1. Let $[a, b] \subset \mathbb{R}$ be an interval, and let $\mathcal{C}[a, b]$ be the set of continuous real valued functions on $[a, b]$. Then $\mathcal{C}[a, b]$ is a real vector space. Define an inner product on $\mathcal{C}[a, b]$ by

$$
<f, g>=\int_{a}^{b} f(x) g(x) d x
$$

and define two norms

$$
\|f\|_{2}=<f, f>^{\frac{1}{2}}=\left(\int_{a}^{b} f(x)^{2} d x\right)^{\frac{1}{2}}
$$

and

$$
\|f\|_{1}=\int_{a}^{b}|f(x)| d x
$$

(a) Prove the Schwarz inequality $<f, g>^{2} \leq<f, f><g, g>$ by the same method used in class to prove the Cauchy-Schwarz inequality in \mathbb{R}^{n}, namely find a formula for the difference

$$
\int_{a}^{b} f(x)^{2} d x \int_{a}^{b} g(x)^{2} d x-\left(\int_{a}^{b} f(x) g(x) d x\right)^{2}
$$

as an integral ever the product $[a, b] \times[a, b]$. Then give and prove the necessary and sufficient condition for equality to hold in this inequality.
(b) Prove that $\|f\|_{1} \leq \sqrt{b-a}\|f\|_{2}$, and equality holds if and only if f is constant.
2. If V is a normed vector space, the distance between $x, y \in V$ is defined by $d(x, y)=$ $\|y-x\|$. The purpose of this exercise is to find conditions for equality in the triangle inequality in some of the normed spaces that we know. In other words, given $x \in V$, want to describe the following set:

$$
E_{x}=\{y \in V:\|x\|=\|y\|+\|x-y\|\}=\{y \in V: d(0, x)=d(0, y)+d(y, x)\} .
$$

Find this set for
(a) \mathbb{R}^{2} with $\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|$. Fix $x=\left(x_{1}, x_{2}\right)$ in first quadrant. Draw a picture of E_{x}.
(b) \mathbb{R}^{2} with norm $\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}$. (Suggestion: see how the unit balls in the d_{1} and d_{∞} are related to get a hint as to how the equality sets for the triangle inequality are related)
(c) $\mathcal{C}[a, b]$ with $\|f\|_{2}$
(d) $\mathcal{C}[a, b]$ with $\|f\|_{1}$.
3. (Rudin, Chapter 3, problem 7): Prove that if $a_{n} \geq 0$ and $\sum_{i=0}^{\infty} a_{n}$ converges, then so does

$$
\sum_{i=1}^{\infty} \frac{\sqrt{a_{n}}}{n}
$$

