Let (X, d) be a metric space. We will use the following definitions (see Rudin, chap 2, particularly 2.18)

1. Let $p \in X$ and $r \in \mathbb{R}$, r > 0, The ball of radius r centered at p is

$$B(p,r) = \{ q \in X : d(p,q) < r \}.$$

This is the same as the *neighborhood* $N_r(p)$ in Rudin.

- 2. If $E \subset X$, then
 - (a) A point $p \in E$ is called an *interior point* of E if there is an r > 0 so that $B(p, r) \subset E$.
 - (b) E is open if every point of E is an interior point of E. Explicitly, this means that for every $p \in E$ there is an r > 0 so that $B(p, r) \subset E$.
 - (c) E is closed if its complement $X \setminus E$ is open.
 - (d) A point $p \in X$ is a *limit point* of E if for every r > 0, there is a point $q \neq p$ such that $q \in B(p, r) \cap E$. Note: p may or may not be an element of E.
 - (e) If $p \in E$ and p is not a limit point of E, then p is called an *isolated point* of E. this means: p is an isolated point of E if and only if $p \in E$ and there exists an r > 0 so that $B(p,r) \cap E = \{p\}$.
 - (f) E is *perfect* if E is closed and every $p \in E$ is a limit point of E.
 - (g) E is bounded if there is a real number M > 0 and $p \in X$ so that $E \subset B(p, M)$. In other words, there is an M > 0 and $p \in X$ so that d(p,q) < M for all $q \in E$.
- 3. Some easy but important theorems:
 - (a) For all $p \in X$ and all r > 0, B(p, r) is open in X. Also $\{q \in X : d(p,q) > r\}$ is open in X.

Proof: Use the triangle inequality.

(b) $E \subset X$ is closed if and only if it contains all its limit points.

Proof: Observe that $p \in X \setminus E$ is a limit point of E if and only if for all r > 0, B(p,r) contains points of E, in other words, B(p,r) is not contained in $X \setminus E$, in other words, if and only if p is not an interior point of $X \setminus E$, that is, if and only if $X \setminus E$ is not open, that is, by definition, if and only if E is not closed.

(c) The collection of open sets is closed under the operations of arbitrary union and finite intersection. Explicitly (see Rudin 2.24 for a proof):

i. Let $\{U_{\alpha}\}_{\alpha\in A}$ be a collection of open sets in X. Then $\bigcup_{\alpha\in A}U_{\alpha}$ is open.

ii. Let $\{U_i\}_{i=1}^n$ be a finite collection of open sets in X. Then $\bigcap_{i=1}^n U_i$ is open.

And by taking complements get the corresponding statements for closed sets (Rudin 2.24):

i. Let $\{F_{\alpha}\}_{\alpha\in A}$ be a collection of closed sets in X. Then $\cap_{\alpha\in A}F_{\alpha}$ is closed.

ii. Let $\{F_i\}_{i=1}^n$ be a finite collection of closed sets in X. Then $\bigcup_{i=1}^n F_i$ is closed. (d) These theorems allow us to give the following definitions: Given $E \subset X$, let

$$E^o = \bigcup \{ U \subset E : U \text{ is open in } X \}$$

and let

$$\overline{E} = \cap \{F : F \text{ is closed in } X \text{ and } E \subset F\}.$$

Then E^{o} is an open set, it is called the *interior of* E, and it is characterized by the property that it is the *largest open set contained in* E. This means that if U is open and $U \subset E$, then $U \subset E^{0}$. An alternative characterization (often taken as the definition) is that E^{o} is the set of all interior points of E, in other words,

$$E^0 = \{ p \in E : \text{ there exists } r > 0 \text{ such that } B(p, r) \subset E \}.$$

Note that E^o may be empty.

Similarly, the set \overline{E} is closed, it is called the *closure of* E, and it is characterized by the property that it is the *smallest closed set containing* E. This means that if Fis closed and $E \subset F$, then $\overline{E} \subset F$. An alternative characterization (often taken as the definition) is that \overline{E} is the union of E with the collection of its limit points. To see the equivalence, since we have seen that $p \in X \setminus E$ is a limit point of E if and only if it is not interior to $X \setminus E$, we were that the set E union its limit points can be written as

 $E \cup \{p \in X \setminus E : p \text{ is a limit point of } E\} = E \cup ((X \setminus E) \setminus (X \setminus E)^0) = X \setminus (X \setminus E)^o.$

Now since $(X \setminus E)^o$ is the largest open set contained in $X \setminus E$, it follows that $X \setminus (X \setminus E)^o$ is the smallest closed set containing E, hence

$$\overline{E} = X \setminus (X \setminus E)^o$$

and the two characterizations of the closure coincide.

Observe that we may have $\overline{E} = X$. In this case we say that E is dense in X.

- (e) Continuous Functions: Let (X, d_X) and (Y, d_Y) be metric spaces, and let $f : X \to Y$ be a function.
 - i. f is continuous if and only if, for every $x \in X$ and every $\epsilon > 0$ there exists $\delta > 0$ so that for all $y \in X$ with $d_X(x, y) < \delta$, we have $d_Y(f(x), f(y)) < \epsilon$.
 - ii. f is uniformly continuous if and only if, for every $\epsilon > 0$ there is a $\delta > 0$ so that for all $x, y \in X$ with $d_X(x, y) < \delta$ we have $d_Y(f(x), f(y)) < \epsilon$.
 - iii. f is a Lipschitz function if and only if there exists a constant C > 0 (called a Lipschitz constant so that for all $x, y \in X$ we have $d_Y(f(x), f(y)) \leq Cd_X(x, y)$. The infimum of all Lipschitz constants is called the Lipschitz constant of f. (Notes 3.4). Differentiable mappings with bounded derivative provide a large class of examples of Lipschitz maps (Notes 3.4, example 3.1).

Clearly Lipschitz implies uniformly continuous (given ϵ , choose $\delta = \epsilon/C$) and uniformly continuous implies continuous (with $\delta = \delta(\epsilon)$, independent of x). These implications cannot be reversed:

- i. Let $f : [0, \infty) \to [0, \infty)$ be defined by $f(x) = x^2$. Then f(x) f(y) = (x y)(x + y). For every $\delta > 0$, if $x > 1/\delta$ and $y = x + \delta/2$, then $|f(x) f(y)| = (x + y)|x y| > (2/\delta)|x y| = (2/\delta)(\delta/2) = 1$, so for $\epsilon = 1$ we cannot find any δ that works for all x, y. Thus f is not uniformly continuous.
- ii. Let $f:[0,1] \to [0,1]$ be defined by $f(x) = \sqrt{x}$. Then f is uniformly continuous. This follows from general principles, since it is a continuous function on a compact metric space, see below (and Rudin 4.19). More directly, if x > y, it is easy to see that $0 < \sqrt{x} - \sqrt{y} < \sqrt{x-y}$ (square both sides and manipulate a bit), so $|f(x) - f(y)| \le \sqrt{|x-y|}$, so given $\epsilon > 0$ if we let $\delta = \epsilon^2$, then $|x-y| < \delta$ implies $|f(x) - f(y)| < \sqrt{\delta} = \epsilon$, so f is uniformly continuous. But f is not Lipschitz: $|f(x) - f(0)| = |x|/\sqrt{x}$. Given any C > 0, if $\sqrt{x} < 1/C$, then |f(x) - f(0)|/|x - 0| > C, so f is not Lipschitz.

The definition (i) of continuous is equivalent to two other very convenient definitions:

- i. f is continuous if and only if for every open set $U \subset Y$, $f^{-1}(U)$ is open in X.
- ii. f is continuous if and only if for every closed set $F \subset Y$, $f^{-1}(F)$ is closed in X.

Clearly the last two definitions are equivalent. (Rudin 4.8). The $\epsilon - \delta$ definition of continuity says that for every $x \in X$, and $\epsilon > 0$ there is a $\delta > 0$ so that $f(B(x, \delta)) \subset B(f(x), \epsilon)$. If we let $U \subset Y$ be open and take $x \in f^{-1}(U)$, then $f(x) \in U$ and there is $\epsilon > 0$ so that $B(f(x), \epsilon) \subset U$. Then $B(x, \delta) \subset f^{-1}(U)$, so $f^{-1}(U)$ is open. The opposite direction is similar.

One advantage of the alternative definitions of continuity is that it makes theorems as the following obvious:

Theorem: If $g: X \to Y$ and $f: Y \to Z$ are continuous, then the composition $f \circ g: X \to Z$ is continuous.

Proof: If $U \subset Z$ is open, then $f^{-1}(U) \subset Y$ is open, then $g^{-1}(f^{-1}(U) \subset X$ is open. But $g^{-1}(f^{-1}(U)) = (f \circ g)^{-1}(U)$, so $f \circ g$ is continuous.

Note: There are no analogous alternative definitions for uniform continuity (nor for Lipschitz).

- 4. Compactness
 - (a) Let $E \subset X$. A collection $\{U_{\alpha}\}_{\alpha \in A}$ of open subsets of X is called an *open cover of* E if and only if $E \subset \bigcup_{\alpha \in A} U_{\alpha}$.
 - (b) Given an open cover as above, a subcover means a subcollection $\{U_{\beta}\}_{\beta \in B}$ where $B \subset A$ so that the subcollection still covers $E: E \subset \bigcup_{\beta \in B} U_{\beta}$. A subcover is called a *finite subcover* if B is a finite set.
 - (c) $K \subset X$ is called *compact* if and only if every open cover has a finite subcover.
 - (d) Compact sets are bounded; *Proof*: Let K ⊂ X be compact, fix p ∈ X and consider the open cover {B(p, n) : n ∈ N} of K.
 - (e) If $K \subset X$ is compact, then K is closed (see Rudin 2.34);
 - (f) Closed subsets of compact sets are compact (Rudin 2.35)

- (g) In \mathbb{R}^n , $K \subset \mathbb{R}^n$ is compact if and only if it is closed and bounded. (Rudin 2.41).
- (h) In many metric spaces there are closed, bounded sets that are not compact. See, for example, (3.3) of the Notes, for examples in infinite dimensional function spaces.
- (i) $f: X \to Y$ continuous and $K \subset X$ compact, then f(K) is compact. (Rudin 4.14)
- (j) X compact, $f : X \to \mathbb{R}$ continuous, then f has a maximum and minimum in X: There exist points $p_0, p_1 \in X$ so that $f(p_0) \leq f(p) \leq f(p_1)$ for all $p \in X$. (Rudin 4.16).
- (k) X compact, $f: X \to Y$ continuous, then f is uniformly continuous. (Rudin 4.19).
- 5. Subspaces of a Metric Space

If (D, d) is a metric space and $E \subset X$, then E is a metric space with distance $d_E =$ restriction of d_X . So we can define open sets, closed sets, etc for the metric space E.

Theorem $A \subset E$ is open if and only if there exists an open set $U \subset X$ so that $A = E \cap U$. Similarly, A is closed in E if and only if there exists a closed set $F \subset X$ such that $A = E \cap F$

Proof Follows from the observation that for all $p \in E$, $B_E(p,r) = B_X(p,r) \cap E$, where B_E, B_X mean the open balls in $(E, d_E), (X, d_X)$ respectively. Suppose $A \subset E$ is open: for all $p \in E$ there exists r(p) > 0 such that $B_E(p, r(p)) \subset E$. Let $U = \bigcup_{p \in E} B_X(p, r(p))$. Then U is open in X and $U \cap E = A$. Conversely, if $U \subset X$ is open and $U \cap E = A$, then given any $p \in A$ there is an r > 0 so that $B_X(p, r) \subset U$. Since $U \cap E = A$, we have $B_E(p, r) = B_X(p, r) \cap E \subset U \cap E = A$, thus A is open in E.

6. Connected sets:

Definition: A metric space X is disconnected $X = U \cup V$ where U, V are open, $U \cap V = \emptyset$, and $U \neq \emptyset, V \neq \emptyset$. A metric space is connected if and only if it is not disconnected.

This definition applies to any subset $E \subset X$ by using open sets in E. This definition is equivalent to Rudin's 2.45: $A, B \subset E$ are *separated* means $E = A \cup B$ so that $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$, both $A, B \neq \emptyset$. Then A, B are open in E because $A = (X \setminus \overline{B}) \cap E$, thus is open in E, same for B, and A, B are disjoint. Converse is similar.

Observe that could replace "open" by "closed" for the two sets in the definition of disconnected.

Another equivalent definition: X is connected if and only if the only subsets of X that are both open and closed are X and \emptyset .

- (a) The connected subsets of \mathbb{R} are precisely the intervals. (Rudin 2.47).
- (b) $f: X \to Y$ continuous, $E \subset X$ connected, then f(E) is connected. (Rudin 4.22)
- (c) $f : [a,b] \to \mathbb{R}$ continuous, then for every d between f(a) and f(b) there exists $c \in [a,b]$ with f(c) = d. (Rudin 4.23)
- 7. Complete Metric Spaces Rudin 3.12. \mathbb{R} is compete.

A compact metric space is complete (Rudin 3.11)

- 8. Normed Vector Spaces (Notes Chapter 4).
 - (a) \mathbb{R}^n with the norms $||x||_1, ||x||_2, ||x||_\infty$ is a normed vector space.
 - (b) These norms on \mathbb{R}^n are equivalent, \mathbb{R}^n is *complete* in any of these norms.
 - (c) These norms are also defined in the space $\mathbb{R}^{\infty} = \{(x_1, x_2, \dots, 0, 0, \dots) : x_i \in \mathbb{R}^n, \text{ only finitely many } x_i \neq 0\}$, but they are no longer equivalent. \mathbb{R}^{∞} is not complete in any of these norms.
- 9. Inequalities (Notes Chapter 4)
 - (a) Convex functions: Continuous function $\phi : \mathbb{R} \to \mathbb{R}$ (or $I \to \mathbb{R}$ where I is an interval) so that for all $x, y, \phi(\frac{x+y}{2}) \leq \frac{\phi(x)+\phi(y)}{2}$.
 - (b) Cauchy-Schwarz inequality, case of equality.
 - (c) Jensen's inequality.
 - (d) Inequality between arithmetic and geometric means: if $x_1, \ldots x_n > 0$, then $(x_1 \ldots x_n)^{1/n} \le (x_1 + \ldots x_n)/n$, with equality if and only if all the x_i are equal.