1. Let $1 \leq p<\infty$ and recall that we have defined the p-norm on the space $C[0,1]$ of continuous functions on $[0,1]$ by

$$
\|f\|_{p}=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{\frac{1}{p}}
$$

Prove that $C[0,1]$ is not complete in this norm. Suggestion: You may want to look at the proofs in $\S 3.2$ of the notes that $C[0,1]$ is not complete in $\|f\|_{1}$.
2. Let A be the set of rational numbers in $[0,1]$ and let $\left\{I_{i}\right\}_{i=1}^{n}$ be a finite collection of open intervals covering A. Prove that

$$
\sum_{i=1}^{n}\left|I_{i}\right| \geq 1
$$

3. Let X be any set. Prove that the following two $[0, \infty]$-valued functions on 2^{X} give measures defined on the σ-algebra 2^{X} :
(a) The counting measure $\mu_{c}: 2^{X} \rightarrow[0, \infty]$ defined by $\mu_{c}(A)=n$ if A is finite of cardinality n, and $\mu_{c}(A)=\infty$ otherwise.
(b) Fix $x_{0} \in X$, define the point mass measure concentrated at $x_{0}, \mu_{x_{0}}: 2^{X} \rightarrow \mathbb{R}$ denoted by $\mu_{x_{0}}(A)=1$ if $x_{0} \in A$ and $\mu_{x_{0}}(A)=0$ otherwise.
4. Pugh, Appendix A, gives an example of a non-measurable set in $[0,1) \subset \mathbb{R}$ based on the irrational rotations of the circle. As far as measure theory is concerned, the interval $[0,1)$ is the same as the circle $C=\{z \in \mathbb{C}:|z|=1\}$ by the bijection $[0,1) \rightarrow C$ that takes x to $e^{2 \pi i x}$. This is a continuous bijection that is not a homeomorphism, but but measure theory does not see the discontinuity in the inverse. It is more natural to construct the non-measurable set in C, and then transfer it to $[0,1)$.
Read Appendix A through the end of the proof of theorem 45, then write down in detail why the following statements in the beginning of the proof are true:
(a) The orbits of R are disjoint sets,
(b) there are uncountably many of them,
(c) and they divide the circle as $C=\coprod_{n \in \mathbb{Z}} R^{n}(P)$.
