1. Rudin, Chapter 9, Problem 5.

2. Tangent Planes The implicit function theorem tells us: Suppose $U \subset \mathbb{R}^{n+1}$ is an open set, $g: U \rightarrow \mathbb{R}$ is of class C^{1} and $p=\left(p_{0}, r\right) \in U\left(p_{0} \in \mathbb{R}^{n}, r \in \mathbb{R}\right)$ is such that $g(p)=0$ and $\frac{\partial g}{\partial x_{n+1}}(p) \neq 0$. Then there are neighborhoods N of p and N_{0} of p_{0} and a C^{1} function $\phi: \mathbb{N}_{0} \rightarrow \mathbb{R}$ so that

$$
Z=\{q \in N: g(q)=0\}=\left\{\left(x_{1}, \ldots, x_{n}, \phi\left(x_{1}, \ldots, x_{n}\right)\right):\left(x_{1}, \ldots, x_{n}\right) \in N_{0}\right\}
$$

in other words, locally Z can be represented in two equivalent ways: as the zero set of g or as the graph of ϕ. Let $\Phi: N_{0} \rightarrow \mathbb{R}^{n+1}$ (a parametric representation of the graph of ϕ) be defined by

$$
\Phi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, \phi\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

In advanced calculus (for $n=2$, but the same works for any n) the tangent plane to Z at p, which we denote by $T_{p} Z$, is defined in two different ways:

- As the image of $d_{p_{0}} \Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$, that is, $T_{p} Z=\left\{d_{p_{0}} \Phi(v): v \in \mathbb{R}^{n}\right\}$.
- As the kernel of $d_{p} g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, that is, $T_{p} Z=\left\{w \in \mathbb{R}^{n+1}: d_{p} g(w)=0\right\}$.

Show that these two spaces are the same, therefore the two definitions are equivalent.
3. Lagrange Multipliers With the same notation as in the last problem, suppose $f: U \rightarrow \mathbb{R}$ is of class C^{1}. We say that $p \in Z$ is a critical point of $\left.f\right|_{Z}$ if and only if p_{0} is a critical point of $f \circ \Phi$. Prove
(a) p is a critical point of $\left.f\right|_{Z}$ if and only if $d_{p} f(v)=0$ for all $v \in T_{p} Z$.
(b) p is a critical point of $\left.f\right|_{Z}$ if and only if there exists $\lambda \in \mathbb{R}$ such that

$$
d_{p} f=\lambda d_{p} g, \quad g(p)=0
$$

4. Apply the method of Lagrange multipliers to prove the following: suppose $A=\left\{a_{i, j}\right\}$ is a symmetric n by n matrix, let $f(x)$ be the associated quadratic form:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j=1}^{n} a_{i, j} x_{i} x_{j}=A x \cdot x=x^{t} A x
$$

Let S be the unit sphere in \mathbb{R}^{n}. Prove that $x \in S$ is critical for $\left.f\right|_{S}$ if and only if x is an eigenvector of A. (This means, there exists $\lambda \in \mathbb{R}$ so that $A x=\lambda x$), and that the value of f at a critical point is the corresponding eigenvalue λ.

Suggestion: Prove that $d_{x} f=2 A x$ by showing that for $x, v \in \mathbb{R}^{n}$ and $h \in \mathbb{R}, f(x+h v)=$ $f(x)+2 h v^{t} A x+O\left(h^{2}\right)$. You may need to use $v^{t} A x=\left(v^{t} A x\right)^{t}=x^{t} A^{t} v$ and $A=A^{t}$.
5. Rudin Chapter 9, Problems 9, 10.

