, as
shown in Figure ??. As with th Qi in Case 2, the boundary of each
Oi has a vertex and two edges. We carry out the same procedure for
pairing sides. To keep track of the identifications, call the two edges
of each Oi the left and right edge according to their visual position if
you stand at the ith vertex and look into the interior of the polygon.
In Figure ?? we start at vertex 1, the isometry a1 takes 1 to 4 and
the left edge of O1 to the right edge of O4. Then b−1

1 takes4 to 3
and the left edge of O4 to the right edge of O3. Continue in this way
alternating right and left so that, for each i, you identify both edges
of Oi in two successive moves. In summary, you go
(a) 1 to 4 by a1

(b) 4 to 3 by b−1
1

(c) 3 to 2 by a−1
1

(d) 2 to 5 by b1
(e) 5 to 8 by a2

(f) 8 to 7 by b−1
2

(g) 7 to 6 by a−1
2

(h) 6 to 1 by b2
thereby completing the circuit, and identifying the left edge of O6 to
the right edge of O1, which were the only two edges still left to be
identified. Just as in Case 2 you can realize these identifications at
any vertex, for example, present

(O1 t · · · tO8)/ ∼ = (a−1
2 (. . . (b−1

1 ((a1O1 ∪O4)) ∪O3)) . . . )) ∪O6

which is a disk centered at vertex 6. See Figure 9.7 to see how the
octants can be assembled at each vertex.
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This completes the proof.

Figure 9.7

�

Remark 9.3. This proof can be carried further to show that the polygon we
start with (square in R2 or octagon in D) tesselates the whole space. This is
very familiar in the case of the torus T 2 as R2/Z2, where we see the square
being repeated, by translations, to as to exactly fill out all of R2. This is
very familiar to us because we know Euclidean geometry so well. Even if
we were not familiar with the geometry of the integral lattice Z2 ⊂ R2, we
could derive it in the following way: Start from the square as we did in Case
2 of the proof, and the isometries a and b. Let G be the subgroup of the
group of isometries of R2 generated by a and b. Then the elements of G
move the unit square all over R2, and the picture we worked out of how the
corners of the square can be assembled into a disk tells us how the images of
the unit square under elements of G fit around each corner of he translate
of the square, see Figure 9.8
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Figure 9.8. Tiling the Plane

Similarly, for the octagon, we could let G be the subgroup of the group
of isometries of D generated by a1, b1, a2, b2. The diagrams at the vertices
in Figure ?? tell us how the images of the original polygon under various
elements of G fi around each vertex.

In both these cases it turns out that the images under the relevant group
G of the relevant polygon fill out the entire space, without gaps and without
any intersections other than on the boundaries. Moreover, the original iden-
tification space is the quotient space of the whole space by the equivalence
relation given by G. In the case of the square in R2 it is the familiar equiv-
alence relation R2/Z2. In the case of the octagon and the Poincaré disk D,
the surface of genus two is homeomorphic to D/ ∼, where x ∼ y if and only
if there exists g ∈ G so that g(x) = y. The metric we constructed on the
surface S of genus two is obtained from the metric in D its invariance under
the equivalence relations, as in Remark 7.8.

In order to prove these assertions we need the theory of covering spaces
which we did not have time to develop. This theory is needed to explain the
notion of “universal covering surface” mentioned in the table of Section 1.1.

Remark 9.4. Theorem 9.7 also holds for non-orientable surfaces. The pro-
jective plane P 2 certainly has a metric of constant curvature 1 since the
antipodal map is an isometry of S2. In the homework we have seen how to
describe the Klein bottle by finding a group G of isometries of R2 so that
K = R2/ ∼ where x ∼ y if and only if there is a g ∈ G so that g(x) = y.

9.4. Two Interesting Facts. Finally two facts that may help put Theo-
rem 9.7 into some perspective.
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Theorem 9.8. Let S ⊂ R3 be a compact, smooth surface, with the Rie-
mannian metric induced from R3. Then there exist points p ∈ S where the
Gaussian curvature K(p) > 0.

Proof. Pick a point p0 ∈ R3 and let f(p) = d(p0, p). Since S is compact,
there exists a point q ∈ S where f |S has a maximum: f(p) ≤ f(q) for all
p ∈ S. Let B denote the ball of radius f(q) in R3 centered at p0 and S′

its boundary sphere. Then S ⊂ B and q ∈ S ∩ S′ and finally S and S′

are tangent at q. Then, if we represent both surfaces as graphs over their
common tangent plane at q, it is not hard to prove that S is more curved
than S′ at q, in particular KS(q) ≥ KS′(q) = 1

R2 > 0, where R = f(q), thus
K(q) > 0. See Figure 9.9 that suggests that the Gauss map of S spreads
out more than that of S′. �

Figure 9.9. Finding Points of Positive Gauss Curvature

Corollary 9.1. None of the metrics of constant curvature on the surfaces
Σg, g ≥ 1, can be realized by an embedding of Σg in R3.

Proof. Compact surfaces in R3 with K ≡ 0 or K ≡ −1 are automatically
excluded by Theorem 9.8. �

Remark 9.5. In particular we see that the flat metric on the torus T 2 =
R2/Z2 cannot be realized in R3. but it can be realized in R4. Let f(x, y) =
(cosx, sinx, cos y, sin y) = (u1, u2, u3, u4) ∈ R4. Then f(x+2πm, y+2πn) =
f(x, y) for all (m,n) ∈ Z2, so it defines an embedding of R2/((2πZ)2 in R4.
Moreover, du2

1 + du2
2 + du2

3 + du2
4 = (− sinxdx)2 + (cosxdx)2

( − sin ydy)2 +

(cos ydy)2 = dx2 + dy2 is the flat metric. Note that the image of this torus
lies in the sphere u2

1 + u2
2 + u2

3 + u2
4 = 1. This is often called the Clifford

torus in S3.

Finally, we should remark that the metrics of constant curvature guaran-
teed by Theorem 9.7 are by no means unique, in the sense that there may
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be many metrics of constant curvature on the same surface S that are not
isometric.

Example 9.1. We have looked at two particular flat tori: the “square”
torus X = R2/Z2 which we have used as the standard example, and the
“hexagonal’ torus Y = R2/L where L is the hexagonal lattice, which can

be described as the lattice generated by the vectors (1, 0) and (1
2 ,
√

3
2 ),

namely the vectors along the sides of an equilateral triangle. More precisely,

L = {(m(1, 0) +m(1
2 ,
√

3
2 ) : m,n ∈ Z}.

We would like to prove that X and Y are not isometric, but first we
have to make it a non-trivial statement, that they are not isometric even
after re-scaling the metrics. To this end, let us make the following general
observations. First, by a flat torus Z we mean a Riemannian surface Z =
R2/Λ where Λ is a lattice, meaning that there is a basis e1, e2 for R2 so that
Λ = {me1 +ne2 : m,n ∈ Z}, and the Riemannian metric is dx2 +dy2. Given
such Z, we can assign to it two isometry invariants:

(1) λ(Z) = the shortest length of a non-constant closed geodesic. Since
closed geodesics are translates of ones through [0] and closed geodesics
through [0] are the projections of straight line segments form o to a
point in Λ, λ(Z) is also the shortest length of a non-zero vector in
Λ.

(2) The area A(Z). This is easily computed by parametrizing the torus
by a fundamental parallelogram P = {xe1 +ye2 : 0 ≤ x ≤ 1, 0 ≤ y ≤
1}, where e1, e2 is a basis for Λ. Then A(Z) = A(P ) = det(e1, e2),
the determinant of the 2× 2 matrix of the basis e1, e2 with respect
to (1, 0), (0, 1).

Clearly, if we re-scale the metric on Z by multiplying the lattice by c > 0
then λ(cZ) = cλ(Z) and A(cZ) = c2A(Z)

Back to the square torus X and the hexagonal torus Y . We have λ(X) = 1

and A(X) = 1, while λ(Y ) = 1 and A(Y ) =
√

3
2 . Any re-scaling of X would

give us invariants c, c2, which can never give 1,
√

3
2 .
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