The final exam will be comprehensive, but with more emphasis on the more recent topics. I will ask questions from the material already covered in the first two midterms, as well as in the new material, roughly half old and half new. References are: N = notes, P = Pugh, chapter 6, R = Rudin.

- 1. Basic material on metric spaces: Definitions, examples, Cauchy sequences, completeness.
- 2. Inequalities: Cauchy Schwarz and related ones, Jensen's inequality (convexity) (N4).
- 3. Normed spaces: \mathbb{R}^n and \mathbb{R}^∞ , C[a, b] with the *p* norms, $1 \le p \le \infty$. (N4)
- 4. Completeness of $C[a, b], ||f||_p$ for $p = \infty$, incompleteness for $1 \le p < \infty$ (N3).
- 5. Contraction mapping theorem and applications. (R9, N5)
- 6. Basic material on differentiable maps from \mathbb{R}^m to \mathbb{R}^n (R9).
- 7. Inverse and implicit function theorems (R9, N6).
- 8. Spaces of continuous functions:
 - (a) Equicontinuous families, compact subsets of C(X) for X compact metric (R7.22 to 7.25).
 - (b) Arzela Ascoli theorem: $\{f_n\}$ a bounded, equicontinuous sequence in C(X), has a uniformly convergent subsequence. (R7.25).
 - (c) Weierstrass approximation theorem: Polynomials are dense in C[0, 1]. (R7.26)
- 9. Lebesgue Theory: Definitions
 - (a) Lebesgue outer measure m^* in \mathbb{R} and \mathbb{R}^2 , sets of measure zero. (P1):

 $m^*(E) = \inf\{\sum_i |I_i| : \{I_i\} \text{ countable collection of open intervals with } \cup I_i \supset E\}$

- (b) Abstract outer measure $\omega : 2^M \to [0,\infty]$, where *M* is any set: a monotone, countably subadditive function with $\omega(\emptyset) = 0$ (P2).
- (c) Sigma algebra: a collection of subsets of M containing \emptyset and closed under complement and countable union. Measure on a sigma-algebra: a monotone, countably *additive* $[0, \infty]$ -valued function on the sigma algebra, assigning 0 to \emptyset . (P2)
- (d) Given a set M and an abstract outer measure on 2^M , definition of measurable sets and of the measure of a measurable set. (P2) A set $E \subset M$ is measurable if and only if, for all $X \subset M$,

$$\omega(X) = \omega(X \cap E) + \omega(X \cap E^c).$$

If E is measurable, its measure is its outer measure.

- (e) In \mathbb{R} or \mathbb{R}^2 : a G_{δ} -set is a countable intersection of open sets, an F_{σ} -set is a countable union of closed sets (P3).
- (f) (P4) For any function $f : \mathbb{R} \to [0, \infty)$, define its undergraph

$$\mathcal{U}(f) = \{(x, y) \in \mathbb{R}^2 : 0 \le y < f(x)\}$$

Then

- i. f is Lebesgue measurable if and only if $\mathcal{U}(f)$ is a Lebesgue measurable subset of \mathbb{R}^2 .
- ii. If f is Lebesgue measurable, its Lebesgue integral is defined to be

$$\int f = m_2(\mathcal{U}(f))$$

where m_2 denotes Lebesgue measure in \mathbb{R}^2 (two-dimensional Lebesgue measure).

(g) (P5) Upper and lower Lebesgue sums for a partition Y of $[0, \infty)$, $0 = y_0 < y_1 < y_2 < \dots \rightarrow \infty$:

$$\underline{L}(f,Y) = \sum_{i=1}^{\infty} y_{i-1}m(X_i), \quad \overline{L}(f,Y) = \sum_{i=1}^{\infty} y_i m(X_i),$$

where $X_i = f^{-1}([y_{i-1}, y_i)).$

- 10. Lebesgue theory: Theorems.
 - (a) Countable subsets of \mathbb{R} or \mathbb{R}^2 have measure zero (P1).
 - (b) Lebesgue outer measure of an interval is its length, of a rectangle is its area. (P1)
 - (c) Limit properties of measures: upward and downward measure continuity theorems (P2): If E_n are measurable, and $E_n \uparrow E$, then E is measurable and $\omega(E_n) \uparrow \omega(E)$. If $E_n \downarrow E$ and $\omega(E_1) < \infty$, then E is measurable and $\omega(E_n) \downarrow \omega(E)$.
 - (d) In \mathbb{R} intervals are measurable, sets of measure zero are measurable (P3).
 - (e) Regularity of Lebesgue measure: if E is measurable set in \mathbb{R} or \mathbb{R}^2 , there exist a G_{δ} set G, an F_{σ} -set F so that $F \subset E \subset G$ and $m(G \setminus F) = 0$ (P3).
 - (f) Convergence Theorems: Monotone Convergence, Dominated Convergence (P4). Know how these can fail for Riemann integrals (homework).
 - (g) Fatou's Lemma (P4). Know examples that show inequality can be strict (homework).
 - (h) If f is Lebesgue integrable, then $\underline{L}(f, Y) \uparrow \int f$, as mesh of $Y \to 0$ (P5).