
Math 5210, Definitions and Theorems on Metric Spaces

Let (X, d) be a metric space. We will use the following definitions (see Rudin, chap 2, particu-
larly 2.18)

1. Let p ∈ X and r ∈ R, r > 0, The ball of radius r centered at p is

B(p, r) = {q ∈ X : d(p, q) < r}.

This is the same as the neighborhood Nr(p) in Rudin.

2. If E ⊂ X, then

(a) A point p ∈ E is called an interior point of E if there is an r > 0 so that B(p, r) ⊂ E.

(b) E is open if every point of E is an interior point of E. Explicitly, this means that
for every p ∈ E there is an r > 0 so that B(p, r) ⊂ E.

(c) E is closed if its complement X \ E is open.

(d) A point p ∈ X is a limit point of E if for every r > 0, there is a point q 6= p such
that q ∈ B(p, r) ∩ E. Note: p may or may not be an element of E.

(e) If p ∈ E and p is not a limit point of E, then p is called an isolated point of E. this
means: p is an isolated point of E if and only if p ∈ E and there exists an r > 0 so
that B(p, r) ∩ E = {p}.

(f) E is perfect if E is closed and every p ∈ E is a limit point of E.

(g) E is bounded if there is a real number M > 0 and p ∈ X so that E ⊂ B(p,M). In
other words, there is an M > 0 and p ∈ X so that d(p, q) < M for all q ∈ E.

3. Some easy but important theorems:

(a) For all p ∈ X and all r > 0, B(p, r) is open in X. Also {q ∈ X : d(p, q) > r} is open
in X.

Proof : Use the triangle inequality.

(b) E ⊂ X is closed if and only if it contains all its limit points.

Proof : Observe that p ∈ X \ E is a limit point of E if and only if for all r > 0,
B(p, r) contains points of E, in other words, B(p, r) is not contained in X \ E, in
other words, if and only if p is not an interior point of X \ E, that is, if and only if
X \ E is not open, that is, by definition, if and only if E is not closed.

(c) The collection of open sets is closed under the operations of arbitrary union and
finite intersection. Explicitly (see Rudin 2.24 for a proof):

i. Let {Uα}α∈A be a collection of open sets in X. Then ∪α∈AUα is open.

ii. Let {Ui}ni=1 be a finite collection of open sets in X. Then ∩ni=1Ui is open.

And by taking complements get the corresponding statements for closed sets (Rudin
2.24):

i. Let {Fα}α∈A be a collection of closed sets in X. Then ∩α∈AFα is closed.



ii. Let {Fi}ni=1 be a finite collection of closed sets in X. Then ∪ni=1Fi is closed.

(d) These theorems allow us to give the following definitions: Given E ⊂ X, let

Eo = ∪{U ⊂ E : U is open in X}

and let
E = ∩{F : F is closed in X and E ⊂ F}.

Then Eo is an open set, it is called the interior of E, and it is characterized by
the property that it is the largest open set contained in E. This means that if U is
open and U ⊂ E, then U ⊂ E0. An alternative characterization ( often taken as the
definition) is that Eo is the set of all interior points of E, in other words,

E0 = {p ∈ E : there exists r > 0 such that B(p, r) ⊂ E}.

Note that Eo may be empty.

Similarly, the set E is closed, it is called the closure of E, and it is characterized by
the property that it is the smallest closed set containing E. This means that if F
is closed and E ⊂ F , then E ⊂ F . An alternative characterization (often taken as
the definition) is that E is the union of E with the collection of its limit points. To
see the equivalence, since we have seen that p ∈ X \ E is a limit point of E if and
only if it is not interior to X \ E, we wee that the set E union its limit points can
be written as

E ∪{p ∈ X \E : p is a limit point of E} = E ∪ ((X \E) \ (X \E)0) = X \ (X \E)o.

Now since (X \ E)o is the largest open set contained in X \ E, it follows that
X \ (X \ E)o is the smallest closed set containing E, hence

E = X \ (X \ E)o

and the two characterizations of the closure coincide.

Observe that we may have E = X. In this case we say that E is dense in X.

(e) Continuous Functions : Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y
be a function.

i. f is continuous if and only if, for every x ∈ X and every ε > 0 there exists δ > 0
so that for all y ∈ X with dX(x, y) < δ, we have dY (f(x), f(y)) < ε.

ii. f is uniformly continuous if and only if, for every ε > 0 there is a δ > 0 so that
for all x, y ∈ X with dX(x, y) < δ we have dY (f(x), f(y)) < ε.

iii. f is a Lipschitz function if and only if there exists a constant C > 0 (called a
Lipschitz constant so that for all x, y ∈ X we have dY (f(x), f(y)) ≤ CdX(x, y).
The infimum of all Lipschitz constants is called the Lipschitz constant of f .
(Notes 3.4). Differentiable mappings with bounded derivative provide a large
class of examples of Lipschitz maps (Notes 3.4, example 3.1).

Clearly Lipschitz implies uniformly continuous (given ε, choose δ = ε/C) and uni-
formly continuous implies continuous (with δ = δ(ε), independent of x). These
implications cannot be reversed:



i. Let f : [0,∞) → [0,∞) be defined by f(x) = x2. Then f(x) − f(y) = (x −
y)(x + y). For every δ > 0, if x > 1/δ and y = x + δ/2, then |f(x) − f(y)| =
(x+ y)|x− y| > (2/δ)|x− y| = (2/δ)(δ/2) = 1, so for ε = 1 we cannot find any
δ that works for all x, y. Thus f is not uniformly continuous.

ii. Let f : [0, 1]→ [0, 1] be defined by f(x) =
√
x. Then f is uniformly continuous.

This follows from general principles, since it is a continuous function on a com-
pact metric space, see below (and Rudin 4.19). More directly, if x > y, it is easy
to see that 0 <

√
x − √y <

√
x− y (square both sides and manipulate a bit),

so |f(x) − f(y)| ≤
√
|x− y|, so given ε > 0 if we let δ = ε2, then |x − y| < δ

implies |f(x)− f)y)| <
√
δ = ε, so f is uniformly continuous.

But f is not Lipschitz: |f(x)− f(0)| = |x|/
√
x. Given any C > 0, if

√
x < 1/C,

then |f(x)− f(0)|/|x− 0| > C, so f is not Lipschitz.

The definition (i) of continuous is equivalent to two other very convenient definitions:

i. f is continuous if and only if for every open set U ⊂ Y , f−1(U) is open in X.

ii. f is continuous if and only if for every closed set F ⊂ Y , f−1(F ) is closed in X.

Clearly the last two definitions are equivalent. (Rudin 4.8). The ε− δ definition of
continuity says that for every x ∈ X, and ε > 0 there is a δ > 0 so that f(B(x, δ)) ⊂
B(f(x), ε). If we let U ⊂ Y be open and take x ∈ f−1(U), then f(x) ∈ U and there
is ε > 0 so that B(f(x), ε) ⊂ U . Then B(x, δ) ⊂ f−1(U), so f−1(U) is open. The
opposite direction is similar.

One advantage of the alternative definitions of continuity is that it makes theorems
as the following obvious:

Theorem: If g : X → Y and f : Y → Z are continuous, then the composition
f ◦ g : X → Z is continuous.

Proof : If U ⊂ Z is open, then f−1(U) ⊂ Y is open, then g−1(f−1(U) ⊂ X is open.
But g−1(f−1(U)) = (f ◦ g)−1(U), so f ◦ g is continuous.

Note: There are no analogous alternative definitions for uniform continuity (nor for
Lipschitz).

4. Compactness

(a) Let E ⊂ X. A collection {Uα}α∈A of open subsets of X is called an open cover of E
if and only if E ⊂ ∪α∈AUα.

(b) Given an open cover as above, a subcover means a subcollection {Uβ}β∈B where
B ⊂ A so that the subcollection still covers E: E ⊂ ∪β∈BUβ. A subcover is called a
finite subcover if B is a finite set.

(c) K ⊂ X is called compact if and only if every open cover has a finite subcover.

(d) Compact sets are bounded;

Proof : Let K ⊂ X be compact, fix p ∈ X and consider the open cover {B(p, n) :
n ∈ N} of K.

(e) If K ⊂ X is compact, then K is closed (see Rudin 2.34);

(f) Closed subsets of compact sets are compact (Rudin 2.35)



(g) In Rn, K ⊂ Rn is compact if and only if it is closed and bounded. (Rudin 2.41).

(h) In many metric spaces there are closed, bounded sets that are not compact. See, for
example, (3.3) of the Notes, for examples in infinite dimensional function spaces.

(i) f : X → Y continuous and K ⊂ X compact, then f(K) is compact. (Rudin 4.14)

(j) X compact, f : X → R continuous, then f has a maximum and minimum in X:
There exist points p0, p1 ∈ X so that f(p0) ≤ f(p) ≤ f(p1) for all p ∈ X. (Rudin
4.16).

(k) X compact, f : X → Y continuous, then f is uniformly continuous. (Rudin 4.19).

5. Subspaces of a Metric Space

If (D, d) is a metric space and E ⊂ X, then E is a metric space with distance dE =
restriction of dX . So we can define open sets, closed sets, etc for the metric space E.

Theorem A ⊂ E is open if and only if there exists an open set U ⊂ X so that A = E ∩U .
Similarly, A is closed in E if and only if there exists a closed set F ⊂ X such that
A = E ∩ F
Proof Follows from the observation that for all p ∈ E, BE(p, r) = BX(p, r) ∩ E, where
BE, BX mean the open balls in (E, dE), (X, dX) respectively. Suppose A ⊂ E is open:
for all p ∈ E there exists r(p) > 0 such that BE(p, r(p)) ⊂ E. Let U = ∪p∈EBX(p, r(p)).
Then U is open in X and U ∩ E = A. Conversely, if U ⊂ X is open and U ∩ E = A,
then given any p ∈ A there is an r > 0 so that BX(p, r) ⊂ U . Since U ∩ E = A, we have
BE(p, r) = BX(p, r) ∩ E ⊂ U ∩ E = A, thus A is open in E.

6. Connected sets :

Definition: A metric space X is disconnected X = U ∪V where U, V are open, U ∩V = ∅,
and U 6= ∅, V 6= ∅. A metric space is connected if and only if it is not disconnected.

This definition applies to any subset E ⊂ X by using open sets in E. This definition is
equivalent to Rudin’s 2.45: A,B ⊂ E are separated means E = A∪B so that A∩B = ∅
and A∩B = ∅, both A,B 6= ∅. Then A, B are open in E because A = (X \B)∩E, thus
is open in E, same for B, and A,B are disjoint. Converse is similar.

Observe that could replace “open” by “closed” for the two sets in the definition of dis-
connected.

Another equivalent defnition: X is connected if and only if the only subsets of X that
are both open and closed are X and ∅.

(a) The connected subsets of R are precisely the intervals. (Rudin 2.47).

(b) f : X → Y continuous, E ⊂ X connected, then f(E) is connected. (Rudin 4.22)

(c) f : [a, b] → R continuous, then for every d between f(a) and f(b) there exists
c ∈ [a, b] with f(c) = d. (Rudin 4.23)

7. Complete Metric Spaces Rudin 3.12. R is compete.

A compact metric space is complete (Rudin 3.11)



8. Normed Vector Spaces (Notes Chapter 4).

(a) Rn with the norms ||x||1, ||x||2, ||x||∞ is a normed vector space.

(b) These norms on Rn are equivalent, Rn is complete in any of these norms.

(c) These norms are also defined in the space R∞ = {(x1, x2, . . . , 0, 0, . . .) : xi ∈
Rn, only finitely many xi 6= 0}, but they are no longer equivalent. R∞ is not com-
plete in any of these norms.

9. Inequalities(Notes Chapter 4)

(a) Convex functions: Continuous function φ : R→ R (or I → R where I is an interval)

so that for all x, y, φ(x+y
2

) ≤ φ(x)+φ(y)
2

.

(b) Cauchy-Schwarz inequality, case of equality.

(c) Jensen’s inequality.

(d) Inequality between arithmetic and geometric means: if x1, . . . xn > 0, then (x1 . . . xn)1/n ≤
(x1 + . . . xn)/n, with equality if and only if all the xi are equal.


