You should know the following definitions and theorems, and have some idea of how the theorems are proved and how they can be used. References are: $\mathrm{N}=$ notes, $\mathrm{R}=$ Rudin.

1. The Contraction Mapping Theorem (N $\S 5, \mathrm{R} 9.23$): Let (X, d) be a complete metric space, and let $f: X \rightarrow X$ be a contraction. This means that there exists a constant $C<1$ so that for all $x, y \in X, d(f(x), f(y)) \leq C d(x, y)$. Then f has a unique fixed point in X. This means that there is a unique point $x_{0} \in X$ such that $f\left(x_{0}\right)=x_{0}$.
2. Proof of the Contraction Mapping Theorem: Recall that the proof is very simple: pick any point $x_{1} \in X$ and make it the first entry of the sequence $\left\{x_{n}\right\}$ defined by $x_{2}=f\left(x_{1}\right)$, $x_{3}=f\left(x_{2}\right), \ldots, x_{n+1}=f\left(x_{n}\right), \ldots$ Then $d\left(x_{n+1}, x_{n+2}\right)<C d\left(x_{n}, x_{n+1}\right)<\ldots C^{n} d\left(x_{2}, x_{1}\right)$ which implies that $\sum_{n=1}^{\infty} d\left(x_{n+1}, x_{n}\right)$ converges, which implies that $\left\{x_{n}\right\}$ is a Cauchy sequence, hence converges. Its limit must necessarily be fixed by f.
3. Some applications of the contraction mapping theorem:
(a) Examples of contractions: Suppose $f:[a, b] \rightarrow[a, b]$ and there is a constant $C<1$! such that $\left|f^{\prime}(x)\right|<C$ for all $x \in[a, b]$. Then f is a contraction (with the same constant C). ($\mathrm{N} \S 3.4$).
(b) Newton's method: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is of class C^{2}. Define the Newton map associated to f by

$$
N(x)=x-\frac{f(x)}{f^{\prime}(x)} \quad \text { defined on } \quad\left\{x: f^{\prime}(x) \neq 0\right\}
$$

The fixed points of N are the zeros of $f: N(x)=x$ if and only if $f(x)=0$. If $f\left(x_{0}\right)=0$, then, for moderately small δ, in the interval $\left|x-x_{0}\right| \leq \delta$ we get an upper bound for $\left|N^{\prime}(x)\right|=\left|\left(f(x) f^{\prime \prime}(x)\right) /\left(f^{\prime}(x)^{2}\right)\right|$ by a constant $C<1$, thus N is a contraction on $\left|x-x_{0}\right| \leq \delta$. (N §5.1).
(c) If X is a compact metric space, the space $\left(C(X), d_{\infty}\right)$ of continuous \mathbb{R}-valued functions on X with $d_{\infty}(f, g)=\|f-g\|_{\infty}=\max \{|f(x)=g(x)|: x \in X\}$ is a complete metric space. (N $\S 3.2 .3, \mathrm{R} 7.15$). Be familiar with this space, how to prove its completeness. In particular, be familiar with the fact that $f_{n} \rightarrow f$ in d_{∞} if and only if $f_{n} \rightarrow f$ uniformly on X.
(d) Picard Iteration The completeness of $\left(C(X), d_{\infty}\right)$ can be used to prove the existence and uniqueness theorem for solutions of the initial value problem to first order differential equation

$$
\begin{align*}
\frac{d x}{d t} & =f(t, x(t)) \tag{1}\\
x(0) & =x_{0}
\end{align*}
$$

The theorem in question is:

Theorem 1 Suppose that $U \subset \mathbb{R}^{2}$ is open and $f: U \rightarrow \mathbb{R}$ is continuous and satisfies a local, time - independent Lipschitz condition on U, meaning that on every closed sub-rectangle $R=[a, b] \times[c, d] \subset U, a, b, c, d \in \mathbb{R}$, there is a constant $c_{R}>0$ so that $|f(t, x)-f(t, y)| \leq c_{R}|x-y|$ for all x, y, t so that (t, x) and (t, y) are in U.
Then there exist numbers $a, b>0$ so that the rectangle $[-a, a] \times\left[x_{0}-b, x_{0}+b\right] \subset U$ and so that (1) has a unique solution with graph contained in this rectangle, that is, $x(t)$ is defined for $|t|<a$ and satisfies $\left|x(t)-x_{0}\right|<b$ for $|t|<a$. Moreover, $x(t)$ is a continuously differentiable function of t.

Recall that this is proved by converting (1) to an integral equation

$$
\begin{equation*}
P x=x, \quad \text { where } \quad(P x)(t)=x_{0}+\int_{0}^{t} f(\tau, x(\tau)) d \tau \tag{2}
\end{equation*}
$$

and solving (2) by iteration as in the proof outlined above of the Contraction Mapping Theorem. See (N $\S 5.2$) for details. Make sure you can carry out an example of an iteration.
(e) The Inverse Function Theorem : First review the definition of differentiability for functions $f: U \rightarrow \mathbb{R}^{n}$ where $U \subset \mathbb{R}^{m}$ is an open set, the definition of the derivative $d f$ which is a linear transformation given by the Jacobian matrix, and the definition of the class C^{1} of continuously differentiable functions. See (R 9.10-9.21, N §6). The statement of the Inverse Function Theorem is:

Theorem 2 Let $U \subset \mathbb{R}^{n}$ be an open set, let $f: U \rightarrow \mathbb{R}^{n}$ be of class C^{1} (continuously differentiable). Let $x_{0} \in U$ and suppose that $d_{x_{0}} f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible. Then there exist neighborhoods $N\left(x_{0}\right) \subset U$ of x_{0} and $N\left(y_{0}\right)$ of $y_{0}=f\left(x_{0}\right)$ so that $f\left(N\left(x_{0}\right)\right)=$ $N\left(y_{0}\right)$ and the restriction of f to $N\left(x_{0}\right)$, denoted $\left.f\right|_{N\left(x_{0}\right)}: N\left(x_{0}\right) \rightarrow N\left(y_{0}\right)$ is bijective, so it has an inverse. This inverse map $\left(\left.f\right|_{N\left(x_{0}\right)}\right)^{-1}: N\left(y_{0}\right) \rightarrow N\left(x_{0}\right)$ is also of class C^{1}.

For proofs, see ($\mathrm{N} \S 6, \mathrm{R} 9.24$).
(f) The Implicit Function Theorem: See (R 9.26 to 9.29). To avoid some of the complicated notation in (R 9.26-9.29), let's consider the special case of a real valued function on an open set $U \subset \mathbb{R}^{n+1}$. To have a reasonable notation to state the theorem, write $\mathbb{R}^{n+1}=\mathbb{R}^{n} \times \mathbb{R}$ and points in \mathbb{R}^{n+1} as (p, r), where $p \in \mathbb{R}^{n}$ and $r \in \mathbb{R}$. This means, write $\left(x_{1}, \ldots, x_{n+1}\right)=\left(x_{1}, \ldots, x_{n}\right) \times\left(x_{n+1}\right)$, use shorthand $p=\left(x_{1}, \ldots, x_{n}\right)$ and $r=\left(x_{n+1}\right)$. Using this notation, the theorem says:

Theorem 3 Let $g: U \rightarrow \mathbb{R}$ be of class C^{1}, and suppose that $\left(p_{0}, r_{0}\right) \in U$ and that $\frac{\partial g}{\partial x_{n+1}}\left(p_{0}, r_{0}\right) \neq 0$. Then there are $a, b>0$ so that $N=B\left(p_{0}, a\right) \times B\left(r_{0}, b\right) \subset U$, and there is a function $\phi: B\left(p_{0}, a\right) \rightarrow B\left(r_{0}, b\right)$ of class C^{1} so that

$$
\begin{equation*}
Z=\{(p, r) \in N: g(p, r)=0\}=\left\{(p, \phi(p)): p \in B\left(p_{0}, a\right)\right\} . \tag{3}
\end{equation*}
$$

In other words, we can locally solve for x_{n+1} as a function of x_{1}, \ldots, x_{n} (this is the "implicit function"), or, in the shorthand notation, $r=\phi(p)$. In more precise terms, if we let Z be the zero set of g, then (3) says that $Z \cap N$ is the graph of ϕ.

Proof: Define $F: U \rightarrow \mathbb{R}^{n+1}$ by $F(p, r)=(p, g(p, r))$. Then the derivative $d_{(p, r)} F$ is given by the Jacobian matrix, which is the $(n+1)$ by $(n+1)$ matrix

$$
\left(\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1 & 0 \\
g_{1} & g_{2} & \ldots & g_{n} & g_{n+1}
\end{array}\right)
$$

where g_{i} stands for $\frac{\partial g}{\partial x_{i}}$.
Since the determinant of this matrix is clearly g_{n+1}, which, by assumption, doesn't vanish at $\left(p_{0}, r_{0}\right)$, this matrix is invertible at $\left(p_{0}, r_{0}\right)$. By the Inverse Function Theorem (2), F is invertible in a neighborhood N of $\left(p_{0}, r_{0}\right)$, which we can choose to be a product of balls as in the N in the statement of the theorem. Let $N^{\prime}=F(N)$ be the neighborhood of $F\left(p_{0}, r_{0}\right)=\left(p_{0}, 0\right)$ o which the local inverse $\Phi: N^{\prime} \rightarrow N$ of F is defined.

Let's also write (q, s), where $q \in \mathbb{R}^{n}$ and $s \in \mathbb{R}$ for points in the target. Since $F(p, r)=(p, g(p, r))$, it follows that $\Phi(q, s)=(q, \psi(q, s))$ for some $\psi: N^{\prime} \rightarrow \mathbb{R}$.
Since $(p, r) \in Z$ if and only if $g(p, r)=0$, we see that $(p, r) \in Z$ if and only if $F(p, r)=(p, 0)$, therefore if and only if $(p, r)=\Phi(p, 0)=(p, \psi(p, 0))$. So, if we define $\phi(p)=\psi(p, 0)$, then Z is the graph of ϕ, as desired, and the proof is complete; Remark: Geometrically, F "straightens " Z into the "plane" $\mathbb{R}^{n} \times 0$.
4. Other Topics: These are closely related to the topics discussed above and are required for the details of the proofs:
(a) Uniform convergence of sequences of functions: (R 7.1 to 7.16).
(b) Linear transformations, their norms, continuity of inversion: (R 9.1 to 9.8).

