(1) Pugh, Exercise 8.
(2) Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)= \begin{cases}1 & \text { if } x=\frac{p}{q} \text { fraction in lowest terms with } q \leq n \\ 0 & \text { otherwise }\end{cases}
$$

Show that $f_{n} \uparrow f$, where

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\int f_{n}, \lim \int f_{n}$ and $\int f$ both for the Riemann integral and the Lebesgue integral. Use these answers to show that the following notions are not the same for the Riemann and Lebesgue integrals:
(a) Integrability.
(b) Monotone convergence theorem (Pugh, Theorem 15).
(c) Dominated convergence theorem (Pugh, Theorem 20).
(3) Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leq x \leq \frac{1}{n} \\ 2 n-n^{2} x & \text { if } \frac{1}{n} \leq x \leq \frac{2}{n} \\ 0 & \text { if } \frac{2}{n} \leq x \leq 1\end{cases}
$$

These are the "steeple functions" mentioned in the remark following Theorem 21 of Pugh (Fatou's lemma).
(a) Draw the graphs of the f_{n} and find $\lim f_{n}$.
(b) Compute $\int f_{n}, \lim \int f_{n}$ and $\int f$, and show that you get strict inequality in Fatou's lemma: $\int f<\liminf \int f_{n}$.
(c) Explain why this does not contradict the dominated convergence theorem.
(4) Rudin, Chapter 11, problem 5. This gives another example of strict inequality in Fatou's lemma.

