1. Let $\{x_n\}$ be a Cauchy sequence of rational numbers, and let $[\{x_n\}] \in \mathbb{R}$ be the real number it represents. Prove that $\{x_n\}$ converges to the real number $[\{x_n\}]$.

Note: To prove this you must use the definitions from class, which you can find in the notes posted at http://www.math.utah.edu/~toledo/5210Notes.pdf. First you need to use the inclusion of \mathbb{Q} in \mathbb{R} as constant sequences, as in (1) of section 2.2 of the notes. This means that you need to convert $\{x_n\}$ to the double sequence

$$x_{i,n} = x_n$$
 (constant in *i*).

Then apply definition (2.5) of limit to this double sequence and the limit sequence $\{x_i\}$.

2. Let X be any set and let B(X) denote the set of bounded real valued functions on X:

$$B(X) = \{ f : X \to \mathbb{R} \text{ such that } f(X) \subset \mathbb{R} \text{ is a bounded set.} \},\$$

Define a distance function on B(X) by

$$d_{\infty}(f,g) = \sup_{x \in X} \{ |f(x) - g(x)| \}.$$

Prove that $(B(X), d_{\infty})$ is a metric space. (The only difficulty is in proving the triangle inequality).

- 3. Prove that the limit of a uniformly convergent sequence of bounded functions is bounded (Rudin, Chapter 7, Problem 1).
- 4. Prove that $(B(X), d_{\infty})$ is a complete metric space. (You can follow step by step the proof given in class that $(C(X), d_{\infty})$ is a complete metric space.)
- 5. (Part of Rudin, Chapter 7, Problem 4): For which subsets of $[0, \infty)$ does the series

$$\sum_{n=1}^{\infty} \frac{1}{1+n^2x}$$

converge uniformly?