NOTES FOR MATH 5210, SPRING 2015

DOMINGO TOLEDO

1. INTRODUCTION

These notes are meant to supplement Rudin’s book [5]. They contain the
notes from the same course in 2013, and other topics covered in 2015. From
time to time I will add here some material that is discussed in class but is
not covered in [5].

2. THE REAL NUMBERS

2.1. Equivalence Classes of Cauchy Sequences. There are two stan-
dard constructions of the set R of real numbers from @, the rational numbers.
One is by Dedekind cuts, used in Math 3210 and also described in [5], the
other is using equivalence classes of Cauchy sequences of rational numbers.
We describe the second construction.

Start with the set Q of rational numbers, and its structure as an ordered
field. We assume that all this structure of QQ is known. See 1.12 to 1.17 of
[5] for the definition of ordered field.

Definition 2.1. Let {x,,} be a sequence of rational numbers: z, € Q for
n=12,....

(1) {zn} is called a Cauchy sequence if and only if for each € € Q,
€ > 0, there exists a natural number N so that |z, — x,| < € for all
m,n > N.

(2) If {z,,} and {y,} are Cauchy sequences in QQ, we say that they are
equivalent, written as {z,} ~ {yn}, if and only if z,, — y, — 0.
Recall that this means that for any ¢ € Q, € > 0, there exists a
natural number N so that |z, — y,| < € for all n > N.

It is easy to check that this is an equivalence relation. We denote by
[{xr}] the equivalence class of the Cauchy sequence {z)}.

Definition 2.2. The set R of real numbers is the set of equivalence classes of
Cauchy sequences in Q:

R = {[{zn}] : {zn} is a Cauchy sequence in Q}.
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2.2. Basic Properties of R. It is easy check that the operations and re-
lations listed below are well defined, meaning that they are independent of
the choice of representatives in their definition:

(1) There is an injective map Q@ — R obtained by assigning to the ra-
tional number r € Q the equivalence class of the constant sequence
{ryr,r,r,...}. We consider Q as a subset of R by using this identi-
fication.

(2) The following operations are well-defined and make R into a field:

(a) Addition: define [{x,}] + [{yn}] = {zn + yn}l-

(b) Multiplication: define [{z,}|[{yn}] = {znyn}]-

(c¢) Additive identity: 0 = [{0,0,0,...}].

(d) Additive inverse: —[{zp}] = [{—zn}]-

(e) Multiplicative identity: 1 =[{1,1,1,...}].

(f) Multiplicative inverse: If [{x,}] # 0, then z, = 0 for at most
finitely many n. Replace {z,,} by an equivalent sequence {z/,}
so that a], # 0 for all n and define the multiplicative inverse
1l{za}] = ({1/2}]

(3) There is an order relation defined by [{z,}] < [{yn}] if and only if
there exists a natural number N so that x, < y, for all n > N.
This is an order relation: if [{z,}] # [{yn}], then exactly one of
{wa}] < [ya}] or {za}] > [{yn}] holds.

(4) These operations and order relation make R into an ordered field,
see 1.12 to 1.18 of [5] for the definition and properties of ordered
fields.

In the above list of properties, the only ones that require most effort are
the multiplicative inverse and the three exclusive possibilities of the order
relation. See Homework 1 for details on how to check them.

2.3. Completeness of R. It remains to prove that R is complete, meaning
that every Cauchy sequence in R converges. This is the main point of this
construction of R. We proceed to check completeness. In what follows
e will always be a rational number, identified with the constant sequence

{e,6,...}.
Let {a,} be a Cauchy sequence in R. This means, first, that for each

n €N, ay, = [{zin}], where {z;,}?2, is a Cauchy sequence in Q. In more
detail:

e A sequence {ay} of real numbers is, first of all, represented by a
double sequence {;,}7%,_, of rational numbers.

e Next, for each n, since a,, is a real number, the sequence {z;,} is a
Cauchy sequence of the variable 7, in other words

(2.1)  VYe>0 IN(e,n) € Nsothati,j > N(e,n) = |zin—xjn| <e.
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e The sequence {a,} being a Cauchy sequence in R means that
(2.2) Ve >0 3IM(e) s.t. m,n > M(e) = |am — apn| < €.

This means that for each m and n we must have that |x; ,, —xin| < €
for ¢ sufficiently large, where “sufficiently large” depends on m and
n, in other words:

(2.3) Ve >03dM s.t. Vm,n > M 3l st. i > 1= |zjm —Tin| <€
where
(2.4) M = M(e) and I = I(e,m,n).

To prove that {ay} converges we must find a single Cauchy sequence {y;}
in @ so that {a,} converges to [{y;}], that is, given any € > 0 we must find
N'(e) and an I'(e,n) so that

(2.5) n> N'(e)and i > I'(e,n) = |z;n — yi| <e.
The only reasonable way to find {y;} would be by a diagonal process.
The first guess y; = x;; is unlikley to work, because we don’t have enough

information on z;;. After some trial and error, the following looks like a
good choice:

In equation (2.1) take € = %, (any sequence of positive rational numbers
converging to zero would do) and define

1
(26) (p(n) - N(ﬁvn) and Yi = Tp(4),i
where N(e,n) is as in (2.1).

Proposition 2.1. The sequence [{z;,}] converges to the real number [{y;}]
as n — oo

Proof. Given € > 0, consider only values of n so that % < €/3, and also so
that n > M (e/3), where M is as in (2.3) and (2.4), in other words, assume
that

n > max(3/e, M(e/3)).

Next consider only values of ¢ can so ¢ > ¢(n) and also ¢ > n. Then by
this choice and the choice already made for n we have

i > max(3/e, M(e/3),n,p(n))

Finally choose
Jj > max(p(i), p(n), I(e/3,i,n)).
Then for all these values of n, %, j we have

1 €
|Zo()i — Timl < NTpgyi — Tial + 1250 — Tyl + |Tjn — Tin| < 7 + 3 + n <€
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Since in (2.6) we chose y; = ;) ;, this last inequality means that

lyi — xipn| < € for n > max(3/e, M(e/3)) and i > max(3/e, M(e/3), p(n)),

therefore we found that (2.5) holds (with N'(e) = max(3/e, M(e/3)) and
I'(e,n) = max(3/e, M(e/3), p(n))). O

3. COMPLETE METRIC SPACES
Recall that a metric space (X, d) is said to be complete if every Cauchy
sequence {x,} in X has limit in X, that is, there exists x € X so that
limz, = z.

3.1. Examples of Complete Metric Spaces.

3.1.1. The real numbers R. In §2.3 we proved that R is complete. All other
examples will follow from this.

3.1.2. Buclidean space RF. The space RF = {x = (z1,...,2) : 21,...,2} €
R} can be given various distance functions, coming from norms:

(3.1) Ix[[1 = fz + .. fax
xll2 = (af+- +a})'/?
Ixlloo = max(fan],... |zx]),

and dj,ds,ds will denote the corresponding distance functions d(x,y) =
[Ix —ll-
Euclidean space usually refers to R¥ with the Euclidean distance dy, but

checking completeness, it is useful to also consider do,. The three distances
are related by the following inequalities:

1xlloo < [1xll2 < Vx|l
(3-2) xll2 < Ix[[r < VE]x|l2

X[loo < Ix[l < Eflx[oc-
A sequence {x,} is Cauchy in one of these three distances if and only if it is
Cauchy in any other. For example, to prove completeness in the Euclidean
distance dg, suppose {x,} is Cauchy in ds: given € > 0 there is N so that
m,n > N = ||X;, — Xp|| < €. Then the first half of the top inequality in

(3.2) gives ||xm — x,|| <€, for m,n > N, in other words, for each m,n > N
and foreach i =1,...,k,

|!Ti,m - xi,n’ < maX(|xl,m - xl,n|a ) ’xk,m - xk,n’) <e¢
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where X, = (Zin,...,2ky). In other words, for each i = 1,...,k, the
sequence x;, of ith components of x, is a Cauchy sequence in R, so it
converges. Call its limit z; and let x = (z1,...,x). Then, given € > 0, for
each ¢ there is N; so that n > N; = |z, — 24| < e/\/E Taking N = max(N;),
we get |[X, — X||oo < €/Vk for n > N(¢). The second half of the top line
of (3.2) gives ||x,, — x||2 < ¢, so limx, = x in the Euclidean distance da.
Thus (R¥, dy) is a complete metric space. Notice that what we really proved
was that (R¥, d..) is complete and derived completeness in do from the two
inequalities in the top line of (3.2). Completeness in d; then follows from
either of the next two lines.

3.1.3. Spaces of continuous functions. Let (X, d) be a compact metric space
and let C'(X) denote the set of continuous real valued functions on X:

(3.3) C(X)={f: f is a continuous function f:X — R},
and give it a norm and corresponding distance function:

(34) [flloo = max(|f()]), deo(f,9) =I[If = glleo, forall f,g € C(X).

Observe that the definition of the norm and the distance makes sense because
X is assumed to be compact, therefore continuos functions f : X — R are
bounded and attain their maximum.

We need to check that (C'(X),ds) is a metric space. It is clear that
doo(f,9) > 0 and = 0 if and only if f = g, and dwo(f,9) = doo(g, f). To
check the triangle inequality, given any f,g,h € C(X), we have for each
x € X the inequality

(3.5) [f(x) = g()] < [f(z) = h(z)] + [h(z) — g(z)|.

and, since each term in the right hand side is majorized by the maximum,
we have

|f(@) = h(@)| + |h(z) - g(2)| < max |f(z) - h(z)| + max|h(z) — g(z)],
so (3.5) gives
|f(2) —g(2)] < max|f(z) - h(z)| + max |h(z) — g(2)] = doo(f, 1) + doo (R, 9),

so the maximum of the left hand side, which by definition is doo(f, g), is
majorized by the right hand side, which is the triangle inequality for de.,
so (C(X),dx) is a metric space.

Convergence in do, is actually a familiar notion:

Theorem 3.1. A sequence {fn} in C(X) converges to f € C(X) in the
metric do if and only if fn(z) converges to f(x) uniformly on X. A sequence
{fn} in (C(X),dx) is a Cauchy sequence if and only if the sequence { fn(x)}
is uniformly Cauchy.
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See Definition 7.7 of [5] for the definition of uniform convergence; the
definition of uniformly Cauchy is implicit in Theorem 7.8.

Proof. Suppose f,, — f in ds. This means that given € > 0 there exists
N(e) so that n > N(€) = doo(fn, [) < €, which is equivalent to saying that
n > N(€) = maxzex (| fn(x) — f(z)|) < €, which is equivalent to saying that
n > N(e) = |fo(x)— f(x)| < e for allz € X, in other words, N is a function
of €, independent of x, which is the definition of uniform convergence. This
proves the first statement, the proof of the second is similar. O

Theorem 3.2. (C(X),dx) is a complete metric space.

Proof. Suppose {f,} is a Cauchy sequence in (C(X),d). By theorem 3.1,
this means that { f,,} is uniformly Cauchy, in other words, given e > 0 there
is N such that m,n > N = |fy,(2) — fo(x)| < € for all € C. In particular,
for each € X, {f,(z)} is a Cauchy sequence in R, so it converges to a limit
that we call f(x).

At this point we have only produced a function f : X — R so that
fn(x) = f(x) pointwise on X and do not even know that f € C(X). We
need more work. First, Theorem 7.8 of Rudin [5], that says that a sequence
of continuous functions is uniformly convergent if and only if it is uniformly
Cauchy, in particular, the convergence f, — f must be uniform (see the
argument at the top of page 148 of [5]). Finally, a uniform limit of continuous
functions is continuous (see Theorem 7.12 of [5]), so f € C(X).

0

3.2. Examples of Incomplete Metric Spaces. To appreciate the con-
cept of completeness, we also need to have some examples of metric spaces
that are not complete. The most familiar examples are of a pair of metric
spaces, X C Y, where the distance on X is restricted from (Y,d), X is not
closed in Y. Taking a point y € Y\ X that is a limit point of X we get a
sequence {x,} in X converging to y. This is a Cauchy sequence in X that
does not converge in X, so X is not complete.

Examples that we have seen of this nature are:

3.2.1. Q C R, y = /2. Take any sequence x, € Q converging to v/2, this is
a Cauchy sequence in Q with no limit in Q.

3.2.2. The open interval (0,1) C R, y = 0. . The sequence {1/n} in (0,1)
converges to 0 ¢ (0,1), so is a Cauchy sequence in (0,1) with no limit in
(0,1).

And there are of course many variations on these examples. They may
seem artificial, but all examples have to be like this. It is in fact a theorem
that every metric space is a dense subspace of a complete metric space, called
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its completion. For example, the completion of QQ is R and the completion
of (0,1) is [0,1]. To give more interesting examples, we have to look at
situations where the completion may not be so familiar.

3.2.3. Incomplete Metrics on C([a,b]). Specialize the construction of §3.1.3

to X = [a,b] C R, an interval in the real line (a < b). In analogy with the
norms and distances (3.1) on R¥, define norms and distances on C([a, b])

b
1flh = / 1 (@) dz

ab
(3.6) Wflle = (] flx)*da)'/?
|flloo = xrgﬁf;]lf(fv)l,

and dy,ds,ds will denote the corresponding distance functions d(f,g) =
||f — g||, and where d is the distance previously defined in (3.4). The
verification that these are metrics is analogous to the verification for (3.1).
In all cases the main issue is the triangle inequality, which has been verified
for do, and the verification for ds uses the Cauchy-Schwarz inequality for
integrals.

The inequalities analogous to (3.2) are:

fllz < Vb—allflle
(3.7) fl < Vbo—allfll
fll = (0—a) [[f]lo-
It is easy to prove these inequalities, for instance the last
b b
J 1f@ldn < [ mas (5o = (0= a) ma (7)) = (6= a) 1]

The main difference between (3.2) and (3.7) is that for C(X) we get only
half of the inequalities as we got for R¥. This means that the notions of con-
vergence and of Cauchy sequences need not be the same in all the distances.
For instance, the last inequality (3.7) says that a sequence f,, is convergent
of is Cauchy in dy,, then the same is true for d;, but the converse need not
be true. In fact, we will see that it is not true:

Theorem 3.3. The metric space (C([0,1]),d1) is not complete.
Proof. The idea is the same as in §3.2.1: Think of (C([0, 1]), d1) as a subspace

of a larger space, take f in this larger space but not in C([0,1]), and a
sequence f, € C([0,1]) with f,, — f. Let

fla) =o'
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Then f : (0,1] — R is unbounded, cannot be extended continuously to [0, 1],
but

1 1
_ o /211 _
[ 1@ =ty [ 1 #@lde = ting 201201 =2

so this is a convergent integral.

Define for n € N, define f,, € C([0,1]) by

nl/? if0<z<1/n,
fn(x) - {$—1/2 if 1/n <1.

Then

1 1/n
/ ]fn(x)—f(xﬂdxg/ 2™ V2dx = 2/y/n — 0 as n — co.
0

0

By the usual argument using the triangle inequality, this implies that f,, is
a Cauchy sequence in the metric d;. This is a statement that involves only
the sequence f, € C([0,1]) and not the function f.

We can prove that f,, does not converge in d; to any function in C([0, 1]),without
using the function f, by arguing as follows. Suppose f, — g € C([0,1]) in
the distance d;. Since g is continuous, it is bounded, say |g(z)| < C. Then
for n > C? we have

1 1/C?
D(fng) = [ 1ule) - glalde > /1/ () — g(2)|da

1/C?
> / (@2 - C)de = 1/C+1/n—2/vi—1/C,
0 di(fn,g) cannot approach zero for any g € C([0,1]). O

Similar arguments can be used to prove that (C([0, 1]), d2) is not complete.
Use the function g(z) = /% instead of f(x) = z~1/2.

3.3. Non-compact closed and bounded sets in C'(X). We have seen
examples of metric spaces where closed and bounded sets are not necessarily
compact, for instance in Q. More interesting examples occur in infinite
dimensional spaces, for instance, C([a, b]).

Here is an example that appears in many places. Forn = 0,1,2,... define
fn € C([0,27]) by
(3.8) fn(z) = cos(nz).

The standard addition formulas for the cosine give

cos((m+mn)x) = cos(mz)cos(nz) — sin(maz) sin(nz)

cos((m —n)x) = cos(mx)cos(nz) + sin(mz) sin(nx)
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we get
Jm(x) fn(x) = cos(mzx) cos(nx) = (cos(m + n)x + cos(m — n)x)/2
and integrating

2

(3.9) Fon ) () = {0 m 7 n,

0 T ifm=n.

If m # n, we get
21
do(fm, fn)? = / (frn(2) = fulz))?de =
0

27
/0 fon(@)? = 2fon (@) fo(@) + fn(@)P)de = 2,

therefore

(3.10) do(fm, fn) = V2r for m # n,

so by the first inequality (3.7)

(3.11) doo(fims frn) = 1 for all m,n with m # n.

Let E = {fo, f1, f2,...}. Since do(0, fn) = ||fullec = 1 for all n, E is a
bounded set. Moreover (3.11) shows that E has no limit points. Hence
E is closed, is an infinite bounded set without limit points, hence FE is
not compact, see Theorem 2.37 of [5]. Or just observe that the collection
{B(fs,3)} is an open cover of E that has no finite subcover. This gives a
good example of a complete metric space in which closed and bounded sets
need not be compact, in contrast to the situation for Euclidean space RF.

Remark 3.1. For a characterizatioon of the compact subsets of C'(X), see
the section on equicontinuity, 7.19 to 7.25 of [5].

3.4. Lipschitz Maps. Let (X,dx) and (Y, dy) be metric spaces.

Definition 3.1. A map f: X — Y is called a Lipschitz map if there exists a
constant C' > 0 such that

dy (f(z), f(y)) < C dx(x,y) for all z,y € X.

The constant C' (if it exists) is called a Lipschitz constant for f. The infimum
of the set of all Lipschitz constants is called the Lipschitz constant for f.

Clearly a Lipschitz map is continuous, in fact uniformly continuous: in
the € — 0 definition of continuity, given € > 0, if we let 6 = €¢/C, then
dx(z,y) < 6 = dy(f(x), f(y)) < e. In other words, 6 can be chosen as an
explicit linear function of e.

Example 3.1. Some examples of Lipschitz maps:
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(1)

(3.12)

(3.13)

(3.14)

TOLEDO

Let A : RF — R! be a linear transformation. Define the norm of A
by
[|A]] = max |[Az]],
l|l||=1
this is equivalent to Definition 9.6(c) of [5]. Observe that the defini-
tion makes sense because the continuous function ||AX || does indeed

have a maximum on the compact set {||X|| = 1} (the unit sphere).
By linearity, this norm has the property that

1Az < ||Alll[«]| = d(Az, Ay) < [|Alld(z, y) for all 2,y € R.

Thus a linear transformation 4 : R¥ — R! is a Lipschitz map, with
Lipschitz constant ||A]|.

Suppose I C R is an interval, and f : I — R is differentiable on [
and has bounded derivative, that is, there exists C' > 0 such that
|f/(x)] < C forall € I. Then either using the mean value theorem:
for some & € I,

[f(@) = W)l = £ )z —y) < Clz —yl,

or using the fundamental theorem of calculus:
$@) ~f0) =1 [ fow<| [ cil=cla-y
y y

we get that f is Lipschitz on I, and in fact C' also works as a Lipschitz
constant for f.

The last two examples can be combined as follows: Let U C R* be
an open, convex set, let f: U — R! be a continuously differentiable
map, and suppose that it has bounded derivative on U meaning

There exists C' > 0 such that ||d, f|| < C for all x € U,

where d.f : R¥ — R! is the differential of f at 2 and ||d.f|| is
the norm of the linear transformation d, f as defined in (3.12). See
Chapter 9 of [5] for details on differentiable maps. The notation f/(x)
is used there instead of d, f. The matrix of the linear transformation
d,f in the standard bases for R¥ and R! is the Jacobian matrix of f.

We use convexity and the fundamental theorem of caluculs to
show that f is Lipschitz, and that C is a Lipschitz constant for f.
Let z,y € U. Since U is convex, the line segment

V() =QA-tr+ty, 0<t<1

lies in U. Observe that v(0) = z,v(1) = y. Then, by the fundamen-
tal theorem of calculus and the chain rule

1 1
f0) = 1@ = [ GG = [ a6 o
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Taking norms, using +/(t) = y — x and the inequality (3.13) we get
1
170 =@l = 1 [ dyo fly =) <

1
Aldwﬁmw—ﬂwt< Clly — 2l
in other words

d(f(z), f(y)) < Cd(z,y),
and f is Lipschitz.

Ezample 3.2. Examples of continuous maps that are not Lipschitz:

(1) f(x) = 22 is not Lipschitz on R, since |f(z) — f(0)|/|z — 0] = || is
unbounded. This is continuous, but not uniformly continuous on R.

(2) f(z) = y/z is uniformly continuous on [0, c0) but it’s not Lipschitz
on any interval containing 0, since |f(z) — f(0)|/|z — 0| = Vz/z =
1/y/x — o0 as x — 0.

3.5. Digression: Lebesgue Numbers. In studiying compact metric spaces,
it is very useful to have the following theorem:

Theorem 3.4. Let X be a compact metric space and let U = {Uq}aca be
an open cover of X. Then there exists a numbet A = A(U) > 0 with the
following property: If z,y € X are any two points such that d(x,y) < X,
then there exists an open set U, € U so that x,y € U,.

Remark 3.2. A number )\ as in the statement of the theorem is called a
Lebesgue number for U.

Proof. For each x € X choose U, € U so that x € U,. Since U, is open in
X, there is r(z) > 0 so that B(z,r(z)) C Uy. Then B = {B(x,r(x))}rex
and B’ = {B(x,r(x)/2)}.ex are open covers of X with the property that B
refines B and B’ refines U in the sense that each element of B’ is contained
in some element of B and in each element of B is conained in some element

of U.

Since X is compact there is a finite subcollection B” = {B(x;, r(z;)/2}",
that covers X. Let C = {z1,...,%,} denote the collection of the centers of
the balls B(x;,r(x;)/2) € B”. Let A = min{r(x;)/2:x; € C}. Let z,y € X
and suppose d(z,y) < A. Then there is an z; so that d(z,x;) < r(x;)/2.
Then d(zi,y) < d(zi,x) +d(z,y) < r(z;)/2 + A < r(x;). Thus z,y €
B(xz;,r(x;)), which by construction is contained in some U,,. O

A typical application of Lebesgue numbers is the following theorem:

Theorem 3.5. Let X,Y be metric spaces, with X compact. Suppose f :
X — Y s continuous. Then f is uniformly continuous.
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Proof. Since f is continuous, for each € X and each € > 0 there ex-
ists d(z,€) > 0 with the property that if y € X and dx(z,y) < 0(x,¢€),
then dy (f(z), f(y)) < €/2. Let A be a Lebesgue number for the cover
{B(z,0(z,€))}zex. Thenif z,y € X and dx(z,y) < A, then there exists z €
X sothat z,y € B(z,d(z,€), consequently dy (f(x), f(y)) < dy(f(z), f(2))+
Ay (f(2), ) < ¢/2+e/2 = €. 0

4. NORMED VECTOR SPACES

The examples of metric spaces in section 3.1 were also vector spaces and
the distance function had special features. The unifying concept behind
these (and many other) examples is the normed vector space:

Definition 4.1. A normed vector space (over R) is a real vector space V'
and a function N : V' — R, called the norm (usually write ||x|| = N(x)),
satisfying the following properties.

(1) For all x € V, ||x|| > 0 and ||x|| = 0 if and only if x = 0.
(2) For all x € V and all a € R, ||ax]|| = |a| ||x]]-
(3) For all x,y € V, |[|x+yl|| <||x|| + |ly]|- (Triangle inequality).

If V' is a normed vector space, then d(x,y) = ||y — x|| is a metric on
V. This metric is translation invariant meaning that for all x,y,z € V,
d(x + z,y + z) = d(x,y), in fact, both equal d(0,y — x). Observe that
x| = d(x,0).

4.1. Norms in Euclidean Spaces. We have seen in section (3.1.2) exam-
ples of norms in the space R™, namely the norms (3.1) and the comparisons
(3.2) which we write again:

Ixlloo < [x[l2 < Vrllxllo
(4.1) Ixll2 < [Ix[ls < V/nllx][2
[xlloo < flx[[1 < nf[x]|oo-

We used these inequalites to prove that these norms are equivalent in the
sense that the notions of convergence, limits, and Cauchy sequences are the
same in all these norms. One obvious feature of these inequalities is that
the right hand side depends on the dimension n.

We observe, first of all, that these inequalities cannot be improved: these

inequalites all become equalities on the vector x = (1,1,...,1). In other
words,
(4.2) lim (sup{ [l :XGR"}) = lim vn =00

n—00 Hx”OO n—00



5210 NOTES 13

with similar conclusions for ||x||1/||x||2 and ||x]|]1/]|X||cc- On the other hand
the reciprocals of these ratios remain bounded. We summarize

(4.3) sup{HXHT:XGR"}zlifr>sand — o0 asn — oo if r <s.
Xlls

for r;s € {1,2,00} and using the usual order 1 < 2 < co.

4.1.1. Some infinite dimensional Euclidean spaces. We define a single space
which contains all the above examples.

Definition 4.2. Let R denote the set of all infinite sequences of real numbers
that are eventually zero, in other words,

R* = {x = (z1,22,...) : & € R and z; = 0 for all but finitely many i}

More precisely, for each x = (r1, z2,...) € R there exists an N = N(x) €
N so that x; =0 for ¢ > N.

Observe that for each n we can regard R™ C R*, namely
R" = {(z1,z2,...,2,,0,0,...) : z; € R} C R*.

and, with this understanding of how R" is a subset of R*, we have that

R® =[] R™
neN
Moreover, the norms ||x||1, ||x]|2,||X||cc all make sense in R, since the
defining expressions are finite sums (for ||x||; and ||x||2) and the sequence
of components, being finite, it is bounded (for ||x||~). Or, we could say,
each x € R* is in some R"™, we can use the definition of the norm in R",
and the resulting value is independent of the choice of n.

These norms are not equivalent. We have the left-hand inequalities (4.1)
hold, but not the others: ||x||c < ||x|]2 < ||x]]1 hold, but (4.3) implies that
none of the opposite inequalities can hold.

To give more examples of norms on R"™ we’ll first need to prove some
inequalities that will be needed to prove the triangle inequality. We take
this opportunity to discuss some general consequences of convexity.

4.2. Convex functions and Jensen’s inequality. Recall that a function
¢ : I — R, where I C R is an interval, is called conver if and only if it is
continuous and for all x,y € I, we have

(4.4) ¢(x—2hy) < qﬁ(w)—;qﬁ(y)’

and ¢ is called strictly convex if this inequality is always strict whenever
x # y. For example, a linear function is convex but not strictly convex.
Geometrically this inequality means that that the midpoint of every chord
spanned by two points on the graph of ¢ lies above the graph. From calculus
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we know that a twice continuously differentiable function ¢ is convex if and
only if ¢ (x) > 0 for all x.

Often one sees the definition of convexity requiring the stronger inequality
that every chord lie, except for its endpoints, above the graph. In other
words, for all z,y € I and for all ¢ € [0, 1],

(4.5) (1 —t)x +ty) < (1 —1)d(x) + tp(y).

One consequence of Jensen’s inequality is that for continuous functions ¢,
the two definitions are equivalent.

Theorem 4.1. Suppose that ¢ is a continuous, conver function. Fiz a
natural number n and a collection 1, p2, - - - by, S0 that pu1+po—+- -4 pn = 1.
Then for any (x1,--- ,z,) € R™ so that so that {d> " ; Niz; : 0 < \; < 1} s
contained in the domain of ¢ we have the inequality

(4.6) o(px1 + poza + -+ + pnxn) < p1d(z1) + pod(x2) + - - + pnd(xy).

In other words, the expression pix1+- - -+ sy is a weighted average of the
numbers x1,...,x, relative to the weights u1,..., u,. Jensen’s theorem is
that the value of ¢ at a weighted average of z1, ..., z, lies below the average,
with the same weights, of ¢(z1),...,¢(x,). Thus the defining inequality
(4.4) of convexity, which is the same as the simplest case of (4.6) : n = 2
and pp = pg = %, implies the same inequality for all other possible weighted
averages.

Proof. We follow the proof of (4.6) given in [3]:

(1) Iteration of (4.4) gives (4.6) for the case n = 2% and py = pig = - - =
ftn = L. Namely ¢((z1 + - -+ + z9¢)/2F) can be written as

o(((x1 4+ -+ ka_l)/Qkfl)/2 + ((wgr-1,1 + ... ka)/2k*1)/2)

to which (4.4) can be applied to give the average of two terms of the
same form with k replaced by k — 1, which gives the inductive step
for an induction of which (4.4) is the first step.

(2) Prove that (4.6) is true for all 11; being equal: ; = +. This is proved
as follows: if this statement is true for n then it is true for n — 1:
Assume that for any n numbers z1,...,x, we have

(4.7) P((z1+ -+ a)/n) < (P(x1) + - + (xn)) /1.

Then given any collection of n — 1 real numbers x1,...,x,_1, apply
(4.7) to the n-tuple x1,...,2p—1,(x1 +...24y—1)/(n —1). Since

v+t T (@t ze1) /(1) T

n n—1

)
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applying (4.7) to the left hand side we get that it, and therefore the
right hand side, is majorized by

G(x1) + -+ P(wn1) + (BT LIy
n

Multiplying both sides of the resulting inequality by n we get

nqﬁ(m +;l“_+1xn_1)§¢(x1)+"'+¢($n—1)+¢(m +;l.._-|—1xn—1)
therefore
(n = DI < ) 4t ),

n—1
which is equivalent to (4.7) for n replaced by n — 1. Since (4.7) is
true for n = 2%, all k, it follows that it holds for all natural numbers

n.
(3) The inequality (4.6) holds whenever all the p; are rational: Let m
be a common denominator for w1, ..., ty, let pu; = %, where m and

the k; are natural numbers. Then we can write the weighted average
> wix; as a weighted average with equal weights % by repeating the
terms z; as many times as the numerators k;:

n m 1
; HiZq = ]zz:l Eyj

where y1 = ... Yk, = 21, Yky+1 = - - - Yky = T2, €tC.

(4) The inequality (4.6) holds for all real weights u;: for i = 1,...,n
take a sequence 7;; of rational numbers, 0 < r;; < 1, so that
lim; o 7;j = pi. With some care, we can choose the r;; to be
weights: 0 < r;; < 1land r; +...7,; = 1. We could do this as
follows: choose 71 j,...7,-1,; to be weights and also satisfy 71,7 +
-+ rp_1,; < 1. This is possible because i1 + -+ + pp—1 < 1.

Fix z1,...,2,. Then (4.6) holds for 7; ; and, since ¢ is continuous,
each side of (4.6) converges to the corresponding side of (4.6) for the
M-

[l

4.3. Applications of Jensen’s Inequality.

4.3.1. Arithmetic-Geometric Mean. Let ¢(z) = e* and let p; = L. Then
Jensens’s inequality gives

e(z1+'7-7:+1n) < el 4 ... e
n
If we let y; = e, this inequality reads
1
n + 4+
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which is known as the inequality between geometric (left hand side) and
arithmetic (right hand side) means. This is best known in the case n = 2:

b
(4.9) Vab < % a,b> 0.

4.3.2. Young’s Inequality. Another variation of the above inequality is with
non—equal weigths. Choose two real numbers p,q > 1 so that % + é =1 and
again use the convexity of the exponential function to conclude that

Now let a = e and b = e%, and we get the inequality

P b 1 1
(4.10) ab< =+ if a,b>0 and — 4+ - =1.
p q P q
4.3.3. Hélder’s Inequality. This is the inequality, for z = (x1,...,2,),y =
(y1,...yn) € R™ and for real numbers p, ¢ > 1 satisfying (as above) %—l—% =1
n n 1 n 1
(4.11) 1S | < (Z |$i|p)p (Z !yi!q)q
i=1 i=1 i=1

Proof. Let A and B denote the two factors on the right-hand side of this
inequality, and observe that we may assume that A, B > 0, otherwise the
inequality reduces to 0 < 0. Then use the triangle inequality | > x;y;| <
> |xi| |yi| and let a; = |zi|/A, b; = |yi|/B. Then by the definition of A and
B we have

(4.12) > al=1land ) b?=1.

Next apply the inequality (4.10) to get

& b
aib; < -+ —+,
p q

summing this we get

Pyl 1 1
Z%@SZ(%—FEZ):]—) 6:1,

where the first equality follows from (4.12) and the second from the definition
of p,q. In other words, by the definition of A, B, a;, b;:

ZWAA% <1, equivalently Z || |yi| < AB,

which gives the desired inequality (4.11). O
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4.3.4. Minkowski’s Inequality. Given a real number p > 1, and a vector
x=(x1,...,2y) € R", let

(1.13) el = (3 Joip)?
=1

which is called the p norm of x. Minkowski’s inequality justifies calling this
a norm, namely, it is the statement of the triangle inequality:

(4.14) z +yllp < llxllp + [lyllp  for all z,y e R™.
Proof. Write ||z + y||p = Y |z + yi|? as follows:

o+l = s + willzs + el < S (il + i)+ P!

Split the last sum as the sum of two terms, and apply Hoélders inequality
(4.11) to each, combine them again, to get

leral < (k) + (S hwl) ) (X fos + 1)

where ¢ is defined by % + % = 1, which is equivalent to (p — 1)g = p. Thus

Q=

P
the second factor in this last inequality is the same as ||z + y||;. Writing
this last factor in this form and dividing both sides by it gives

p_E
e+l * < llzllp + [lyllp

Finally, observe that p — g = 1 because 117 + é = 1, therefore this last

inequality is Minkowski’s inequality (4.14). O

4.4. Norms on Euclidean Space and Spaces of Sequences. The last
two inequalities can be interpreted in several ways. For fixed n, can define
a whole family of norms on R™, depending on a real number p > 1, by
equation (4.13). Minkowski’s inequality tells that these are all norms, they
give a one parameter family of norms interpolating the three norms (3.1)
for p =1,2,00. Observe the following:

(1) Holder’s inequality (4.11) tells us that these norms come in pairs
P, q, where %—i— % =1

(2) Observe that this inequality also holds, and is very easy to prove, in
the limiting case p =1, ¢ = oo.

(3) One pair is exceptional: p = ¢ = 2. In this case the 2-norm is
the usual Euclidean (or Pythagorean) norm, and Holder’s inequality
reduces to the Cauchy-Schwarz inequality. So we can regard the
Holder inequality as a natural generalization of Cauchy-Schwarz.

(4) See Figure 4.1 for a picture of the unit spheres {x : [|x||, = 1} of
these norms in R?. Certain features that can be seen from this figure
are:
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(a) For r < s, the unit ball of the  norm is contained in the unit
sphere of the s-norm. This translates into the inequality ||x||s <
||x||- for < s, and equality holds if and only if all but one of
the coordinates of x vanish.

(b) The exceptional case p = ¢ = 2 is more symmetric than the
others: it has rotational symmetry, while the others have very
little symmetry. More precisely, if A is a 2 by 2 matrix, ||Ax||, =
||x]||, for all p happens:

(i) For p = 2 if and only if

A cosf) —sin6 . cosf sinf
~\ sinf  cosé © sinf —cosf
(ii) For p # 2 if and only if
A +1 0 0 =1
“Lo £1 )L+ 0
(c) For the extreme cases p = 1,00 the unit ball is not strictly
convex, meaning that there are straight line segments in its
boundary. In the other cases 1 < p < 0o, the unit ball is strictly
convex: no straight line segments contained in its boundary.

(d) An equivalent formulation of the last statement is the following;:
Let

Ep(x) ={y : [Ix[lp = llyllp + |x = yllp}
(the equality set for the triangle inequality). For 1 < p < oo,
y € Ey(x) if and only if y = ax for some a € R, 0 < a < 1. In
other words, Ep(x) is the straight line segment from the origin
to x. For p = 1,00, E,(x) is much larger, in fact, it has non-
empty interior.

4.4.1. Equivalence of norms in R™.

Theorem 4.2. Let ||z|| and ||x||" be any two norms on R™. Then they are
equivalent: there exist constants C1,Cy > 0 so that Chl|z|| < ||z||" < Co||z||-

Proof. 1t is enough to prove that any norm is equivalent to the 1-norm
||z|]|1. Let ||z|| be a norm. Writing = = (x1,...,2,) = T1€1 + ... Tpen,
where eq, ..., e, are the standard basis vectors, the triangle inequality gives

|z < laa] [lexl] + .. - [2n] llenl] < Cllxf[1,  where C = max{||e;]}.

This gives one of the two desired inequalities, and shows that the funcion ||z||
is continuous with respect to ||z||1. Note that a norm is always continuous
with respect to the distance it defines, what may not be clear a-priori is that
it is continuous with respect to another norm.

Now, since ||z|| is continuous with respect to the usual norm (or the usual
topology), and the unit sphere S = {x € R" : ||z||; = 1} is compact, ||z||
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F1GURE 4.1. The Unit Spheres of the [P-norms

has a minimum on S. Let M be this minimum value of ||z|| for x € S. Then
M > 0 since ||z|| = 0 implies = 0 and 0 ¢ S. Then for all z # 0 we have
||ﬁ||2Mor||x||2M||1:||1 as desired. O

4.4.2. Inequivalent norms in infinite dimensions. Let’s go back to the space
R*°, where we saw in section (4.1.1) that the norms ||z||1,||z||2, ||%||cc Were
defined, and, by the same reasoning, we see that the norms ||z||, are defined
for all real p > 1. These norms are not equivalent. We have seen that
l|z||s < ||z||» whenever r < s, but not in the opposite direction. Let’s look at
what goes wrong with the proof of Theorem 4.2. Let’s take r = 1 and s > 1.
We know that it is true (even though the argument in the proof of Theorem
4.2 doesn’t work) that ||z||s < ||z||1. Thus we know, in particular, that ||z||s
is continuous in R* with respect to ||z||;. But it is not bounded away from
zero on the unit sphere of the 1-norm. Let z,, = (%, e %,0,0, ...) (thus
x,, has precisely n nonzero entries, all equal to 1). Then ||z,||; = 1, so it is
on the unit sphere, but for any s > 1

1
s

1 n: 1
Hans:<ZE> :<E) =— —0.

i=1 n s
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Therefore s-norm is not bounded away from zero on the unit sphere of the
1-norm, which gives us another proof that these norms are not equivalent
on the infinite dimensional space R*°, as we have already seen in section
(4.1.1).

4.4.3. More examples of incomplete metric spaces. The spaces R with
norm ||x||s, 1 < s < oo provide more examples of incomplete metric spaces.
Take, for concreteness, k = 1 and consider the sequence {x,} in R*> defined
by

1 1 1

Then {x,} is a Cauchy sequence, since for m < n,

(4.15) xp = (1

n

1
(4.16) 1% = Xnll1 = =

i=m-+1
which is the “tail end” of the convergent series » Z.%, hence given any € > 0

there is an N so that ). | & < € whenever n > m > N. But {x,} is
not convergent: given any fixed y € R*, since there is some fixed k so that
y=(Wy—...,Y0,0,...), we see that for n > k, ||x, —y|}1 > m, thus
X, } cannot have limit y. Since this holds for any y € R*>, {x,,} cannot have

a limit in R* using the 1-norm.

Since ) 22% converges, the same x, can be used to show that R* is
not complete in any of the s-norms for 1 < s < oco. For the co-norm the
inequality (4.16) is replaced by ||xm — Xn||looc = m, so again we get a
Cauchy sequence. Since the same lower estimate for ||x;,, — y||s holds, this

is not a convergent sequence in the co-norm.

4.4.4. Spaces of infinite sequences. We have seen these inequivalent norms
on R*°, and we have seen that they are not complete. One natural way to
try to get complete spaces would be to allow infinite sequences that satisfy
the summability conditions that make the p-norm finite. In other words,
define first a space of arbitrary infinite sequences:

(4.17) Rw:{(x17a:2,...) ) ER}

and then take subspaces (denoted [P) that satisfy summability conditions:

(4.18) P={zeR:> |’ < oo}.
i=1
On [P we can define a norm ||z||, by

1

(4.19) el = (3 laib)?

=1
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We will later use some of these spaces, in particular {2.

4.4.5. Norms on function spaces. We have seen in sections (3.1.3) and (3.2.3)
examples of norms on spaces of continuous functions. Most of what we have
said about norms in finite dimensional spaces or spaces of sequences can
also be said for spaces of functions, replacing sums by integrals. This is true
of Jensen’s inequality, therefore the Holder and Minkowski inequalities hold
for integrals. This means, in particular, that the p-norms can be defined.
We should see more examples later, particularly of applications of the 1,2
and oo-norms on spaces of functions.

5. THE CONTRACTION MAPPING THEOREM

Definition 5.1. Let (X, d) be a metric space. A map f: X — X is called a
contraction if there exists a constant C' < 1 so that d(f(x), f(y)) < C d(z,y)
for all z,y € X.

In other words, a contraction is a Lipschitz map with Lipschitz constant
C <1

Theorem 5.1. Let (X,d) be a complete metric space, and let f: X — X
be a contraction. Then f has a unique fixed point. That is, there is a unique
x € X so that f(x) = z.

Proof. This is Theorem 9.23 of [5]. O

5.1. Newton’s Method. One example of how Theorem 5.1 could be ap-
plied is to Newton’s method for solving an equation f(x) = 0. Of course
Newton’s method is a couple of centuries older than Theorem 5.1 and gives
better results. But it is still interesting to see how it is a fixed point theorem.

Recall that the method finds a solution of f(x) = 0 by starting from some
guess x1 and improving it by drawing the tangent line to f at (x1, f(x1))
and letting xo be the intersection of this tangent line with the z-axis. In
other words, xs is the solution of f(x1) + f/'(z1)(x —x1) =0, or

f(z1)
f(z1)

To9 =21 —

and this is the first step of an iteration

(5.1) f(z:)

Tit1 = Ti — ()
(2

which should converge to a solution.

The first thing that is evident from this formula is that this could only
work for a solution x with f’(z) # 0. The next thing that is evident is that
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the solution is a fixed point, and the iteration method is the same as used
in the proof of Theorem 5.1. This suggests we should define

f(x)
5.2 N(z)=x—
) (@) =a- L2
It is clear that N(x) = z if and only if f(x) = 0, and (5.1) is the iteration
xiy1 = N(z;) used to find the fixed point of a contraction.

To see if N is a contraction, we compute its derivative:

/ f(@)f"(x)
(53) N = LT,
and use the reasoning of Example 3.1 (2): a bound on N’ gives Lipschitz
constant, so we want intervals where |[N'(z)] < C < 1. Assume that f is
twice continuously differentiable, and that xg is a zero of f where f/(zg) # 0.
Then we can choose constants ¢, ca,¢3,¢4 > 0 so that 0 < co < |f/(2)] <
c3 and |f"(z)] < ¢4 for |x — x| < 1. (First choose a positive constant
ca < |f(x0)], since f’ is continuos we can find ¢; so that co < |f/(z)| for
|z — xo| < ¢q. Then |f'| and |f”| are bounded on |z — zg| < ¢1, choose some
upper bounds c3 and ¢4 for these quantities.)

Since |f'(z)| < cs and f(xg) = 0, we get

(5.4) |f(x)] < eslz —xo] on |z —z0] < ¢

This gives the estimates

(5.5) |IN'(z)| < cs|lx — 20| on |2 — 20| < €1, where ¢c5 = %.
=)

Choosing ¢g < ¢1 and < 1/c5, we get that for |z — zo| < ¢
(5.6) |IN'(z)] < C < 1, where C = cscg,

and by (2) of Example 3.1 we get that N is a contraction on |z — x¢| < c.
This means, in particular, that if we start the iteration (5.1) sufficiently
close to g it will converge to xg.

But the situation is really much better. The estimate (5.5) gives a much
stronger estimate

(5.7) [N () = wo| = [N(x) = N(zo)| < esla — w0,

called quadratic convergence. In practice it means that the number of ac-
curate digits doubles in each iteration (rather than increase by one as in a
geometric series).

To see some concrete examples, Figure 5.1 shows the graph of the Newton
map N for f(z) = x? — 2, and the line y = z. The fixed points of N are
the points where the two meet. The derivative at the fixed points (+/2)
are visibly less than one in absolute value, so they are clearly attractors.
In this case the iteration always converges to one of the fixed points in a
predictable way.
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sl

FIGURE 5.1. The Newton Map for 22 — 2
Figure 5.2 shows the Newton map for the cubic polynomial f(z) =z — 2
with three real roots, 0, 1. Again visibly |[N’| < 1 at the fixed points. The
convergence to a fixed point its not predictable. It is worth experimenting
with a computer by taking several initial values, say, in (0.4,0.6), and seeing
which of the three fixed points it converges to.

FIGURE 5.2. The Newton Map for 2® — z
One experiment, starting at 0.4, 0.45, 0.455, 0.5,0.6 produced the fol-
lowing list:
{0.4, -0.2461, 0.0364, -0.0000972 }
{0.45,-0.464, 0.567, -10.156, -6.79, -4.56, -3.09, -2.13, -1.53,-1.19, -1.038}
{0.455, -0.497, 0.951, 1.004, 1.00002, 1., 1.}
{0.5,-1. -1.}
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{0.6, 5.4, 3.64, 2.490, 1.754, 1.3117, 1.0846, 1.00897, 1.00012, 1., 1.}

In other words, starting at 0.4 converges very rapidly to 0, while 0.45
converges more slowly to —1, 0.455 leads more rapidly to 1, 0.5 rapidly to
—1, 0.6 slowly to 1.

This alternation of convergence, and the drastic difference in the speed of
convergence (notice that starting at 0.45 we get to —10 before approaching
—1, while starting at 0.5 we quickly approach —1, and starting at 0.4 we
quickly approach 0) is hard to understand looking just at real numbers.
The pictures become more clear (and more appealing) if we use the complex
plane. This leads to the subject of complex dynamics.

We quickly illustrate with this example: consider the complex polynomial
f(z) = 2% — z and its complex Newton map N(z) = z — f(2)/f'(z) =
223/(32%2 — 1). If we iterate N most points converge to one of the roots
0,+£1. The collection of these points form an open set, called he Fatou set.
Its complement is a closed set, called the Julia set. The way that the Julia
set divides the complex plane into the regions of attraction of the three fixed
points of N (in other words, into the connected components of the Fatou
set) is not an obvious one: The Fatou set has infinitely many connected
components, and the number of iterations needed to get close to the limit
can vary widely within each component.

A picture of what happens is in Figure 5.3. Note that the colors represent
the number of iterations needed, with the color scale explained next to the
picture. There are three large regions, each converging to one of the 3 fixed
points, as expected. From the distance the separating set looks like two
curves, and the picture can be explained by looking at the level sets of | N|
in Figure 5.4.

100

0.0
Out[120)=

FIGURE 5.3. Complex Dynamics of the Newton map of 23 — z
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The three blue regions are the sets where |N’(z)| < 0.5, while the white
regions are sets where |[N’(2)| > 3.5. The intermediae level curves represent
increases of 0.5 units.

04

0.2

0.0
out7l=

-02

-04

FIGURE 5.4. Level sets of |[N'|

A closer look at Figure 5.3 shows that the Julia set is much more compli-
cated than what Figure 5.4 may suggest. In particular the Julia set encloses
other compoinents of the Fatour set, which contain more divisions, and so
on. For example, Figure 5.5 shows what happens in a neighborhood of the
interval [0.4, 0.6].

0.06
0.04

0.02

outf121}=

FIGURE 5.5. Interval [0.4,0.6]

This explains why convergence is so fast starting at 0.4, since this is inside
a red region, of fastest conergence, to the fixed point 0. And visibly there
are 4 connected components that the interval [0.4,0.6] crosses. But we found
5 changes of behavior in this interval. To see why there should be one more
change around 0.455, let’s blow up the interval [0.445,0.470], as shown in
Figure 5.6

We see from the figure that there is another, much smaller picture, but
similar to the larger one, showing another connected component of the Fatou
set. In other words, the Julia set is a fractal.

5.2. Picard’s Method. A more substantial use of the contraction mapping
theorem is Picard’s method for solving the initial value problem of a first
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FIGURE 5.6. Interval [0.445,0.470]

order differential equation. More details can be found in many books on
ODE’s. We roughly follow §31 of [1].

Start from a function f(¢,z) defined on an open subset U C R?. Assume,
for simplicity, that U is an open rectangle, possibly infinite, that is, U =
(a,b) x (¢,d) for —o0o < a < b < oo and —00 < ¢ < d < oco. We think of
the first coordinate ¢ as time and the second coordinate x as position, and
f(t,x) as a “slope” at (t,x), since f(t,z) defines a differential equation

(5.8) % = f(t,=(1))
z(0) = =z

where (0,z9) € U, for a function x(t). We are also given an initial condition
x(0) = some given number 2. (Could have used an initial condition z(tg) =
xo for any fixed value ty). We have to assume that (0,z9) € U, the set where
f is defined. The tangent line to the curve (¢,z(t)) has slope f(¢,z(t)) and
the curve passes through (0, zg).

The purpose of this section is to prove, by what is known as Picard’s
method, the following version of the existence and uniqueness theorem for
first order differential equations:

Theorem 5.2. Suppose that f : U — R is continuous and satisfies a local,
time - independent Lipschitz conditon on U, meaning that on every closed
sub-rectangle R = [a,b] x [¢,d] C U, a,b,c,d € R, there is a constant cg > 0
so that |f(t,x) — f(t,y)| < cr |x —y| for all z,y,t so that (t,z) and (t,y)
are in U.

Then there exist numbers a,b > 0 so that the rectangle [—a, a] X [xg — b, xo +
b] C U and so that (5.8) has a unique solution with graph contained in this
rectangle, that is, x(t) is defined for |t| < a and satisfies |z(t) — xo| < b for
|t| < a. Moreover, x(t) is a continuously differentiable function of t.

Remark 5.1. One sufficient condition on f : U — R to satisfy the assump-
tions of the theorem is that it be continuously differentiable. Then, on each
closed rectangle R C U there is a bound cg for df/0z, in other words,
|0f/0x(t,s)| < cgr for all (z,t) € R. We chose to emphasize the Lipschitz
condiition in x of f(¢,z) because it is, in some sense, the optimal condition
for both existence and uniqueness of solutions. Example 5.3 below shows
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that this condition is not always needed for existence, but it is essential for
UNIqUENESS

Remark 5.2. Note that the theorem only gives local existence of solutions of
(5.8), meaning that, even if U = R? and the equation (5.8) is defined for all
t, the solution need only exist for |t| < a, This is not a flaw in the statement,
it is the way it really is, as example 5.2 shows.

Ezample 5.1. Let f(t,x) = z, then the solution of (5.8) is z(t) = zge'.

Ezample 5.2. Let f(t,z) = 2%, and take zg = 1. Then the solution of
(5.8) is 2(t) = . Observe that, even though f(t,z) is defined for all
(t,z), the solution x(t) is defined only on (—oo,1). This shows that the
existence theorem can only be local, justifying Remark 5.2. In this example
the number a in the statement of the existence theorem cannot be larger

than one. In other words, the solution “blows up in finite time”.

Ezample 5.3. Let f(t,z) = 2'/2. Then f does not satisfy a Lipschitz condi-
tion in x at = 0, see Example 3.2. The initial value problem dz/dt = z1/2,
2(0) = 0 has solution z(t) = t?/4 (obtained by the usual method of sep-
aration of variables), but also has the solution z(t) = 0, both infinitely
differentiable. Moreover, it has two additional solutions, both continuously
differentiable but not twice differentiable, by patching together one of the
above solutions for ¢t < 0 with the other for ¢t > 0,

In the same way, dz/dt = x2/3, 2(0) = 0 has four solutions: z(t) = t3/27,
x(t) = 0, both infinitely differentiable, and two twice continuously differ-
entiable (but not three times differentiable) solutions obtained by patching
these two as above. And so on with f(t,z) = z("=D/",

The first step of Picard’s method is to convert (5.8) to an integral equa-
tion: The fundamental theorem of calculus gives

x(t)—a:(O)Z/Ot drz/otf(m(f))df

So x(t) satisfies (5.8) if and only if it satisfies

dﬁ
dr

(5.9) (1) = a0 + /0 " a(r)dr.

which is a fixed-point problem for the function x(t): if we define
(5.10) (Px)(t) = xo + /Ot f(r,z(r))dr.

then x = x(t) satisfies (5.8) if and only if

(5.11) Pz = z.

Exercise 1. Apply the iteration procedure of the proof of Theorem 5.1 to
f(t,z) = x and xg = 1 (see Example 5.1): z;41 = P(z;) with x; = 1. Check
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that you get the partial sums of the power series for e/. Then take z; = 100
and see what you get from the iteration.

The challenge in solving (5.11) is to find the right metric space (X, d) of
functions so that P : X — X is a contraction.

To do this, calculations are easier if we let

(5.12) b(t) = a(t) — 2
so that ¢(0) = 0 and (5.11) becomes
(5.13) Qv =, where Qv = P(zo + 1) — o,
Explicitly

t
(5.14) Qu(t) = [ (ran + vir)r

To solve (5.14), introduce constants ¢, ... c4 as follows:
(1) Choose ¢ and ¢z so that the rectangle
(5.15) R={(t,z): |t| < c1,|x —x0| <2} CU.

(2) Choose c3 so that |f(t,z)| < cg for all (¢,x) € R,
(3) Choose ¢4 to be the Lipschitz constant for R: |f(t,x) — f(t,y)| <
calz —y| for all t,z,y with (¢, z), (t,y) € R.

If |1(t)| < eg for [t] < ¢; the following integral is defined and satisfies the
estimate

1 t
(5.16) |Qu(t)] S/O | (7,20 + (7))|dT S/O c3dr = clt].

If |i1(t)], |102(t)| < co for || < c1, then the following integral is defined and
satisfies the estimate

[t]
(5.17)|Q¥n () — Qua(t)] < /0 |f(m,20 +1(7)) — f(7, 00 + 9a(7))|dT <

[¢]
/O cala(r) = wa(r)ldr < e [t max(jya(t) — Y2 (t)])-

With these estimates we will get that @ is a contraction on a suitable space
of functions. Choose a > 0 so that

(5.18) a < min(cy, ca/cs, 1/ca).

and define a space

(5.19) X ={yY € C([~a,a]) : |¥(t)| < cs|t] for all t € [—a,a]},

with the ds, metric.
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Theorem 5.3. If ¢ € X, then Qv is defined and QY € X, so Q : X — X.
The space X is closed in (C([—a,al),dx), so it is complete. There is a
constant C' < 1 such that deo(Q)1, QU2) < C doo(11,12) for all 1y, € X.
Therefore there exists a unique Y € X so that Qv = .

Proof. If ¢ € X, then (5.18) gives

(1) |9(t)| < cza < c3(eaf/cs) = co, and a < ¢, (t,x0 + ¥(t)) € R (the
rectangle (5.15)) for all ¢t € [—a, a], so Qv is defined.
(2) (5.16) gives that QY € X, s0 Q : X — X.

(3) (5.17) gives that dos(Qu1, QY2) < Cdog(1h1,12) for all ¥, 1 € X,
where C' = a ¢4 < 1 by the choice (5.18) of a.

Therefore ) : X — X and is a contraction.

Finally, to see that X is closed in (C([—a, a]), d), observe that if ¢, € X
and 1, — ¢ uniformly on [—a, al, then ¢ € X (Proof: if ¢, (¢)| < c3]t| holds
for all n and ¢ and, given € > 0 there is N(e) so that |¢,(t) — ¢(t)| < € for
all n > N and all ¢, then [¢(t)| < |[¢(t) — ¥n(t)] + |n(t)| < €+ c3]t| holds
for all ¢t and all € > 0, so [¢(t)| < es]t|.)

Since a closed subset of a complete metric space is complete, we can
apply the contraction mapping theorem to conclude that (5.13) has a unique
solution in X. O

Proof of Theorem 5.2. We have seen that the initial value problem (5.8)
is equivalent to the integral equation (5.9), which in turn is equivalent to
(5.13). By Theorem 5.3 (5.13) has a unique solution in the space X, there-
fore (5.9) has a unique solution in the space zy + X, therefore a unique
continuous solution. Since z(7) is continuous, the right hand side of (5.9)
is visibly continuously differentiable, so we conclude that x(¢) must actually
be continuously differentiable and therefore the unique solution of (5.8). O

6. THE INVERSE FUNCTION THEOREM

Let U C R* be an open set and let f : U — R™ be differentiable. Recall
that this means that for every o € U there exists a linear transformation
dyf : RF — R", called the differential of f at z, so that for all h with
r+heU,

) — ez, n)lI
(6.1) f(x+h)— f(x) = (dsf)(h) + €(z, h) where T —0ash—0.
The matrix of the linear transformation d,f in the standard bases for R*
and R" is the Jacobian matriz of f

1 1
(6.2) DT
n n

1 T
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where f(z) = (f'(w1..oan), [, an), o (e w) and fi =

Let L(R*,R™) denote the vector space of linear transformations from R¥
to R™, a kn-dimensional vector space isomorphic to the space of k by n
matrices, in turn isomorphic to R*¥”. We say that f is continuously differen-
tiable in U, or of class C' in U, if f is differentiable at every x € U and the
map df : U — L(R¥,R") is continuous. This is equivalent to saying that all
partial derivatives 9 f'/dx; exist and are continuous in U.

The purpose of this section is to prove the following theorem, known as
the Inverse Function Theorem:

Theorem 6.1. Let U C R* be an open set, let f: U — R* be of class C*
(continuously differentiable). Let xo € U and suppose that dg,f : RF — RF
is invertible. Then there exist neighborhoods N(xzo) C U of o and N(yo)
of yo = f(xo) so that f(N(xzg)) = N(yo) and the restriction of f to N(xg),
denoted f|n(zy) * N(zo) — N(yo) is bijective, so it has an inverse. This
inverse map (f|n(zg)) " N(yo) = N(20) is also of class CT.

In this statement, by a neighbothood of a point we mean an open set
containing the point (not necessarily a ball). The proof will take the rest of
the section. It roughly follows the proof of the inverse function theorem for
Banach spaces given in §5 of [2].

6.1. The one-dimensional case. This theorem is quite simple if £k = 1.
If f'(x0) # 0, say f'(zg) > 0, then f’(z) > 0 in some open interval I
containing xg, thus f is strictly increasing on I, in particular injective on
I. Choose a,b so that [a,b] C I and zg € (a,b). If @ = f(a) and S = f(b),
then, given any y € (a, ), by the intermediate value theorem there exists
an x € (a,b) so that f(x) = y, and we have already seen that z is unique.
So f~!': (a,B) — (a,b) is defined (namely, f~'(y) = z). Moreover, since
f maps open intervals onto open intertvals, it is an open map, so f! is
continuous.

To see that f~! is of class C', use the mean value theorem

(6.3) f(xe) — f(z1) = f(&) (w2 — x1) for some & € (x1,x2).
Letting y; = f(x;), this is equivalent to

_1 o _
F ) — ) = f,(g)(yz Y1),

thus, letting yo — y1 we get that f~! IS differentiable at y; and (f~1) (y1) =
1/f’(:n1) = 1/f(f"'(y1)). Since f~! and f’ are continuous, so is (f~!),
and the proof is complete.

Note the two ingredients in this proof:
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e The Mean Value Theorem (6.3) used to prove injectivity (this is how
you prove positive derivative implies strictly increasing) and to prove
that the inverse, once known to exist, was of class C*.

e The Intermediate Value Theorem used to prove that the image of an
interval is a whole interval.

We will need to find similar ingredients in higher dimensions. These wil be:

e Lemma 6.2 below to replace the Mean Value Theorem.
e The contraction mapping theorem in §6.5 to replace the Intermediate
Value Theorem.

6.2. Linear Transformations. We will need some facts about linear trans-
formations A € L(R¥, R"). Recall first of all the definition of the norm:

(6.4)  [[All = max{||Az|| : |[x]| = 1} = sup{|[Az]|/[|z]| : = # 0}

which, by the first definition, is clearly well-defined, and by the equivalent
second characterization, gives us the basic estimate

(6.5) || Az]| < ||A]|]|z]| for all = € RF.

If we compose with a linear transformation B € L(R™, R¥), from ||ABz|| <
Al Bz|| < [|AJl[[Bl[[|z]| we get the inequality

(6.6) 1ABI| < [[A[ll| Bl

In particular, if A € L(R¥,R¥) is invertible, from this inequality and ||I|| =
1, we get 1 < [JA[[[JA™]| or [[A7H] > |JA]I7.
Furthermore, if we use ||z|| = ||[A~ Az|| < ||A7Y| ||Az|| we get ||Az|| >

(J]JA=Y|=Y)||z||, which means that an invertible linear transformation is bi-
Lipschitz:

(6.7) (ATl < [[Az]] < [|All]]2]] for all = € R,

As a side remark, let’s give a formula for ||A|[:

6.8 All = v/ Amax where Amax = largest eigenvalue of A*A.
6.8) | gest eig

Here A' denotes the transpose matrix of A. The matrix A'A is then a
symmetric, positive semi-definite matrix, hence it is diagonalizable and its
eigenvalues are non-negative. Thus Ap.x makes sense, and is non-negative,
so we can take its square root.

To prove the formula (6.8), write = as a column vector, then ||z||? = z'z,

||[Az||? = (Ax)!(Az) = 2t At Az = 2'(A*A)z. Changing to an orthonormal
basis of eigenvectors for A’A with eigenvalues A\ > Xy > --- > A\, > 0, and
letting 1, ...y be the components of z in this basis, we get

| Az|[* = My + Aoys + .. YR,
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which clearly has maximum value A; on the unit sphere 3% + --- + y% =1,
attained at y; = 1, all other y; = 0. Thus ||Az|| has maximum value

\/)Tl =V >\max-

Finally we will need one other fact about linear transformations:

Lemma 6.1. Let G = {A € L(RF,R¥) : A is invertible} C L(R*,R¥). Then
G is an open set and the map G — G that takes A to A~ is continuous.

Proof. A € G if and only if det(A) # 0, and det : L(R* R¥) — R is continu-
ous, so det ™1 (R\ {0}) is open. If A € G, there is an explicit formula for A~?
as the transpose of the matrix of cofactors divided by det(A), which shows
that A~1 is continuous. O

6.3. A Characterization of C'-Maps. Let U C R* be an open, convex
set, and let f: U — R™ be a function.

Lemma 6.2. Let f : U — R" be as above. Then f is of class C' if and
only if there exists a continuous function A: U x U — L(R* R™) such that
for all 1,29 € U,

(6.9) f(x2) — f(z1) = A(21, 22) (202 — 21).

Moreover, if A: U x U — L(Rk,R") with the stated properties exists, then
we must have that A(z,x) = d, f holds for all x € U.

Proof. Suppose f is C'!. The method used in Example (3) of subsection 3.4
allows us to find A. Let x1,29 € U, and let v, 4,(t) = (1 — t)z1 + tag be
the straight line segment from z1 to xa, which lies in U by convexity. This
is a continuous map U x U x [0,1] — U. Then the fundamental theorem of
calculus and the chain rule give

1 1
Fla) = fen) = [ Gl Ot = [, 05— ar)at.

Thus, if we let

1
Az, 9) :/o d%Lm(t)fdta

then A(z1, z2) satisfies (6.9). Observe that this formula gives A(z, x) = dx f,
since 7z, is a constant path.

Converselry, suppose that A : U x U — L(R* R") satisfying (6.9) exists.
Then
flx+h)— f(x)=A(z,z+ h)h = A(z,z)h + (A(x + h,z) — A(x,x))h
that is,
flx+h) = f(x) = Az, 2)h + €(x, h)
where €(z,h) = (A(z + h,x) — A(x,z))h. Then ||e(x,h)||/||h]] < (||A(z +
h,x) — A(x,z)|| ||k|])/]|k]] = ||A(z + h,x) — A(z, x)|| — 0 by the continuity
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of A. Thus A(x,x) satisfies the defining equation (6.1) of d, f. Therefore f
is differentiable, and d, f = A(x,z) is continuous, so f is C'.

O

Remark 6.1. Note that the convexity of U was not used at all in proving
that the existence of A implies that f is of class C''. It was only used in the
opposite direction, mostly for convenience. So this hypothesis can be safely
ignored.

6.4. Proof of the Inverse Function Theorem. Let f : U — R* be as
in the statement of Theorem 6.1. By Lemma 6.2, there exists A: U x U —
L(R¥ R¥) satisfying (6.9). Since d,,f = A(zq, o) is invertible, by Lemma
6.1 there exists a neighborhood N of (zg,z¢) in U x U so that A(x1,x2) is
invertible for all (z1,72) € N. Moreover, again by Lemma 6.1, A~! : N —
L(R¥ RF) is continuous.

Since ||A~!]| is continuous on N, for any € > 0 so that B(zg, €) x B(wg, €) C
N, there is a constant C such that |[A™(z1,22)]| < C for all (z1,22) €
B(zo, €) x B(wg, €). Multiplying both sides of (6.9) by A~!(z1,z2) we get

(6.10) A7 @y, m)(f(w2) — f(21)) = 22 — 21

therefore

(6.11) |lz2 —an|| < A @y, 22)|| 1 f(x2) = flan)l| < Ol f(x2) = fla)l]-

In other words,
(6.12) |f(z2) — f(z1)|| > C7Y|zo — 21]| for all 21,29 € B(xo,€).

This immediately implies that f is injective on B(xg, €), since f(x1) = f(x2)
gives ||zg — x1|| = 0. Moreover, rewriting (6.12) for y1,y2 € f(B(xo,€)) as

(6.13) ly2 — wll < CTHIFHw2) — )]

we see that f=1: f(B(xg,€)) — B(wo, €) is Lipschitz with Lipschitz constant
C, in particular it is continuous.

Suppose that f(B(zg,€)) contains a neighborhood V' of yo. Then f~! is of
class C! on V, because equation (6.10) reads

(6.14) AT ) T ) (2 —y1) = F 7 (w2) = f 7 ()

Since we know that f~! is continuous, this is equation (6.9) for f~!, thus,
by Lemma 6.2, f~! is of class C''. This finishes the first part of the outline
in §6.1. We have seen that the first ingredient, the mean value theorem, is
replaced by Lemma 6.2. It only remains to find the second ingredient:

6.5. Proof that f(B(zo,¢)) Contains a Neighborhood of yy. By trans-
lating in the domain and range we may assume that xg = 0 and yo = f(xg) =
0, (Replace f by f(z+x0) —yo.) Then, by composing with (dof)~!, we may
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assume that dof = I. (Replace f by (dof)~!o f.) In other words, we may
suppose that

(6.15)  f(x) = = + ¢(z) where ¢ : B(0,€) — RF, ¢(0) =0, dop = 0.

To find a function x = g(y) that solves f(z) = y for z, given the way we
have re-written f, it is is reasonable to look for g of the form

(6.16) 9(y) =y + ¢¥(y) where ¢(0) =0
Then, setting © =y + ¢(y) in (6.15), we see that 1 satisfies
W +9@)+oy+9y) =y

which is the same as

(6.17) — oy + () = Y(y).

This converts our problem into a fixed-point problem, as follows. Define, for
suitably small § to be determined shortly, a map

(6.18) F : B(0,6) x B(0,5) = R¥ by F(y,2) = —¢(y + 2)
and, for each y, let
(6.19) Fy(z) = F(y,2z) = —9(y + 2),

then (6.17) says that v (y) is a fixed point of F),.

For (6.18) to make sense we need, first of all, § < €/2 so that y+2z € B(0,¢€)
when y, z € B(0,9). Moreover we need:

e For all y,z € B(0,0), ¢(y+2) € B(0,6) so that, for each y € B(0, ),
F, : B(0,6) — B(0,0).

e I, : B(0,6) — B(0,0) is a contraction: there exists a constant C' > 0
so that for all z1, 20 € B(0,0), ||Fy(z1)— Fy(22)|| = ||¢(y+21) —o(y+

2)|| < Cllz1 — 2|

These statements follow easily from the properties of ¢. First, from ¢(0) = 0,
do¢ = 0 and the definition of differentiability, (6.1 ) becomes

(6.20) lp(2)]| < e(x)(x) where [[e(z)[| = 0 as |[z]] = 0,
and, since ¢ is of class C! and do¢ = 0, there exists 7 > 0 so that ||d,¢|| <
1/2if ||z]| < 7.

Choose § so that ||e(z)|| < 1/2 in (6.20), thus ||¢(y+2)|| < 3|y +2[| <6,
and also so that § < n/2. Then, for ||y, ||z1]],]|z2|] < J, and 0 < ¢t < 1,
IO =111 =8)(y + z1) + t(y + 22)|] = [[(1 = )21 + t2o]| <20 <7 and

1 1
(6.21) [[p(y + 21) — ¢y + 22)[| = H(/O d’y(t)QSdt)(Zl —2)|| < QIIZPZQH,

Thus we get that for each y € B(0,8) the map F, : B(0,8) — B(0,d) defined
in (6.19) is a contraction, so it has a unique fixed point 1(y). Looking at
(6.16), we have found our inverse map g and proved that f(B(0,¢)) contains
B(0,6). This completes the poof of the Inverse Function Theorem.
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7. INNER PRODUCT SPACES

In §3.1, 3.2 we saw examples of normed vector spaces. The ones with the
subscript 2 have a more special structure, called an inner product space.

Definition 7.1. (1) A real inner product space is a real vector space V'
together with a function V' x V. — R, called the inner product. Its
value on z,y is denoted < x,y > and it satisfies:

(a) It is symmetric: < x,y >=<y,z > forall z,y € V.
(b) It is bilinear, meaning that it is linear in each variable: for all
z,y,z € V and all a,b € R, we have

<ar+by,z>=a<zx,z2>+b<y,z>,

and by symmetry linear in the second variable.
(c) Tt is positive definite: for all x € V' we have < z,x >> 0, and
<z,x >=0onlyif z =0.

(2) A complez inner product space is a complex vector space V' together
with a function V x V — C, called the inner product. Its value on
xz,y € V is denoted by < x,y > and it satisfies:

(a) Forall z,y € V, < y,x >= < x,y >, where the bar denotes the
complex conjugate.

(b) It is sesquilinear (= one and a half linear) meaning that it is
complex linear in the first variable: for all z,y,z € V and all
a,b € C, we have

<ar+by,z>=a<zx,z2>+b<y,z>,
and by (a) it is conjugate linear in the second variable:

<zjar+by>=a<z,x>+b<zy>.

7.1. Examples of Real Inner Product spaces.

7.1.1. FEuclidean Space. Just as in §3.1 let V' = R" with < x,y > the usual
dot-product:

<T,Yy>=T Yy =2T1Yy1 +T2Y2 + -+ Tnln-
The properties of an inner product are easily verified. In particular,
<z, x>=xt+---+22>0, and =0 if and only if 2 = 0.
7.1.2. L2 - Space of Integrable Functions. Just as in §3.2, let [a,b] C R be an

interval, and let R|a,b] denote the vector space of real, Riemann-integrable
functions on [a,b]. If f,g € R[a,b], so is fg, and we can define < f,g > by

b
< fig>= / f(@)g(x)de.
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This is called the L? - inner product. The properties of an inner product
are easily verified. In paraticular

b
< f,f>= / f(z)%dz > 0 and = 0 if and only if f(x) = 0 for all z.

7.2. Examples of Complex Inner Product Spaces.

7.2.1. Complex Fuclidean Space. Let C" denote the space of all n-tuples
z = (z1,...,2p) of complex numbers, with pointwise addition, component-
wise scalar multiplication. Define the inner product < z,w > by

< zZ,W>=z1W1 + - + 2pWy.

The properties of a complex inner product are easily verified. For example,

<W,z2 >=W121 + ... Wp2p = 21W1 + -+ 2Wy, = < 2, W >

and
<zE>=2Z 4+ wmZn=|alP + -+ |zl >0,
and = 0 if and only if z = 0. Observe that for this last property to be true

we need the complex conjugates in one of the variables, hence < z,w > is
complex “sesquilinear” rather than complex bilinear.

7.2.2. L? - Space of Complex Integrable Functions. In analogy with (7.1.2),
let [a,b] C R and let Rc[a,b] denote the space of Riemann-integrable com-
plex functions on [a, b], meaning that the real and imaginary parts of f are
both Riemann integrable. If f € R¢|a,b], so is f, and if f,g € Rc[a,b], so
is fg. Therefore it makes sense to define < f,g > by

b
< fig>= / f(@)g@)dz

This is also called the L? - inner product. The properties of an inner product
are also easily checked. For instance,

<g,f>—/ dx—/f x)dr =< f,g >,
and

< f.f >= /f dx—/]f )|?dx >0,

and = 0 if and only if f(z) = 0 for all . Thus it is positive definite, thanks
to the introduction of the complex cojugate in one of the variables. Again
we see that we have to give up complex bilinearity if we want the inner
product to be positive definite.
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7.2.3. L%-Space of Periodic Functions. Let Rc(S') denote the space of Riemann-
integrable functions f : R — R which are periodic of period 27: f(z+27) =
f(x) for all z € R. Here S' denotes the unit circle in C. Define an inner
product < f,g > by

(7.1) <fo>=5- | f(@)g@)de.

This is the L? - inner product used in Chapter 8 of [5] to study Fourier
series. In particular, the functions {e""*} form an orthonormal set meaning

that
< eimx einx >= i T 1 ifm= n,
’ 21 )

elm.l’e—lnl’dx — )
0 otherwise.

and the Fourier Coefficients of f are the numbers ¢, =< f,e!"* >.

7.3. The Cauchy-Schwarz Inequality. The Cauchy-Schwarz inequality
is a formal consequence of the properties of an inner product. We have
seen this before for a real inner product space (V, <, >). Namely, for any
x,y € V, since for all ¢ we have that < x + ty, z + ty >> 0, expanding the
left-hand side we get < z,z > +2t < z,y > +t?> < y,y >> 0. Thus this
quadratic polynomial in ¢ must have discriminant < 0, in oher words

2<zy>)?—4<zz><yy><0,
which is the same as the Cauchy-Schwarz inequality
<a:,y>2 < <z,x><Y,y>.

From this we get that the function ||z|| = /< =,z > is a norm, namely it
satisfies the triangle inequality ||z +y|| < ||z|| + ||y||, since, squaring, we get

|z +yl|?=<z4yzty>=<z,2>+2<z,y>+ <Y,y >,
which, by the Cauchy-Schwarz inequality and the definition of the norm is
< el + 21l l] Iyl + llyl* = (=] +1lyll)?,

which, taking square roots, is the triangle inequality.

Similarly, for a complex inner product space, using the fact that for all
z,y € V and for all ¢ € R, the polynomial < = + ty,z +ty > > 0, or
<zx > Ht(< Ty >+ < yx>)+t2<yy>> 0, or < x>
+2tR(< z,y >) + 12 < y,y > > 0. Taking the discriminant, we obtain the
following form of the Cauchy-Schwarz inequality:

R(<z,y>))? < <z2><yy>

which is exactly what is needed to derive the triangle inequality for the norm
||z|| = /< =,z > on the complex inner product space (V, <, >).
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We leave it as an exercise to use the stronger fact that < = + ty,x +
ty >> 0 for all complex t to derive the stronger form of the Cauchy-Schwarz
inequality for a complex inner product space:

|<z,y>)? < <z,x><yy>.

As a hint, write down < z +ty,x +ty >=< x,2 > +t < y,x > +t < 2,9 >
+[t|? < y,y >. This is of the form atf + bt + bt + ¢ where a, c € R. Find the
value of ¢ that minimizes this expression (answer:t = —b/a), put this value
of t back into the expresiion and use the fact that it gives a number > 0.
The resulting inequality is Cauchy-Schwarz.

A few remarks are in order.

Remark 7.1. Every inner product space (V, <, >), real or complex, becomes
a metric space in the standard and familiar way by defining d(z,y) = ||z —y]|.
In the notation of §3.1 and 3.2, what we now call ||z is ||z||2, the L?-norm.
The resulting distance is complete for the examples of §3.1. It is also com-
plete for the complex Euclidean space C™ of (7.2.1). But it is not com-
plete for the infinite-dimensional spaces of functions in (7.1.2),(7.2.2) and
(7.2.3). The reason is as in the proof of Theorem 3.3: the space of Riemann-
integrable functions is too small, we need to allow unbounded functions that
are L2-limits of Riemann-integrable functions. We will see that the right
space will be the space L?[a, b] of Lebesgue-measurable functions with finite
L2-norm.

Remark 7.2. A related remark is the comparison of norms. For the finite
dimensional examples there are comparisons in all directions, as in in the
inequalities (3.2). But for the infinite-dimensional spaces of functions there
are only the inequalities (3.7). For instance, Theorem 3.3 shows that there
can be no inequality of the form ||f]|s < C||f]|1 becuase || f||oo is complete,
[|f|l1 is not complete, and there is the third inequality (3.7) that bounds
[1fll1 < (b—a)||f|loo- So, if we had an inequality || f||cc < C||f||1, & Cauchy
seqgence in || ||1 would be Cauchy in || ||oo, which is complete, so it would
converge in || ||oo, hence in || |1 by the last inequality of (3.7).

Remark 7.3. Along the same lines, we see that there can be no inequality of
the form || f||2 < C||f]|1 because the function f(z) = z~/2 on (0,1] used in
the proof of Theorem 3.3 has finite L'-norm but infinite L?-norm. But, if
we restrict ourselves to Riemann integrable funcitons, which, by definition,
are bounded, then there is the inequality ||f|l2 < (||f]leo][f]|1)*/2.

7.4. Orthonormal Sets and Fourier Series. We have already introduced
in (7.2.3) the L? inner product on the space of periodic functions, which is
used in [5] to talk about convergence of Fourier series. In fact, Parseval’s
Theorem, 8.16 of [5], says that the Fourier series of f converges in L?-norm
to f, in the sense that ||f — sy (f)|| — 0.

The procedure for finding Fourier coefficients and series is a general pro-
cedure for complex (or real) inner product spaces. If (V, <, >) is an inner



5210 NOTES 39

product space, a set {e1, ea,. ..}, finite or infinite, is called an orthonotmal
set if

1 ifm=n
7.2 < em,en >= ’
(7.2) o {0 otherwise.

If £ € V is a linear combination z = E%Zlcmem, then each coefficient ¢,
is easily found by < x,e, >=< Y,cmemen >= YmCm < em, €y >= ¢, by
(7.2). This is exactly how the Fourier coefficients of f are found by using
the inner product (7.1) and the orthonormal set {e" : n € Z}.

The following theorem contains theorems 8.11 and 8.12 of [5]

Theorem 7.1. Let (V,< , >) be a (real or complex) inner product space,
let S = {en} be an orthonormal set, and, for each N, let Eny C V be the

linear subspace of V' spanned by eq,...,en. Let x € V and, for each n so
that e, € S, define ¢, =< x,e, >. Then
(7.3) SN = Z,]:[:lcnen

is the point in En closest to x. In other words, ||z — sn|| < ||z —yl| for all
y € En, with equality if and only if y = sy. Moreover, ||sy||? < ||x||*.

Proof. Let z = © — sy. Observe that z is perpendicular to E, because,
form=1,...,N, < z,e, >=< & — SN,€, >=< x,€, > — < SN, €y >=
¢n—¢p = 0. Therefore, if y € En, then x —y = (x —sy)+ (sy —y) = z+w,
where w = sy — y € En. By the Pythagorean theorem,

(7.4) [l = yl* = (121 + [[wll* = ]z — sn[[* + [lsw = ]I
The formal calculation is: ||z — y||? =< z + w,z + w > =< 2,2 > +

2R< z,w >+ < w,w > =< z,z > + < w,w > because w € Ey and z has
zero inner product with any vector in Ey.

Thus (7.4) gives ||z — y|| > ||z — sn||, with equality if and only if ||sy —
y|| = 0, that is, y = sy. Finally, since z = z + sy and < z,sy >= 0
because sy € Ey, the same formal Pythagorean argument gives ||z||?> =
|12]|% + ||sn|[* > ||sn|[?, thus the last assertion.

To interpret Parseval’s theorem, 8.16 of [5] in the same spirit, let’s use
the following terminology:

Definition 7.2. Let V and W be inner product spaces (real or complex) and
let A;V — W be a linear transformation. A is called an isometry if for all
z,y € V we have < Az, Ay >w=< z,y >v.

Ezample 7.1. Let V be the space of Rc(S!) of periodic functions as in
(7.2.3) with the L?-inner product, and let W be the space of all doubly
infinite sequences {c,, }*%,, with the property that ¥°°_|e,,|? < oo, and with
inner product

(7.5) <Aem} {m} >= EZcemTm,
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which converges by the Cauchy-Schwarz inequality. Then Parseval’s Theo-
rem says:

(1) If f € V and {c;} is the sequence of Fourier coefficients of f, in
other words,

f(z) ~ Xe,et™®,
then the sequence {¢,} € W, in other words,
¥ lenl? < 0o

(2) The linear transformation that assigns to f its sequence of Fourier
coefficients is an isometry from V to W. In particular

1 s
5% Jeal? = - / f(2)Pda

2 J_,
(3) The Fourier series of f converges to f in L%

Jim (1f = s (Dl = 0.

Observe that we are not saying that the isometry is surjective. we will
need to enlarge the class of functions in V' beyond the Riemann integrable
ones to be able to get surjectivity.

8. THE LP-SPACES

Fix an interval [a,b] C R and a real number p > 1. A measurable function

fon Eis of class LP if the Lebesgue integral fj |fIP < co. Call two functions
f,g of class LP equivalent, written f ~ g, if f = g a.e., that is, if m({z :
f(z) # g(x)}) = 0. The space LP[a, b] is the set of these equivalence classes:

(8.1) LPla,b] = {f : [a,b] — R measurable : /b |fIP < o0}/ ~

Remark 8.1. In practice we usually think of the elements of LP[a,b] as func-
tions, we usually have a specific representative in mind. For example, if f is a
continuous function, we take this function as the representative of its equiv-
alence class. In many discussions we define various operations on LP[a, b] by
taking representatives, we do so without further comments provided that it
is obvious that the definition is independent of the representatrive. This will
always be the case when defining a quantity that depends just on an inte-
gral, since the value of an integral depends just on the value of the function
a. e.. The next definition illustrates this point;

Define the LP norm on LP[a,b] by

b
(3.2) 111y = ( / JIORE
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It is clear that this satisfies two of the three defining properties of a norm:
First, for any real number a, ||laf||, = |a| || f||p- Second, ||f||, > 0, and if

[|fll, =0, then ff |f|P =0, hence f = 0 a.e. (see [4], Exercise 4.3), therefore
f represents 0 in LP[a,b]. It is for this reason that we define the elements
of LP[a,b] to be equivalence classes of functions, rather than the functions
themselves. Had we used the functions, we would get that any function
f which vanishes a.e. (for example, the characteristic function of a set of
measure 0) to have zero norm.

More difficult is to verify the third and most important property of a
norm: the triangle inequality ||f + gll, < [|fl[p + [|gl[p- This is needed to
verity that LP[a, b] is closed under addition, hence is a vector space, and that
it is a normed vector space. This is the content of the Minkowski inequality,
see §6.2 of [4] or Exercise 6.10 of [5] for a proof.

We will only look at the cases p = 1,2. For these cases we have verified
the triangle inequality in §3.2.3. There we used the Riemann integral in
defining the norms and checking the triangle inequality, but the proofs are
identical. In §3.2.3 we looked at the norms only on the spaces Cfa,b] of
continuous functions, and proved that these spaces are not complete. Now
we have the following theorems:

Theorem 8.1. The spaces L'[a,b], L*[a,b] are complete.

Proof. See §6.3 of [4], or Theorem 11.42 of [5]. O

Remark 8.2. The space L'[a,b] is an example of a Banach space: a com-
plete normed space. The space L?[a,b] is an example of a Hilbert space: a
complete inner product space. Every Hilbert space is a Banach space, but
not conversely. The inner product on L?[a, b] is

b
(8.3) < fg>= / f(@)g(@)dz

which makes sense because, if f,g € L?[a,b], then the Cauchy-Schwarz in-
equality gives that fg is Lebesgue integrable:

|/abfg | < (/abf2)1/2(/ab92)1/2

and the L*norm is ||f|ls =< f, f >/2. In both cases, completeness is in
the distance given by the norm: If {f,} is a Cauchy sequence in LP, p = 1
or 2, meaning that for all € > 0 there is an N € N so that m,n > N =
[|fm — fullp <€, there exists f € LP[a,b] so that ||f, — f||, — 0.

We also have the following theorem:

Theorem 8.2. The continuous functions Cla,b] are dense in LP[a,b], p =
1,2, In other words, given any f € LP[a,b] and € > 0 there exists h € Cla, b]
so that || f — hl||, <.
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Proof. For p = 2 see the proof of Theorem 11.38 of [5]. For p = 1 the
argument is similar. O

Let us recall that any metric space (X, dx) has a completion. This means
that there is a complete metric space (Y,dy) and an isometry ® : X — Y
so that ®(X) is dense in Y. Recall that ® being an isometry means that
dy (®(x), ®(y)) = dx(z,y) for all z,y € X. See, for example, exercise 7.24 of
[5] for a construction of Y from X. It is easy to see that any two completions
of X are isometric to each other.

Using this language, if we go back to §3.2.3, the last two theorems can be
phrased as follows: For p = 1,2, LP[a,b] is the completion of (C|a,b],d,),
where dp,(f, 9) = |[f — gllp-

8.1. Fourier Series of L?-functions. We can now complete the discussion
of Fourier series started in §7.4. There we developed general properties of
orthonormal sets in inner product spaces and representations of elements of
such a space in terms of linear combinations of elements of an orthonormal
set. In Example 7.1 we stated Parseval’s theorem for the class of Riemann
integrable functions on [—, 7]. The optimal way to state the theorem is for
L?[—n,7]. This means, replace the space V of Example 7.1 by L?[—, 7]
with the same inner product of Equation (7.1). Then any f € L?[—x, 7]
has Fourier coefficients {c,} belonging to the space W of doubly infinite
sequences with the inner product of Equation (7.5) (usually denoted I2(Z)).
Parseval’s theorem asserts:

(1) [If = sn(f)l]2 — 0 as N — oo, where sy (f) = SV cpe™®.
(2) The linear transformation

L7, 7] = 1*(Z)

that assigns to f the sequence {c,}necz of its Fourier coefficients is
an isometric bijection.

The proof of the first statement is as in the proof of Theorem 8.16 of
[5], where the first step in that proof, L?-density of continuous functions in
the Riemann integrable ones, is replaced by the stronger density statement
of Theorem 8.2, otherwise the proof is the same. The second statement
has been proved before except for the proof of surjectivity. But this is an
immediate consequence of the completeness of L*[—n, 7] (Theorem 8.1): If
{en}nez € P(Z), then || 3 c,e™@||3 < 3% |en|* < oo, which implies
that > c,e™® converges in L?[—, ], and the Fourier series of this limit
is > ¢,e™®. See the Theorems 11.43 and 11.45 of [5] for more details.
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