1. Let $V$ and $W$ be finite dimensional normed vector spaces. Let $L(V, W)$ denote the vector space of all linear transformations from $V$ to $W$. If $A \in L(V, W)$, define the operator norm of $A$ to be

$$
\|A\|=\sup \left\{\|A v\|_{W}: v \in V,\|v\|_{V}=1\right\}\left(=\sup \left\{\|A v\|_{W} /\|v\|_{V}: v \in V, v \neq 0\right\}\right)
$$

in other words, $\|A\|$ is the maximum value of $\|A v\|_{W}$ over the unit sphere in $V$. Theorem 9.7 in Rudin shows that this is indeed a norm on $L(V, W)$. Moreover, if $U, V, W$ are normed vector spaces, $A \in L(U, V), B \in L(V, W)$, then $\|B A\| \leq\|B\|\|A\|$.
Suppose $V=\mathbb{R}^{m}$, $W=\mathbb{R}^{n}$ with the usual norms $\|v\|=\sqrt{v \cdot v}$ were $u \cdot v$ is the usual dot product. Elements of $L(V, W)$ are in one-to-one correspondence with $m$ by $n$ matrices, we will identify transformations with matrices via the standard basis or $\mathbb{R}^{m}, \mathbb{R}^{n}$. See equation (6) of Chapter 9 of Rudin for the useful estimate

$$
\|A\| \leq\left(\sum_{i, j} a_{i j}^{2}\right)^{\frac{1}{2}}
$$

Exercise: Prove that for $A \in L\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right),\|A\|=\sqrt{\lambda_{\max }}$ where $\lambda_{\max }$ is the largest eigenvalue of the symmetric positive semi-definite matrix $A^{t} A$.
2. Rudin Chapter 9, Problems 16, 17, 18, 19.

