1. Let $1 \leq p < \infty$ and recall that we have defined the *p*-norm on the space C[0,1] of continuous functions on [0,1] by

$$||f||_p = (\int_0^1 |f(x)|^p dx)^{\frac{1}{p}}$$

Prove that C[0,1] is not complete in this norm. Suggestion: You may want to look at the proofs in §3.2 of the notes that C[0,1] is not complete in $||f||_1$.

2. Let A be the set of rational numbers in [0, 1] and let $\{I_i\}_{i=1}^n$ be a *finite* collection of open intervals covering A. Prove that

$$\sum_{i=1}^{n} |I_i| \ge 1.$$

- 3. Let X be any set. Prove that the following two $[0, \infty]$ -valued functions on 2^X give measures defined on the σ -algebra 2^X :
 - (a) The counting measure $\mu_c : 2^X \to [0, \infty]$ defined by $\mu_c(A) = n$ if A is finite of cardinality n, and $\mu_c(A) = \infty$ otherwise.
 - (b) Fix $x_0 \in X$, define the *point mass* measure concentrated at $x_0, \mu_{x_0} : 2^X \to \mathbb{R}$ denoted by $\mu_{x_0}(A) = 1$ if $x_0 \in A$ and $\mu_{x_0}(A) = 0$ otherwise.
- 4. Pugh, Appendix A, gives an example of a non-measurable set in $[0,1) \subset \mathbb{R}$ based on the irrational rotations of the circle. As far as measure theory is concerned, the interval [0,1) is the same as the circle $C = \{z \in \mathbb{C} : |z| = 1\}$ by the bijection $[0,1) \to C$ that takes x to $e^{2\pi i x}$. This is a continuous bijection that is not a homeomorphism, but but measure theory does not see the discontinuity in the inverse. It is more natural to construct the non-measurable set in C, and then transfer it to [0, 1).

Read Appendix A through the end of the proof of theorem 45, then write down in detail why the following statements in the beginning of the proof are true:

- (a) The orbits of R are disjoint sets,
- (b) there are uncountably many of them,
- (c) and they divide the circle as $C = \coprod_{n \in \mathbb{Z}} R^n(P)$.