Should be familiar with Chapters 1 to 4 and parts of Chapter 7 of Rudin, and the notes. Here is a list of some of the more important topics. (References: R = Rudin, N = Notes)

Definitions

- 1. Definition of \mathbb{R} as equivalence classes of Cauchy sequences of rational numbers (N §2). Know the equivalence relation, how to define the field operations and the order.
- 2. Completeness of the real numbers, infimum, supremum (R Chap 1).
- 3. Metric Spaces (R Chap 2). Examples of metric spaces: \mathbb{R} , \mathbb{R}^k (several distance functions d_1, d_2, d_∞ (N 3.1.2)), the space $(C(X), d_\infty)$ of continuous functions (R 7.14, N 3.1.3)
- 4. Basic terminology: neighborhood, open sets, closed sets, etc (all items of R 2.18), also closure and interior. Compact sets, connected sets.
- 5. Convergent sequences, Cauchy sequences in a metric space (R Chap 3). lim sup and lim inf for real sequences. Complete metric space (N 3.1, R 3.12).
- 6. Continuous map $f: X \to Y$ (R Chap 4).
- 7. Lipschitz map (N 3.4), contraction (R 9.22).
- 8. Uniform convergence of sequences of functions, uniformly Cauchy sequences (R 7.7 to 7.9)

Theorems

- 1. d_1, d_2, d_{∞} are metrics on \mathbb{R}^k (know how to check this, for example triangle inequality). Know how to prove that these metrics are complete.
- 2. If X is a compact metric space, d_{∞} on C(X) is a metric. This metric is complete (N 3.1.2, R 7.15).
- 3. $f:X\to Y$ continuous. Then X compact $\Rightarrow f(X)$ is compact; X connected $\Rightarrow f(X)$ is connected
- 4. Compact sets are closed. Compact sets are bounded. Converse need not be true.
- 5. A closed subset of a compact set is compact. An infinite subset of a compact set has limit points. Finite intersection property of compact sets (R 2.36).
- 6. Intervals in \mathbb{R} are connected (R 2.47) Convex sets in \mathbb{R}^k are connected (R chp 2, ex 21).
- 7. f differentiable and $|f'(x)| \leq C$ (or $||df|| \leq C$) $\Rightarrow f$ is Lipschitz. (N 3.4)
- 8. X compact, $f: X \to \mathbb{R}$ continuous $\Rightarrow f$ attains its maximum and minimum.
- 9. Contraction mapping theorem (R 9.23). Application to Newton's method and solutions of ODE's. (N §4).