1. Let $\phi:[a, b] \rightarrow \mathbb{R}$ be a continuously differentiable function. Suppose there is an interval $[c, d] \subset(a, b)$ so that $\phi([c, d]) \subset[c, d]$ and suppose there is a constant $C<1$ so that $\left|\phi^{\prime}(x)\right|<C$ on $[c, d]$. Then ϕ is a contraction on the complete metric space $[c, d]$, so it has a unique fixed point on $[c, d]$ that is an attractive fixed point and can be found by iteration.

The purpose of this exercise is to apply this reasoning to the Newton map associated to a twice continuously differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$, to see that these works on such intervals, and also to see what can happen outside such intervals.
Recall that the Newton map N is the map defined for $f^{\prime}(x) \neq 0$ and given by

$$
N(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

The fixed points of N are the zeros of f.
(a) Let $f(x)=x^{2}-2$. Find an explicit interval containing each of the two fixed points $\pm \sqrt{2}$ of N where there is a constant $C<1$ so that $\left|N^{\prime}(x)\right|<C$ and the reasoning of Problem (1) applies. Pick a point in this interval, iterate N, and see what happens. (See Figure 5.1 of the notes, reproduced as Figure 1 on the next page).
(b) Now iterate N beginning at $x=0.1$ and $x=0.001$ where clearly $\left|N^{\prime}(x)\right|>1$, and see what happens.
(c) Do the same for the cubic polynomial $f(x)=x^{3}-x$, with 3 real roots $0, \pm 1$: Find an explicit interval containing each of the three fixed points of N where the reasoning of Problem (1) applies. (See Figure 5.2 of notes or figure 2 of the next page).
(d) Now choose the points $x=0.4,0.45,0.455,0.5 .0 .6$ where clearly $\left|N^{\prime}(x)\right|>1$, iterate N starting at each of these points, and see what happens.
2. Rudin Chapter 7, exercise 4: For $x \in \mathbb{R}$, consider

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{1+n^{2} x}
$$

For which values of x does it converge absolutely? On which intervals does it converge uniformly? On which intervals does it fail to converge uniformly? Is f continuous wherever the series converges? Is f bounded?
3. Rudin Chapter 7 exercise 7: For $n \in \mathbb{N}$ and $x \in \mathbb{R}$ put

$$
f_{n}(x)=\frac{x}{1+n x^{2}}
$$

Show that f converges uniformly to a function f, and that the equation $f^{\prime}(x)=\lim f_{n}^{\prime}(x)$ is correct for $x \neq 0$, but false for $x=0$.

Figure 1: The Newton Map for $x^{2}-2$

Figure 2: The Newton Map for $x^{3}-x$

