You should know the following definitions and theorems, and have some idea of how the theorems are proved and how they can be used. References are: N = notes, R = Rudin.

- 1. The Contraction Mapping Theorem (N §5, R 9.23): Let (X, d) be a complete metric space, and let $f: X \to X$ be a contraction. This means that there exists a constant C < 1 so that for all $x, y \in X$, $d(f(x), f(y)) \leq C d(x, y)$. Then f has a unique fixed point in X. This means that there is a unique point $x_0 \in X$ such that $f(x_0) = x_0$.
- 2. Proof of the Contraction Mapping Theorem: Recall that the proof is very simple: pick any point $x_1 \in X$ and make it the first entry of the sequence $\{x_n\}$ defined by $x_2 = f(x_1)$, $x_3 = f(x_2), \ldots, x_{n+1} = f(x_n), \ldots$ Then $d(x_{n+1}, x_{n+2}) < C \ d(x_n, x_{n+1}) < \ldots C^n d(x_2, x_1)$ which implies that $\sum_{n=1}^{\infty} d(x_{n+1}, x_n)$ converges, which implies that $\{x_n\}$ is a Cauchy sequence, hence converges. Its limit must necessarily be fixed by f.
- 3. Some applications of the contraction mapping theorem:
 - (a) Examples of contractions: Suppose $f : [a, b] \to [a, b]$ and there is a constant C < 1! such that |f'(x)| < C for all $x \in [a, b]$. Then f is a contraction (with the same constant C). (N §3.4).
 - (b) Newton's method: Suppose $f : \mathbb{R} \to \mathbb{R}$ is of class C^2 . Define the Newton map associated to f by

$$N(x) = x - \frac{f(x)}{f'(x)} \quad \text{defined on} \quad \{x : f'(x) \neq 0\}.$$

The fixed points of N are the zeros of f: N(x) = x if and only if f(x) = 0. If $f(x_0) = 0$, then, for moderately small δ , in the interval $|x - x_0| \leq \delta$ we get an upper bound for $|N'(x)| = |(f(x) f''(x))/(f'(x)^2)|$ by a constant C < 1, thus N is a contraction on $|x - x_0| \leq \delta$. (N §5.1).

- (c) If X is a compact metric space, the space $(C(X), d_{\infty})$ of continuous \mathbb{R} -valued functions on X with $d_{\infty}(f,g) = ||f-g||_{\infty} = \max\{|f(x) = g(x)| : x \in X\}$ is a complete metric space. (N §3.2.3, R 7.15). Be familiar with this space, how to prove its completeness. In particular, be familiar with the fact that $f_n \to f$ in d_{∞} if and only if $f_n \to f$ uniformly on X.
- (d) *Picard Iteration* The completeness of $(C(X), d_{\infty})$ can be used to prove the existence and uniqueness theorem for solutions of the initial value problem to first order differential equation

$$\frac{dx}{dt} = f(t, x(t)) \tag{1}$$
$$x(0) = x_0$$

The theorem in question is:

Theorem 1 Suppose that $U \subset \mathbb{R}^2$ is open and $f: U \to \mathbb{R}$ is continuous and satisfies a local, time - independent Lipschitz condition on U, meaning that on every closed sub-rectangle $R = [a, b] \times [c, d] \subset U$, $a, b, c, d \in \mathbb{R}$, there is a constant $c_R > 0$ so that $|f(t, x) - f(t, y)| \leq c_R |x - y|$ for all x, y, t so that (t, x) and (t, y) are in U. Then there exist numbers a, b > 0 so that the rectangle $[-a, a] \times [x_0 - b, x_0 + b] \subset U$ and so that (1) has a unique solution with graph contained in this rectangle, that is,

and so that (1) has a unique solution with graph contained in this rectangle, that is, x(t) is defined for |t| < a and satisfies $|x(t) - x_0| < b$ for |t| < a. Moreover, x(t) is a continuously differentiable function of t.

Recall that this is proved by converting (1) to an integral equation

$$Px = x$$
, where $(Px)(t) = x_0 + \int_0^t f(\tau, x(\tau)) d\tau$. (2)

and solving (2) by iteration as in the proof outlined above of the Contraction Mapping Theorem. See (N $\S5.2$) for details. Make sure you can carry out an example of an iteration.

(e) The Inverse Function Theorem : First review the definition of differentiability for functions $f: U \to \mathbb{R}^n$ where $U \subset \mathbb{R}^m$ is an open set, the definition of the derivative df which is a linear transformation given by the Jacobian matrix, and the definition of the class C^1 of continuously differentiable functions. See (R 9.10 – 9.21, N §6). The statement of the Inverse Function Theorem is:

Theorem 2 Let $U \subset \mathbb{R}^n$ be an open set, let $f : U \to \mathbb{R}^n$ be of class C^1 (continuously differentiable). Let $x_0 \in U$ and suppose that $d_{x_0}f : \mathbb{R}^n \to \mathbb{R}^n$ is invertible. Then there exist neighborhoods $N(x_0) \subset U$ of x_0 and $N(y_0)$ of $y_0 = f(x_0)$ so that $f(N(x_0)) = N(y_0)$ and the restriction of f to $N(x_0)$, denoted $f|_{N(x_0)} : N(x_0) \to N(y_0)$ is bijective, so it has an inverse. This inverse map $(f|_{N(x_0)})^{-1} : N(y_0) \to N(x_0)$ is also of class C^1 .

For proofs, see (N $\S6$, R 9.24).

(f) The Implicit Function Theorem: See (R 9.26 to 9.29). To avoid some of the complicated notation in (R 9.26 - 9.29), let's consider the special case of a real valued function on an open set $U \subset \mathbb{R}^{n+1}$. To have a reasonable notation to state the theorem, write $\mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}$ and points in \mathbb{R}^{n+1} as (p, r), where $p \in \mathbb{R}^n$ and $r \in \mathbb{R}$. This means, write $(x_1, \ldots, x_{n+1}) = (x_1, \ldots, x_n) \times (x_{n+1})$, use shorthand $p = (x_1, \ldots, x_n)$ and $r = (x_{n+1})$. Using this notation, the theorem says:

Theorem 3 Let $g: U \to \mathbb{R}$ be of class C^1 , and suppose that $(p_0, r_0) \in U$ and that $\frac{\partial g}{\partial x_{n+1}}(p_0, r_0) \neq 0$. Then there are a, b > 0 so that $N = B(p_0, a) \times B(r_0, b) \subset U$, and there is a function $\phi: B(p_0, a) \to B(r_0, b)$ of class C^1 so that

$$Z = \{(p,r) \in N : g(p,r) = 0\} = \{(p,\phi(p)) : p \in B(p_0,a)\}.$$
(3)

In other words, we can locally solve for x_{n+1} as a function of x_1, \ldots, x_n (this is the "implicit function"), or, in the shorthand notation, $r = \phi(p)$. In more precise terms, if we let Z be the zero set of g, then (3) says that $Z \cap N$ is the graph of ϕ .

Proof: Define $F: U \to \mathbb{R}^{n+1}$ by F(p,r) = (p, g(p,r)). Then the derivative $d_{(p,r)}F$ is given by the Jacobian matrix, which is the (n+1) by (n+1) matrix

(1 0	$\begin{array}{c} 0 \\ 1 \end{array}$	 	0 0	0 0	
	 0	 0	•••	 1	 0	,
	g_1	g_2	· · · · · · ·	g_n	g_{n+1})

where g_i stands for $\frac{\partial g}{\partial x_i}$.

Since the determinant of this matrix is clearly g_{n+1} , which, by assumption, doesn't vanish at (p_0, r_0) , this matrix is invertible at (p_0, r_0) . By the Inverse Function Theorem (2), F is invertible in a neighborhood N of (p_0, r_0) , which we can choose to be a product of balls as in the N in the statement of the theorem. Let N' = F(N) be the neighborhood of $F(p_0, r_0) = (p_0, 0)$ o which the local inverse $\Phi : N' \to N$ of F is defined.

Let's also write (q, s), where $q \in \mathbb{R}^n$ and $s \in \mathbb{R}$ for points in the target. Since F(p, r) = (p, g(p, r)), it follows that $\Phi(q, s) = (q, \psi(q, s))$ for some $\psi : N' \to \mathbb{R}$. Since $(p, r) \in Z$ if and only if g(p, r) = 0, we see that $(p, r) \in Z$ if and only if F(p, r) = (p, 0), therefore if and only if $(p, r) = \Phi(p, 0) = (p, \psi(p, 0))$. So, if we define $\phi(p) = \psi(p, 0)$, then Z is the graph of ϕ , as desired, and the proof is complete; *Remark*: Geometrically, F "straightens" Z into the "plane" $\mathbb{R}^n \times 0$.

- 4. *Other Topics*: These are closely related to the topics discussed above and are required for the details of the proofs:
 - (a) Uniform convergence of sequences of functions: (R 7.1 to 7.16).
 - (b) Linear transformations, their norms, continuity of inversion: (R 9.1 to 9.8).