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DOMINGO TOLEDO

1. Metric Spaces

The following definition introduces the most central concept in the course.
Think of the plane with its usual distance function as you read the definition.

Definition 1.1. A metric space (X, d) is a non-empty set X and a function
d : X ×X → R satisfying

(1) For all x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.
(2) For all x, y ∈ X, d(x, y) = d(y, x).
(3) For all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) (called the triangle

inequality).

The function d is called the metric, it is also called the distance function.

1.1. Examples of metric spaces. We now give examples of metric spaces.
In most of the examples the conditions (1) and (2) of Definition 1.1 are easy
to verify, so we mention these conditions only if there is some difficulty
in establishing them. The difficult point is usually to verify the triangle
inequality, and this we do in some detail.

Example 1.1. Let X = R with the usual distance function d(x, y) = |x− y|.

The triangle inequality is easy to verify by looking at cases. First, it’s
clear if two of x, y, z are equal (and both sides of the triangle inequality are
equal), so we may assume all are different, and we keep this assumption in
all subsequent examples. Let’s assume x < z (the case z < x will be similar.
Then there are 3 possibilities: y < x < z, x < y < z, x < z < y. In the first
case d(x, z) < d(y, z) and in the third case d(x, z) < d(x, y), so in both these
cases we get the strict inequality d(x, z) < d(x, y) + d(y, z). In the second
case we get equality in the triangle inequality: d(x, z) = d(x, y) + d(y, z).
This proves the triangle inequality for (X, d). Moreover, it also proves the
following: Equality holds in the triangle inequality if and only if y is between
x and z.

Example 1.2. Let X = R2 with the usual distance function

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2,
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where x = (x1, x2) and y = (y1, y2).

To verify the triangle inequality, write, as usual, u · v for the dot product
of vectors u = (u1, u2) and v = (v1, v2) in R2 (thus u · v = u1v1 + u2v2) and
|u| for the length

√
u · u. Given 3 points x, y, z ∈ R2, let u = x − y and

v = y−z. Then u+v = x−z, so d(x, z) = |u+v|, d(x, y) = |u|, d(y, z) = |v|,
therefore the triangle inequality is equivalent to

|u+ v| ≤ |u|+ |v| for all u, v ∈ R2.

squaring both sides this is equivalent to

|u+ v|2 ≤ |u|2 + 2|u||v|+ |v|2.
Using the properties of the dot product, we see that we want

|u+ v|2 = (u+ v) · (u+ v) = u · u+ 2u · v + v· ≤ u · u+ 2|u||v|+ v · v,
which is equivalent to

u · v ≤ |u||v|
which is half of the familiar Cauchy-Schwarz inequality |u ·v| ≤ |u||v|. More-
over, we have equality in the triangle inequality if and only if u · v = |u||v|,
which holds (assuming, as we may, that u and v are both non-zero), if and
only if u and v are positive multiples of each other. In terms of x, y, z this
means that d(x, z) = d(x, y) + d(y, z) holds if and only if y is in the straight
line segment joining x and z.

Example 1.3. Let X = Rn with the usual distance function

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2,

where x = (x1, . . . , xn) and y = (y1, . . . yn). The verifications are exactly as
for the case n = 2 just discussed.

Example 1.4. Let X = Rn and d(x, y) = |x1 − y1| + · · · + |xn − yn|. For
n = 2 this is the usual distance we use when driving in a city laid out in
rectangular coordinates like Salt Lake City.

The triangle inequality is easy to verify. We need

d(x, z) =

n∑
i=1

|xi − zi| ≤
n∑
i=1

|xi − yi|+
n∑
i=1

|yi − zi|,

which follows from the fact that, for each i, from the triangle inequality in
R, |xi − zi| ≤ |xi − yi| + |yi − zi|. Moreover,equality holds in the triangle
inequality for d if and only if, for all i, we have |xi−zi| = |xi−yi|+ |yi−zi|,
which happens if and only if yi lies between xi and zi for each i = 1 . . . n.
Thus, given x and z, the set of all y for which d(x, z) = d(x, y) + d(y, z) is a
“box” given by these inequalities. See Figure 1.1 for n = 2. For any y in the
shaded region we have d(x, y)+d(y, z) = d(x, z). Thus there are many more
possibilities for equality than in the case of Example 1.2 and Example 1.3
where equality occurs only on a line segment.
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Figure 1.1. Equality Set for Taxicab Metric

Example 1.5. Let X = Rn and let d(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.

To prove the triangle inequality d(x, z) ≤ d(x, y) + d(y, z), suppose that
d(x, z) = max{xi − zi|} = |xk − zk| for some fixed k, 1 ≤ k ≤ n, that is,
the maximum is attained at k. Then |xk − zk| ≤ |xk − yk| + |yk − zk| and
|xk − yk| ≤ d(x, y) and |yk − zk| ≤ d(y, z). So d(x, z) ≤ d(x, y) + d(y, z)
follows. We will not discuss in detail the case of equality, but remark, just
as in Example 1.4, there are in general many more possibilities than a line
segment.

Example 1.6. Let X = S2 = {x ∈ R3 : |x| = 1}, the unit sphere in R3. Let
d(x, y) be the length of the great-circle arc joining x and y. This is the way
we measure distances on the surface of the earth. An explicit formula for
d(x, y) is easy to find: Let θ be the angle between the unit vectors x and y.
The great circle arc connecting x and y is the part of the intersection with
S2 of the plane spanned by x and y lying between these two vectors, and
the length of this arc is θ, see Figure 1.2. Thus cos θ = x · y (the usual dot
product in R3) so d(x, y) = cos−1(x · y).

Figure 1.2. Spherical Distance

It is an exercise to verify the triangle inequality assuming another geo-
metric inequality. Let x1, . . . xm be vectors in Rn, and assume m ≤ n. The
Gram matrix of x1, . . . , xm is the m by m matrix A whose i, j-entry is xi ·xj .
Note that A is a symmetric matrix, since xi · xj = xj · xi.

Theorem 1.1. If A is the Gram matrix of x1, . . . , xm just defined, then
det(A) ≥ 0, and det(A) = 0 if and only if the set {x1, . . . , xm} is linearly
dependent.



4 TOLEDO

Proof. To avoid complicated notation, we only prove the theorem in the case
that we need, namely m = n = 3, the proof being the same for all m,n. Let

A =

 x · x x · y x · z
y · x y · y y · z
z · x z · y z · z


be the Gram matrix of 3 vectors x = (x1, x2, x3), y = (y1, y2, y3), z =
(z1, z2, z3) ∈ R3, and let B be the matrix

B =

 x1 y1 z1
x2 y2 z2
x3 y3 z3

 ,

Clearly we have

 x · x x · y x · z
y · x y · y y · z
z · x z · y z · z

 =

 x1 x2 x3
y1 y2 y3
z1 z2 z3

 x1 y1 z1
x2 y2 z2
x3 y3 z3

 ,

in other words, A = (tB)B, where tB denotes the transpose matrix. Thus
det(A) = det(tB) det(B) = det(B)2 ≥ 0, and det(A) = 0 if and only if
det(B) = 0, which, by the definition of B, happens if and only if {x, y, z} is
linearly dependent.

�

Remark 1.1. Observe that in the case m = 2, that is, two vectors, say
x, y ∈ Rm, then Theorem 1.1 says that

det(A) = (x · x)(y · y)− (x · y)2 ≥ 0

which is the same as the Cauchy - Schwarz inequality. Recall from Exam-
ples 1.2 and 1.3 that this proves the triangle inequality for the ordinary
Euclidean metric. In the exercises you will see that the case m = 3 proves
the triangle inequality for the spherical metric of Example 1.6.

Example 1.7. Let X be any non-empty set and let d be defined by

d(x, y) =

{
0 if x = y

1 if x 6= y.

This distance is called a discrete metric and (X, d) is called a discrete metric
space.

It is easy to verify the triangle inequality: only need to consider the case
x 6= z, in which case at least one of the two inequaities x 6= y and y 6= z
must hold. Thus in the triangle inequality the left hand side = 1 and at
least one of the two summands on the right hand side = 1, so the right hand
side is ≥ 1.
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Example 1.8. Let X = R2 and let d be defined by

d(x, y) =

{
|x− y| if x and y are in the same ray from the origin

|x|+ |y| otherwise,

where |x| denotes the usual length of a vector x ∈ R2. See Figure 1.3. This
metric is called the French railway metric and it describes the following
hypothetical situation: a country (let’s call it France) in which there are
railway lines passing through every town but always ending at a fixed city
(let’s call it Paris). You can travel directly between any two towns that
happen to lie on the same railway line to Paris. Otherwise you have to go
to Paris and change to another line.

Figure 1.3. The French Railway Metric

There are two ways to verify the triangle inequality. One would be a
direct check distinguishing cases, depending on the number of rays in which
x, y and z lie and perhaps their relative positions on these rays. We will
choose a more roundabout way that illustrates a general reasoning that we
will often need in the future. Let us use the following terminology: given
two points x, y ∈ X, a path γ from x to y is a finite collection I1, . . . In where

(1) Each Ii is an interval lying in a ray from the origin.
(2) The ending point of Ii is the beginning point of Ii+1.
(3) The beginning point of I1 is x and the ending point of In is y.

The length of a path is the sum of the lengths of the intervals Ii. We need
the following observation: d(x, y) = the length of the shortest path from x
to y. In fact, the shortest path consists of one interval in case x, y lie on the
same ray starting at the origin, and otherwise of two intervals.

The triangle inequality now follows: let γ1 be a shortest path from x to y
and let γ2 be a shortest path from y to z. Let γ1γ2 denote the path formed
by γ1 followed by γ2, see Figure 1.4. This is a path from x to z of length
d(x, y) + d(y, z). Its length cannot be any shorter than that of the shortest
path from x to z, thus d(x, z) ≤ d(x, y) + d(y, z).

This example illustrates a very useful principle: existence of paths and a
reasonable notion of length of paths gives a metric space. We give another
example along the same lines. We will see more examples later on.
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Figure 1.4. One Case of the Triangle Inequality

Example 1.9. Let S ⊂ R3 be a smooth surface. As a temporary definition
of smooth surface, let’s say that there is a smooth (meaning infinitely dif-
ferentiable) function f : R3 → R so that S = {x ∈ R3 : f(x) = 0} and that
the gradient ∇f 6= 0 at any point of S. We will study later why this is a
reasonable definition. For the moment, keep in mind Example 1.6 where
S2 ⊂ R3 is given as the zero set of f(x) = |x|2− 1. (Check that f is smooth
and that ∇f does not vanish on S2.)

If x, y ∈ S, let us define a path from x to y to be a continuous, piecewise
differentiable curve γ lying in S, starting at x and ending at y. This means
that for some interval [a, b] ⊂ R, γ : [a, b] → S ⊂ R3 is a continuous, piece-

wise differentiable map. Its length L(γ) =
∫ b
a |γ

′(t)|dt is defined. Assume
that for all x, y ∈ S there is a path from x to y. This assumption is called
connectedness, a concept that will be discussed in detail later. Define the
distance function d : S × S → R by

d(x, y) = inf{L(γ) : γ a path from x to y}.

We use infimum because, in contrast with the last example, it is not clear
that a minimum exists (in fact, we will have to give conditions that ensure
the existence of a minimum).

To verify that (S, d) is a metric space, we should first check that if
d(x, y) = 0 then x = y. This follows from the fact that, if γ is a path
from x to y, then L(γ) ≥ |x− y|, where |x− y| is the usual distance in R3.
This implies that d(x, y) ≥ |x − y|, so if d(x, y) = 0 then |x − y| = 0, so
x = y.

Now to the triangle inequality. This follows the same pattern as the
proof in Example 1.8 except that, since we have an infimum rather than a
minimum, we have to use some ε’s. Let x, y, z be fixed, and let ε > 0 be
given. Then, by the definition of infimum, there exists a path γ1 from x to y
with L(γ1) < d(x, y)+ ε

2 , and there exists a path γ2 from y to z with L(γ2) <
d(y, z) + ε

2 . Let γ = γ1γ2 be the piecewise differentiable path γ1 followed
by γ2 from x to z, see Figure 1.5. Then d(x, z) ≤ L(γ) = L(γ1) + L(γ2) <
d(x, y)+d(y, z)+ ε. Thus for all ε > 0 we have d(x, z) < d(x, y)+d(y, z)+ ε,
thus d(x, z) ≤ d(x, y) + d(y, z).



4510 NOTES 7

Figure 1.5. Putting Paths Together

Remark 1.2. If we knew that for x, y ∈ S2 the great circle arc from x to y
gives the shortest curve from x to y, then Example 1.6 becomes a special
case of Example 1.9. This familiar fact will be proved later. This will give
a more conceptual proof of the triangle inequality for the spherical metric
than the one suggested in Example 1.6.

Example 1.10. Let X = Z, the integers, and fix a prime number p. For x, y ∈
Z, x 6= y, define n(x, y) to be the exponent of p in the prime factorization of

x−y, thus x−y = kpn(a,b) where p does not divide k. Define d : X×X → R
by

d(x, y) =

{
0 if x = y,

p−n(x,y) if x 6= y.

Thus in this distance, called the p-adic metric, closeness means congruence
modulo a high power of p. For instance, if p = 5, d(0, 1) = d(0, 2) = d(0, 8) =
1, while d(0, 5) = d(0, 15) = 1

5 , while d(0, 25) = d(0, 50) = 1
25 , etc.

To check the triangle inequality observe that given x, y, z ∈ Z, we have

n(x, z) ≥ min{n(x, y), n(y, z)},

because p raised to the exponent on the right hand side divides both x− y
and y − z, so it certainly divides the sum x − z. We therefore have the
inequality

p−n(x,z) ≤ max{p−n(x,y), p−n(y,z)}
which is equivalent to

d(x, z) ≤ max{d(x, y), d(y, z)}.

This inequality is called the ultrametric inequality and it immediately implies
the triangle inequality because max{d(x, y), d(y, z)} ≤ d(x, y) + d(y, z).

Example 1.11. We could modify the last example by taking X = Q, the
rational numbers. Each rational number has a prime factorization, where
the exponents may now be negative. Fix a prime number p as before, and
define n(x, y) in the same way, and use the same formula for the distance.
For instance, if p = 5 we have, in addition to the examples given above,
d(0, 12) = 1, d(0, 15) = d(0, 35) = d(0, 2

15) = 5, d(0, 3
50) = 25, etc. For any
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prime p we get, as before, a metric space, satisfying the stronger ultrametric
inequality.

Definition 1.2. We define notation we will use in referring to some of the
metric spaces just introduced.

(1) The metric of Example 1.3 will be called the Euclidean metric and,
when there is need to distinguish it from other metrics on Rn, will
be denoted d(2). Thus

d(2)(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

(2) The metric of Example 1.4 will be called the taxicab metric or the
l1 metric and denoted by d(1). Thus

d(1)(x, y) = |x1 − y1|+ · · ·+ |xn − yn|.
(3) The metric of Example 1.5 will be called the supremum metric or

sup metric or l∞-metric and denoted d(∞). Thus

d(∞)(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.
(4) The metric of Example 1.6 will be called the spherical metric and

denoted dS2 .
(5) The metric of Example 1.9 will be called the intrinsic metric on

S ⊂ R3.

Remark 1.3. We will see that the spherical metric is the same as the intrinsic
metric on S2 ⊂ R3.

1.2. Constructions of Metric Spaces. There are some standard con-
structions of new metric spaces from given ones. The most common one is
that of subspaces:

1.2.1. Subspaces. Let (X, d) be a metric space and let Y ⊂ X. let d′ =
d|Y×Y (the restriction of d to Y ×Y . Then (Y, d′) is a metric space, called a
subspace of (X, d). We usually write simply d for the restricted distance d′.

Examples of Subspaces

(1) Q is a subspace of R.
(2) Any interval is a subspace of R, for instance (0,∞) is a subspace of

R.
(3) S2 is a subspace of R3. But the subspace metric is not the same as

the spherical metric of Example 1.6. If d′ is the restriction to S2×S2

of the Euclidean metric d(2) on R3 and dS2 is the spherical metric

on S2, then clearly d′(x, y) ≤ dS2(x, y) for all x, y ∈ S2, and equality
holds iff x = y.

(4) More generally, if S ⊂ R3 is a surface as in Example 1.9, then we get
two distance functions on S: the subspace distance d′ (restriction
of the Euclidean distance) and the intrinsic distance d as defined in
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Example 1.9. We have again that d′(x, y) ≤ d(x, y) (in fact, this is
how the fact that d(x, y) = 0⇒ x = y was proved in Example 1.9).
The case of equality is more subtle, it certainly holds if the straight
line segment joining x and y lies in S.

1.2.2. Product Spaces. If (X1, d1) and (X2, d2) are metric spaces, their prod-
uct is the space (X1 ×X2, d) where

d((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)}
for all (x1, x2), (y1, y2) ∈ X1 ×X2. A similar definition can be made for the
product of more than two factors. Note the analogy with the definition ((3)
of Definition 1.2)of the supremum metric. Other definitions of the metric
on the product are possible, but this is a convenient choice.

1.2.3. Functions of the distance. Suppose (X, d) is a metric space, and sup-
pose that f : [0,∞) → R is a strictly increasing function with f(0) = 0
which is sub-linear: f(a+ b) ≤ f(a) + f(b) holds for all a, b ∈ [0,∞). Then
it is not hard to see that f ◦ d : X ×X → R is also a metric on X, that is,
(X, f ◦ d) is a metric space. Details are in a homework problem.

1.3. Limits. One of the virtues of Definition 1.1 is that it allows the for-
mulation of many familiar concepts from real analysis, with essentially the
same definitions and proofs. We give some examples.

By a sequence in a metric space (X, d) we mean, as usual, a function
N→ X, written {xn}.

Definition 1.3. Let {xn} be a sequence in (X, d).

(1) Let x ∈ X. We say lim{xn} = x iff for all ε > 0 there is an N(=
N(ε) ∈ N so that d(x, xn) < ε for all n > N .

(2) We say that {xn} converges iff there exists x ∈ X so that lim{xn} =
x.

(3) We say that {xn} is a Cauchy sequence iff for all ε > 0 there exists
N ∈ N so that d(xm, xn) < ε for all m,n > N .

Theorem 1.2. If {xn} converges, then {xn} is a Cauchy sequence.

Proof. Suppose lim{xn} = x and let ε > 0. Then by (1) of Definition 1.3
there exists N ∈ N so that d(xn, x) < ε

2 for all n > N . If m,n > N , by the
triangle inequality we have

d(xm, xn) ≤ d(xm, x) + d(x, xn) <
ε

2
+
ε

2
= ε,

hence {xn} is a Cauchy sequence. �

Observe how this proof uses the defining properties of metric spaces. The
use of the triangle inequality is clear, also the symmetry of the distance ((2)
of Definition 1.1 is used. As another example, we give a proof that also uses
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part (1) of Definition 1.1. In fact, this should be proved before the notation
of that definition is introduced, so that the notation makes sense.

Theorem 1.3. If {xn} converges, then its limit is unique.

Proof. Suppose lim{xn} = x and lim{xn} = y. Given ε > 0 there exits N1

so that d(xn, x) < ε
2 for all n > N1 and there exists N2 so that d(xn, y) < ε

2 .
Then, if n > max{N1, N2}, we have

d(x, y) ≤ d(x, xn) + d(xn, y) <
ε

2
+
ε

2
< ε.

Since d(x, y) < ε for all ε > 0, d(x, y) = 0, therefore (by (1) of Definition 1.1
we have x = y. Thus the limit is unique. �

Example 1.12. If we use the p-adic metric of Example 1.10 the convergent
sequences we get may be unexpected. For example, the sequence {pn} con-
verges to 0 since d(pn, 0) = p−n, thus, given ε > 0, d(pn, 0) < ε when
n > − logp(ε).

Going back to Theorem 1.2, a familiar fact from analysis is that the
converse holds for X = R (with usual distance) and X = Rn (with Euclidean
metric). But it need not hold for all metric spaces (X, d). For example, we
know that it does not hold for X = Q, the set of rational numbers, with the
usual distance d(x, y) = |x− y|. In fact, the validity of the converse is made
into a definition:

Definition 1.4. A metric space (X, d) is called complete if every Cauchy
sequence converges.

Thus R and Rn are complete, while Q is not complete (all with their usual
distances).

1.4. Maps Between Metric Spaces. Let (X, d) and (Y, d′) be metric
spaces, and let f : X → Y .

Definition 1.5. (1) Let x ∈ X. The map f is continuous at x iff for all
ε > 0 there exists a δ > 0 so that for all y ∈ X, if d(x, y) < δ, then
d′(f(x), f(y)) < ε.

(2) The map f is continuous iff it is continuous at all x ∈ X. Explicitly,
f is continuous iff for all x ∈ X and ε > 0 there exists a δ(= δ(x, ε))
so that d′(f(x), f(y)) < ε for all y ∈ X with d(x, y) < δ.

(3) The map f is uniformly continuous iff for all ε > 0 there exists a
δ(= δ(ε)) so that d′(f(x), f(y)) < ε for all x, y ∈ X with d(x, y) < δ

(4) The map f is called Lipschitz iff there exists a constant C > 0 so
that d′(f(x), f(y)) ≤ Cd(x, y) holds for all x, y ∈ X. The constant C
is called a Lipschitz constant for f . If a smallest Lipschitz constant
exists, then it is called the Lipschitz constant for f .

(5) The map f is bi-Lipschitz iff there exist constants C1, C2 > 0 so that
C1d(x, y) ≤ d′(f(x), f(y)) ≤ C2d(x, y) holds for all x, y ∈ X.



4510 NOTES 11

(6) The map f is an isometry iff d′(f(x), f(y)) = d(x, y) for all x, y ∈ X.

Familiarity with the difference between continuity and uniform continuity
for real functions is assumed. For example, the continuous function f(x) = 1

x
on (0,∞) is uniformly continuous on [1,∞) but not on (0, 1].

Remark 1.4. If (X, d) and (Y, d′) are metric spaces, we often use the notation
f : (X, d)→ (Y, d′) to mean:

(1) f : X → Y ,
(2) In the whole discussion we are using the metric d on the domain X

and the metric d′ on the target Y .

The notation does not imply that there is any relation among the three
functions f , d, d′. It is just a reminder of which metrics are being used
in the domain and the target. It is particularly important in the case that
X = Y but d 6= d′, we need to keep straight which metric we are using in
domain and target.

Theorem 1.4. If f : (X, d) → (Y, d′) is Lipschitz, then f is uniformly
continuos.

Proof. Suppose d′(f(x), f(y)) ≤ Cd(x, y) and let ε > 0. Let δ = ε
C . Then

for all x, y ∈ X, d(x, y) < δ ⇒ d′(f(x), f(y)) < Cδ = ε, thus f is uni-
formly continuous. (Thus Lipschitz means that in the definition of uniform
continuity, δ can be chosen as a linear function of ε). �

Here is a simple way to get Lipschitz functions. We state it for R, but
similar theorems can be formulated and proved in Rn.

Theorem 1.5. Suppose I ⊂ R is an interval, suppose f : I → R is differ-
entiable, and suppose that |f ′| is bounded on I: there exists C > 0 so that
|f ′(x)| ≤ C for all x ∈ I. Then f is Lipschitz on I with Lipschitz constant
C.

Proof. Given x and y in I, by the Mean Value Theorem there exists ξ be-
tween x and y so that f(x) − f(y) = f ′(ξ)(x − y). Then |f(x) − f(y)| =
|f ′(ξ)||x− y| ≤ C|x− y|. �

For example, we see readily that f(x) = 1
x is Lipschitz on [1,∞) with

Lipschitz constant 1 since |f ′(x)| = |−1
x2
| ≤ 1 on [1,∞). In particular f is

uniformly continuous on [1,∞) as asserted earlier.

1.5. Equivalences Between Metric Spaces. We will define various equiv-
alences between metric spaces by assuming that the maps defined in the last
section are bijective, with suitable additional requirements when needed.

Definition 1.6. Let (X, d) and (Y, d′) be metric spaces, and let f : X → Y
be a map. We say that:
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(1) The map f is a homeomorphism iff f is continuous, f−1 : Y → X
exists, and f−1 is continuous. If a homeomorphism f exists, we say
that (X, d) and (Y, d′) are homeomorphic.

(2) The map f is a bi-Lipschitz equivalence iff f is surjective and bi-
Lipschitz. If a bi-Lipschitz equivalence exists we say that (X, d) and
(Y, d′) are bi-Lipschitz equivalent.

(3) The spaces (X, d) and (Y, d′) are isometric iff there exists a surjective
isometry f : (X, d)→ (Y, d′).

These equivalence relations go from very loose to very strict. More pre-
cisely, they are related as follows:

Theorem 1.6. Let (X, d) and (Y, d′) be metric spaces.

(1) If (X, d) and (Y, d′) are isometric, then they are bi-Lipschitz equiv-
alent.

(2) If (X, d) and (Y, d′) are bi-Lipschitz equivalent, then they are home-
omorphic.

Proof. For the first part, observe that if the two spaces are isometric, this is
the same thing as saying that they are bi-Lipschitz equivalent with constants
C1 = C2 = 1.

For the second part, first observe that if f is a bi-Lipschitz equivalence,
then f is injective: If f(x) = f(y), then d′(f(x), f(y)) = 0, so C1d(x, y) = 0,
so d(x, y) = 0, so x = y. Since f is surjective, then f−1 exists. Moreover,
for all x, y ∈ Y , C1d(f−1(x), f−1(y)) ≤ d′(f(f−1(x)), f(f−1(y))) = d′(x, y).
This is the same as d(f−1(x), f−1(y)) ≤ 1

C1
d′(x, y), in other words, f−1 is

Lipschitz (with Lipschitz constant 1
C1

), thus f−1 is continuous, thus f is a
homeomorphism. �

Example 1.13. Recall the distances d(1), d(2), d(∞) on Rn of Definition 1.2.
They are related by the following inequalities (the first in a homework prob-
lem, the remaining two are similar but easier).

(1) d(2)(x, y) ≤ d(1)(x, y) ≤
√
n d(2)(x, y).

(2) d(∞)(x, y) ≤ d(2)(x, y) ≤
√
n d(∞)(x, y).

(3) d(∞)(x, y) ≤ d(1)(x, y) ≤ n d(∞)(x, y).

These inequalities mean that the identity map is a bi-Lipschitz equivalence
between any pair of these metrics, and the constants displayed turn out
to be optimal. Moreover, it is easy to see that the identity map is not an
isometry between any pair. For instance, for each n > 1, the distance from
the origin to the point ( 1

n , . . . ,
1
n) is different in all three metrics on Rn.

Example 1.14. A more delicate question is: can there be any isometry be-
tween two of these metrics? To see that to give a negative answer is not
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as obvious as it may seem at first sight, and to see a non-trivial exam-
ple of an isometry, check the following: The map f : R2 → R2 defined by
f(x1, x2) = (x1 + x2, x1 − x2) is an isometry from (R2, d(1)) to (R2, d(∞)).

Example 1.15. The last example indicates that it may not be so easy to
prove that two spaces are not isometric, in other words, to prove that no f
satisfying (6) of Definition 1.5 can exist. This usually requires some invari-
ants that distinguish two metrics. For instance, it seems very clear to the
eye that (Rn, d(2)) and (Rn, d(1)) are not isometric. Here’s an possible way
to distinguish them: Given a metric space (X, d) and two points x, z ∈ X,
define the equality set of the triangle inequality, Ed(x, z), by

Ed(x, z) = {y ∈ X : d(x, z) = d(x, y) + d(y, z)}.

It is not hard to prove that if f : (X, d) → (Y, d′) is an isometry, then
Ed′(f(x), f(z)) = f(Ed(x, z)). We know from Examples 1.3 and 1.4 that
these equality sets are different for d(2) and d(1). This can be used to prove
that they are not isometric. More details in the homework.

Example 1.16. Here’s a more challenging question. Are (R3, d(1)) and (R3, d(∞))
isometric? Note that the trick of Example 1.14 doesn’t work. Make a con-
jecture and see if you can prove it..

2. Groups of Isometries

Let (X, d) be a metric space and let f, g be isometries of (X, d) onto it-
self. Then the composition f ◦ g is an isometry, since d(f ◦ g(x), f ◦ g(y)) =
d(f(g(x)), f(g(y))) = d(g(x), g(y)) = d(x, y). Also the inverse f−1 is defined
and is also an isometry, since d(f−1(x), f−1(y)) = d(f(f−1(x), f(f−1(y))) =
d(x, y). This means that the set of all isometries is a group under composi-
tion.

Definition 2.1. Let Isom(X, d) = {f : X → X : f is an isometry of (X, d)
onto itself} denote the set of all isometries of (X, d). If x ∈ X, let Isom(X, d)x
= {f ∈ Isom(X, d) : f(x) = x}, the set of isometries of X that fix the point
x. (This is often called the stabilizer of x, or the isotropy group of x.)

Theorem 2.1. The set Isom(X, d) is a group under composition. The
subset Isom(X, d)x is a subgroup of Isom(X, d) (under composition).

Proof. We have just verified that the composition of two isometries is an
isometry, and that the inverse of an isometry is an isometry. We thus have
a binary operation Isom(X, d)× Isom(X, d)→ Isom(X, d) that assigns to
f, g ∈ Isom(X, d) their composition f ◦ g. It is easy to verify the group
axioms:

(1) The associative law f ◦ (g ◦ h) = (f ◦ g) ◦ h holds for all f, g, h ∈
Isom(X, d). This is always true for composition of maps.
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(2) There exists e ∈ Isom(X, d) such that e ◦ f = f ◦ e = f for all
f ∈ Isom(X, d). Take e = id, the identity map id : X → X.

(3) For all f ∈ Isom(X, d) there exists f−1 ∈ Isom(X, d) such that
f−1 ◦ f = f ◦ f−1 = e. Take f−1 to be the usual inverse map.
Finally, if x ∈ X and f, g ∈ Isom(X, d) are such that f(x) = x and
g(x) = x, then f ◦ g(x) = f(g(x)) = f(x) = x, and f−1(x) = x
since f(x) = x. So f ◦ g and f−1 ∈ Isom(X, d)x, so this subset is a
subgroup.

�

The group of isometries of a metric space may be very small, in fact it
may consist just of the identity. We next study a case where the group is
big.

2.1. Isometries of Euclidean Space. We study first the group of isome-
tries of R2 with the Euclidean metric d(2). In this section we’ll write simply
d for d(2), since this is the only metric we consider. The goal is to find all

isometries of (R2, d) and to describe the group structure.

2.1.1. Affine transformations. We first recall some facts from linear algebra.
A transformation L : R2 → R2 is called a linear transformation iff for all r ∈
R and for all x, y ∈ R2 we have L(rx) = rL(x) and L(x+ y) = L(x) +L(y).
This is equivalent to saying that for all r, s ∈ R and for all x, y ∈ R2, we
have L(rx + sy) = rL(x) + sL(y). Such a transformation is determined by
L((1, 0)) and L((0, 1)) since L((x1, x2)) = x1L((1, 0)) + x2L((0, 1)). This is
usually encoded in form of a 2× 2 matrix

A =

(
a b
c d

)
,

where (a, c) = L((1, 0)) and (b, d) = L((0, 1)). If (y1, y2) = L((x1, x2)), then(
y1
y2

)
=

(
a b
c d

)(
x1
x2

)
.

Note that column vectors, rather than row vectors, are used in this corre-
spondence between matrices and linear transformations. The reason is that
composition then corresponds to matrix mutliplication: If L1(x) = A1x and
L2(x) = A2x, then L1 ◦ L2(x) = L1(L2(x)) = A1A2x. So we should always
write points in Rn as column vectors rather than row vectors. But this is
typographically very clumsy, so the usual convention is to write points as
row vectors, keeping in mind that whenever matrix formulas such as y = Ax
are used, we temporarily write x, y, etc as column vectors.

The same correspondence and the same conventions are used for linear
maps L : Rn → Rm: L(x) = Ax for some n×m matrix A.



4510 NOTES 15

Definition 2.2. A map f : Rn → Rn is called an affine-linear transformation
iff there exist an n×n matrix A and a vector b ∈ Rn such that f(x) = Ax+b.

Thus an affine linear transformation is the composition of a translation
and a linear transformation. Such a transformation sends lines to lines,
planes to planes, etc.

2.1.2. Some isometries of the Euclidean plane. Some familiar isometries of
R2 are the translations, the rotations, the reflections. These are all affine
linear transformations of R2, namely, they are of the form f(x) = Ax + b
where b is a vector and A is a 2×2 matrix. We use the following terminology:

Definition 2.3. An afiine linear transformation f(x) = Ax+ b of R2 is called

(1) translation by b and denoted tb if A = I, the unit matrix. Then
f(x) = tb(x) = x+ b.

(2) A rotation about the origin counterclockwise by an angle θ, denoted
by Rθ, if b = 0 and

(2.1) A = Rθ =

(
cos θ − sin θ
sin θ cos θ

)
(3) a reflection about the line {t(cos θ2 , sin

θ
2)}, denoted by Sθ if b = 0

and

(2.2) A = Sθ =

(
cos θ sin θ
sin θ − cos θ

)
Remark 2.1. The terminology in the first two parts of the definition are
clear and familiar. The fact that Sθ is a reflection in the asserted line
will be shown in the homework. It is also clear and famliar that these
transformations are isometries of R2. This is clear for translations. For
rotations and reflections we use the fact that |Ax| = |x| for A = Rθ or
Sθ. (If you are not familiar with this fact, check it by using the fomulas
for distance and the identity cos2 θ + sin2 θ = 1. For rotations, check that
(cos θ x1−sin θ x2)

2+(sin θ x1+cos θ x2)
2 = x21+x22, with a similar check for

reflections.) Then d(Ax,Ay) = |Ax− Ay| = |A(x− y)| = |x− y| = d(x, y).
Thus A is an isometry, as is any composition f(x) = Ax+ b of isomertries.
So all the affine transformations we are considering are isometries.

Remark 2.2. The formulas for the above transformations are sometimes more
convenient by identifying R2 with C and using complex operations. In terms
of the complex variable z real affine linear transformation is of the form
f(z) = az + b or f(z) = az̄ + b where a, b ∈ C. The formula for translation
tb is the same: tb(z) = z + b. The formula for (2.1) becomes

(2.3) Rθ(z) = eiθz



16 TOLEDO

while (2.2) becomes

(2.4) Sθ(z) = eiθz̄

2.1.3. The main theorem. We want to prove that the examples f(x) = Ax+b
just discussed give all isometries of R2. The only difficulty is proving that
every isometry of R2 is an affine linear transformation. Once we know
this fact, then it is not hard to classify these transformations and obtain a
complete list.

Theorem 2.2. Let f : (R2, d) → (R2, d) be an isometry. Then f is affine-
linear: there exists a vector b ∈ R2 and a 2×2 matrix A so that f(x) = Ax+b
for all x ∈ R2.

Proof. First we make the reduction to the case f(0) = 0. Namely, let f :
R2 → R2 be an isometry, define a new isometry by g(x) = f(x) − f(0),
in other words, g(x) = t−f(0) ◦ f . Then g is an isometry with g(0) = 0,
so if we can prove that there exists a matrix A so that g(x) = Ax, then
f(x) = Ax+ b, where b = f(0).

To prove that if g is an isometry with g(0) = 0 then g(x) = Ax for
some matrix A is the same as proving that g is a linear transformation:
g(x+ y) = g(x) + g(y) and g(rx) = rg(x) for all x, y ∈ R2 and for all r ∈ R.
We will give two different proofs of this fact. The first proof is based on the
following lemma concerning certain equality sets for the triangle inequality
in R2 (straight line segments)

Lemma 2.1. Let a, b be positive real numbers. Define a subset E(a, b) of
(R2)3 (the set of triples of points of R2) by

E(a, b) = {(x, y, z) : x, y, z ∈ R2, d(x, y) = a, d(y, z) = b and d(x, z) = a+b}.

Suppose that (x1, y1, z1), (x2, y2, z2) ∈ E(a, b), and suppose that two of the
three equalities x1 = x2, y1 = y2, z1 = z2 holds. Then the third equality also
holds.

Proof. It two of the equalities hold, then both triples (x1, y1, z1) and (x2, y2, z2)
lie on the same straight line segment of length a + b and the three points
are situated on the segment in the same order and with the same distances,
so all three must coincide. To give a more detailed proof, we could divide it
into three cases:

(1) x1 = x2 = x, z1 = z2 = z: Then y1 and y2 lie on the straight line
through x and z between x and z and at distance a from x (also
distance b from z), thus y1 = y2.

(2) x1 = x2 = x, y1 = y2 = y: Then z1 and z2 lie on the straight line
through x and y on the opposite side of y from x and at distance b
from y, thus z1 = z2.
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(3) y1 = y2 = y, z1 = z2 = z: Then x1 and x2 lie on the straight line
through y and z on the opposite side of y from z and at distance a
from y, thus x1 = x2.

�

With this lemma we can now prove the theorem in two more steps:

(1) Proof that g(rx) = rg(x) for all r ∈ R and x ∈ R2: It is clear for r =
0, 1, so let’s assume r 6= 1 and consider three cases, corresponding,
in the same order, to the three cases in the proof of the lemma:
(a) 0 < r < 1: Let a = rd(0, x) and b = (1 − r)d(0, x). Then

(0, rx, x) ∈ E(a, b). Since g is an isometry with g(0) = 0,
(0, g(rx), g(x)) ∈ E(a, b). But since g is an isometry, (0, rg(x), g(x)) ∈
E(a, b). By the lemma, g(rx) = rg(x),

(b) r > 1: Let a = d(0, x) and b = (r − 1)d(0, x). Then (0, x, rx) ∈
E(a, b). Again, since g is an isometry with g(0) = 0 we get that
both (0, g(x), g(rx)), (0, g(x), rg(x) ∈ E(a, b), so by the lemma
we have g(rx) = rg(x).

(c) r < 0: Let a = |r|d(0, x) and b = d(0, x). Then (rx, 0, x) ∈
E(a, b) and again, since g is an isometry with g(0) = 0 we get
both (g(rx), 0, g(x)) and (rg(x), 0, g(x)) ∈ E(a, b), so, by the
lemma, g(rx) = g(x).

Thus g(rx) = rg(x) for all r ∈ R and for all x ∈ R2.
(2) Proof that g(x + y) = g(x) + g(y) for all x, y ∈ R2: Let x, y ∈

R2 Then (x, x+y2 , y)) ∈ E(a, a), where a = d(x, y)/2 > 0 (since
x+y
2 is the midpoint of the segment from x to y). Since g is an

isometry (g(x), g(x+y2 ), g(y)), and (g(x), g(x)+g(y)2 , g(y)) ∈ E(a, a).

By the lemma, g(x+y)
2 = g(x)+g(y)

2 , and, since g(0) = 0, by the first

part (with r = 1
2) we have g(x+y2 ) = g(x+y)

2 . Thus g(x+y)
2 = g(x)+g(y)

2 ,
and cancelling the denominators we get g(x + y) = g(x) + g(y) as
desired. This finishes the first proof of the theorem.

Another proof of the theorem is based on the following lemma, and on the
fact that we already know many isometries of R2. This is much as the proof
in section 1.4 of [10].

Lemma 2.2. Suppose f : R2 → R2 is an isometry with f((0, 0) = (0, 0),
f((1, 0)) = (1, 0) and f((0, 1)) = (0, 1). Then f = id.

Proof. We need to prove that f(x1, x2) = (x1, x2) for all (x1, x2) ∈ R2. Let

a = d((0, 0), (x1, x2), b = d((1, 0), (x1, x2)), c = d((0, 1), (x1, x2)).

Since f((x1, x2)) is at the same distances a, b, c from the three points
(0, 0), (1, 0), (0, 1) it is enough to show that a, b, c, determine (x1, x2)
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uniquely. But this is clear by squaring the distances and solving:

a2 = x21 + x22,
b2 = (x1 − 1)2 + x22 = x21 − 2x1 + 1 + x22 = a2 − 2x1 + 1,
c2 = x21 + (x2 − 1)2 = x21 + x22 − 2x2 + 1 = a2 − 2x2 + 1,

where, in the second and third equations we substituted the first. This
clearly can be solved as:

x1 = a2−b2+1
2 ,

x2 = a2−c2+1
2 .

Thus we can find x1, x2 from the three distances a, b, c, so f((x1, x2)) =
(x1, x2). �

We can now prove the theorem: Suppose f : R2 → R2 is an isometry, and
let g(x) = f(x)−f(0) as before, so that g is an isometry of R2 with g(0) = 0.
Then g((1, 0)) is at distance one from (0, 0), so g((1, 0)) = (cos θ, sin θ) for
some θ. Then g((0, 1)) = (u, v) must be at distance one from (0, 0) and at
distance

√
2 from (1, 0), which gives the equations

u2 + v2 = 1
(u− cos θ)2 + (v − sin θ)2 + 2.

Expanding the second equation and substituting the first we get

−2u cos θ − 2v sin θ = 0, equivalently, u cos θ + v sin θ = 0,

which clearly has only two solutions with u2 + v2 = 1, namely

(u, v) = (− sin θ, cos θ) or
(u, v) = (sin θ,− cos θ).

In the first case we have that g agrees on the three points (0, 0), (1, 0), (0, 1)
with the linear transformation with matrix

A = Rθ =

(
cos θ − sin θ
sin θ cos θ

)
of Equation 2.1 while, in the second case, g agrees on the same three points
with the linear transformation with matrix

A = Sθ =

(
cos θ sin θ
sin θ − cos θ

)
.

of Equation 2.2 In either case we have that the isometry A−1g sends the three
points (0, 0), (1, 0), (0, 1) to themselves, thus, by the lemma, A−1g = id or
g = A. Thus f(x) = Ax+ b, where b = f(0) and this concludes the second
proof of the theorem.

�

Remark 2.3. Observe that the first proof of Theorem 2.2 does not use the
assumption n = 2, so it is valid for any n. (The second proof could be
modified to work for every n, but we’ll not do so). So the theorem is true
in this generality, and we state it as such:



4510 NOTES 19

Theorem 2.3. Let f : (Rn, d)→ (Rn, d) be an isometry. Then f is affine-
linear: there exists a vector b ∈ Rn and a n×n matrix A so that f(x) = Ax+b
for all x ∈ Rn.

2.1.4. Orthogonal Matrices. Once we know Theorem 2.3 we can get more
detailed information. The matrix A is not arbitrary, it gives a linear trans-
formation of Rn that is an isometry (since Ax = f(x) − b and both f and
tb are isometries). In particular A preservs distance from the origin, which
means Ax ·Ax = x · x for all x, equivalently, (Ax)tAx = (xt)x, equivalently,
xtAtAx = xtx which happens for all x if and only if AtA = I. Here At

means the transpose matrix. A matrix A that satisfies AtA = I is called an
orthogonal matrix. Then AAt = I also holds (a left inverse is also a right
inverse for n × n matrices) If the equation AtA = I is written explicitly, it
says that the columns of A have length one and are pairwise orthogonal. (If
you are not familiar with this, write everything out explicitly for n = 2: if

A =

(
a b
c d

)
, write down the equation (ax1+bx2)

2+(cx1+dx2)
2 = x21+x22,

compare coefficients to get a2 + c2 = 1, b2 + d2 = 1, ab+ cd = 0, and check
that this is the same as AtA = I.)

2.2. The Euclidean and Orthogonal Groups. The equation AtA = I
is equivalent to At = A−1, so orthogonal matrices are invertible, and A−1 is
also orthogonal, since it equals At and (At)t = A and AtA = I is equivalent
to AAt = I. The product AB of two orthogonal matrices A,B is orthogonal
since (AB)t(AB) = BtAtAB = BtB = I. This means that the set of
orthogonal matrices forms a group under matrix multiplication. Also, if
A is orthogonal, then det(I) = det(AtA) = det(At) det(A) = det(A)2, so
det(A) = ±1. Moreover, since det(AB) = det(A) det(B), we have that det
is a homomorphism. Thus the following definition makes sense:

Definition 2.4. We denote by O(n) the set of orthogonal matrices, by SO(n)
the set of orthogonal matrices with determinant one, by E(n) the set of
isometries of Rn and by SE(n) the set of isometries Ax + b of Rn with
det(A) = 1. The elements of SE(n) are called the proper isometries (or the
orientation preserving isometries) of Rn. The elements of E(n) which are
not in SE(n) are called the improper isometries (or the orientation reversing
isometries) of Rn.

Remark 2.4. The notation O(n), SO(n) is standard. Unfortunately there
does not seem to be a standard notation for what we call E(n), SE(n).

We will use the notation fA,b for the isometry fA,b(x) = Ax+ b of Rn.

Definition 2.5. Define a map l : E(n) → O(n) by l(fA,b) = A. The matrix
l(f) is called the linear part of f .

Theorem 2.4. (1) The sets E(n), SE(n), O(n), SO(n) are groups (un-
der composition or matrix multiplication as the case may be).
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(2) The map l : E(n) → O(n) is a group homomorphism with kernel
the group of translations of Rn, which is a group isomorphic to the
group Rn (vector addition).

(3) The map det : O(n)→ {1,−1} is a group homomorphism with kernel
SO(n).

(4) The map det ◦l : E(n) → {1,−1} is a group homomorphism with
kernel SE(n)

Proof. We know, by Theorem 2.1, that the group of isometries of any metric
space is a group, thus E(n) is a group. We have just verified directly that
O(n) is a group. This also follows from the second part of Theorem 2.1 since
O(n) is the subgroup of E(n) that fixes the origin. That SO(n) and SE(n)
are groups will follow from (3) and (4).

To prove (2), note that fA1,b1 ◦ fA2,b2(x) = A1(A2x+ b2) + b1 = A1A2x+
b1 +A1b2, thus

(2.5) fA1,b1 ◦ fA2,b2 = fA1A2,b1+A1b2

From this we see that l(fA1,b1 ◦ fA2,b2) = A1A2 = l(A1)l(A2), thus l is a
homomorphism. Its kernel is {fA,b : A = I} = {fI,b : b ∈ Rn} which
is a sub-group of E(n), the group of translations {tb : b ∈ Rn}, which is
isomorphic to Rn since tb1 ◦ tb2 = tb1+b2 . This proves (2). Then (3) and (4)
are clear since det is a homomorphism and kernels of homomorphisms are
subgroups. �

Remark 2.5. Note that the fourth part of this Theorem says that SE(n) is a
subgroup of index 2 of E(n), so its complement in E(n), the set of improper
isometries, is a coset. This also means : the composition of two proper or
two improper isometries is proper, while the composition of a proper and
an improper isometry (in either order) is improper.

Remark 2.6. Observe that the set E(n) is in one-to-one correspondence with
the set O(n)×Rn, namely fA,b ∈ E(n)↔ (A, b) ∈ O(n)×Rn. This one-to-
one correspondence takes the product of Equation 2.5 to the product

(2.6) (A1, b1)(A2, b2) = (A1A2, b1 +A1b2).

This is a group structure on the product O(n)×Rn, but it is not isomorphic
to the product group structure

(2.7) (A1, b1)(A2, b2) = (A1A2, b1 + b2).

The group structure of Equations 2.5 and 2.6 is called a semi-direct product
of O(n) and Rn.

Remark 2.7. The subgroup Rn of translations is a normal subgroup of E(n)
since it is the kernel of a homomorphism. The group E(n) contains many
subgroups isomorphic to O(n), but none of these are normal subgroups.
For instance the subgroup O(n) itself, namely O(n) = {fA,0} ⊂ E(n) of
isometries that preserve the origin 0 is not a normal subgroup, because, for
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any fixed b 6= 0, we see that tb◦fA,0◦t−1B (x) = A(x−b)+b = fA,b−Ab /∈ O(n).
We will shortly discuss this in more detail for the case n = 2.

2.3. The Euclidean Group in 2 Dimensions. Next we classify the isome-
tries of R2 by dividing them into 4 classes according to properness and fixed
points.

2.3.1. Classification of Proper Isometries. Let f ∈ SE(2) be a proper isom-
etry of R2, and assume f 6= id. A point x ∈ R2 is called a fixed point of f
iff f(x) = x. To find fixed points it will be convenient to use the complex
notation of Equation 2.3 To solve f(z) = eiθz+ b = z is the same as solving
z − eiθz = (1 − eiθ)z = b, which can be solved iff eiθ 6= 1. So there are two
cases:

(1) f has no fixed points. This happens if and only if eiθ = 1, which is
the same as f(z) = z+ b, which is the same as f being a translation.
Thus f ∈ SE(2) has no fixed points if and only if f is a translation.

(2) f has a fixed point. This happens if and only if eiθ 6= 1, in which case
the fixed point, which we denote by c, is given by c = b

1−eiθ . Thus we

see that in this case the fixed point c is unique. The interpretation
of this fixed point is that f is a rotation with center c. This can be
seen as follows: A rotation by angle θ with center c is obtained from
the rotation Rθ about origin by first translating the whole plane by
t−c so that c moves to the origin, then applying Rθ, then translating
the whole plane back by tc so that the origin goes back to c. In
formulas, f(z) = eiθ(z− c) + c = eiθz+ (c− eiθc) = eiθ + b, thus our
solution for the fixed point found the center of rotation. In summary:
f ∈ SE(2), f 6= id, has a fixed point if and only if f is a rotation
(by a non-trivial angle) about a center c ∈ R2, and c is the unique
fixed point of f .

Remark 2.8. The interpretation of conjugation of a rotation by a translation
as translating the center of rotation gives a very clear picture of why the
subgroup SO(2) ⊂ SE(2) cannot be a normal subgroup: if it were, then
rotations about any point c would be the same collection of transformations
as the rotations about any other point c′, which we know by experience not
to be true. This explains why the group structure of SE(2) must follow the
pattern of Equation (2.6) rather than that of (2.7). Note also that SO(2)
and R2 are both abelian groups, so if SE(2) had the group law of (2.7), then
it would be abelian, which is not the case.

Remark 2.9. This example illustrates what conjugacy of isometries means.
Roughly speaking, two isometries are conjugate if they act in the same way
but maybe in different locations (as rotations by the same angle but with
two different centers) or in reference to different objects, like reflections in
different mirrors that we will see below.
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Remark 2.10. Here’s a familiar consequence of the group law of Equa-
tions (2.5) and (2.6). Take rotations about different centers, but with oppo-
site angles, say f1(x) = R−θ(x) and f2(x) = Rθ(x) + b. Then f1 ◦ f2(x) =
x + R−θb which is a translation. Thus composing rotations with different
centers (but angles adding to zero) produces a translation. This is familiar
to anybody who has had to parallel-park a car.

2.3.2. Classification of Improper Isometries. We now study the fixed points
of improper isometries f ∈ E(2) \ SE(2). These isometries are of the form
f(x) = Sθ(x) + b in real notation (2.2), or f(z) = eiθz̄ in complex notation
(2.4). We need first to understand the linear part Sθ. It is easy to check
that for all θ we have S2

θ = id, thus its eigenvalues are ±1, and since their
product is the determinant, which is −1, we must have that one eigenvalue
is 1, the other is −1. This means that there is an orthonormal basis {w1, w2}
for R2 so that Sθw1 = w1 and Sθw2 = −w2.

There is a very standard and convenient way of writing this. Let’s call v
the eigenvector w2, thus Sθ(v) = −v and |v| = 1 (this determines v uniquely
up to sign). Then it is easy to check that

(2.8) Sθ(x) = x− 2(x · v)v,

because Sθ(v) = v − 2(v · v)v = v − 2v = −v and if w⊥v, then Sθ(w) =
w − 2(w · v)v = w − 0 = w, so this linear transformation fixed everything
perpendicular to v and maps v to −v, as required. We need of course to
relate v to θ. It is a homework problem to work out that v = (− sin θ

2 , cos θ2),

which is equivalent to saying that Sθ is reflection in v⊥, the line through the
origin perpendicular to this vector, namely the line

(2.9) v⊥ = {(x1, x2) : − sin
θ

2
x1+cos

θ

2
x2 = 0} = {t(cos

θ

2
, sin

θ

2
) : t ∈ R},

as asserted when the notation Sθ was introduced in Equation (2.2). This
line v⊥ is called the mirror of the reflection Sθ, or Sθ is called the reflection
in the line v⊥. Another way to visualize Sθ is as a conjugate of S0, the
reflection in the x1-axis (in complex notation S0(z) = z̄) by the rotation
that takes the x1-axis to the mirror v⊥: Sθ(X) = R θ

2
S0R

−1
θ
2

.

The equation f(x) = Sθx+ b = x for fixed points is equivalent to x−2(x ·
v)v + b = x, in other words

(2.10) 2(x · v)v = b,

which is one equation for the two unknowns (x1, x2). There are two cases

(1) b is a multiple of v. Then this multiple must be the number b ·v, and
(2.10) has infinitely many solutions, namely the line x · v = 1

2b · v
or (x − b

2).v = 0, equivalently, x ∈ b
2 + v⊥, the translate of the

mirror v⊥ of Sθ by the vector b
2 . Geometrically, this means that f

is a reflection on the mirror b
2 + v⊥, which is parallel to the mirror
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v⊥ of Sθ. Another way to visualize f is as a conjugate of Sθ, in
a similar way as we just did with rotations about different centers:
f = t b

2
Sθt
−1
b
2

, namely, translate x by − b
2 , then reflect on v⊥ and then

translate by b
2 has the effect of reflecting in the mirror b

2 + v⊥. This

can be easily checked by formulas: the conjugate is Sθ(x− b
2) + b

2 =

Sθx+ b
2 + b

2 = Sθx+ b = f(x) where the first equality uses Sθb = −b.
(2) b is not a multiple of v. Then the equation (2.10) has no solutions,

and f has no fixed points. But there’s one distinguished line L
which is invariant under f in the sense that f(L) ⊂ L. This is the
line x · v = 1

2b · v, the translate of the mirror v⊥ of the linear part Sθ
by half the normal component of the vector b, and along this line f is
translation by the vector b− (b · v)v 6= 0 which is the component of b
in the direction of v⊥. This can be easily seen from the formula (2.8),
since x·v = 1

2b·v yields f(x) = x−2(x·v)v+b = x+(b−(b·v)v). In this
case f is called a glide reflection with axis L. Any glide reflection
is conjugate to the standard model ga(x1, x2) = (x1 + a,−x2) (or
ga(z) = z̄ + a, a ∈ R, a 6= 0 in complex notation). This is a glide
reflection along the x1-axis by a distance a.

We can summarize the classification of isometries (different from the iden-
tity) in the following table:

Proper Improper
With fixed points Rotations Reflections
Without fixed points Translations Glide Reflections

The reflections are in some sense the most basic isometries of R2 in the
sense that all isometries may be obtained by composing reflections. More
precesily:

Theorem 2.5. The composition of two reflections is:

(1) A translation if the mirrors of both reflections are parallel. Precisely,
if b is a vector perpendicular two both mirrors and of length the
distance between them, then their composition is t±b (sign depending
on the order).

(2) A rotation by angle ±2α and centered at the intersection of their
mirrors if they meet at an angle α (the sign depending on the order)

The composition of three reflections is either a reflection or a glide-reflection.
Every glide reflection can be obtained by composing three reflections, two of
the mirrors being parallel and the third perpendicular to both.

Proof. The two statements about composition of two reflections are easy
to verify. Since the composition of three reflections must be an improper
motion, the next statement follows from the classification. The last state-
ment follows by taking one mirror to be the invariant line (axis) of the glide
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reflection and the other two mirrors perpendicular to the axis placed so as
to obtain the necessary translation. �

Corollary 2.1. Every isometry of R2 can be obtained by composing one, two
or three reflections. In particular, the group E(2) is generated by reflections.

See Section 1.4 of [10] for another proof of this Corollary, and Section 1.5
for another proof of the classification theorem.

3. Topological Spaces

3.1. Topology of Metric Spaces. Let (X, d) be a metric space. We define
the following objects, with a terminology motivated by the familiar concepts
in the Euclidean plane:

Definition 3.1. Suppose (X, d) is a metric space.

(1) If x ∈ X and r > 0, the set B(x, r) = {y ∈ X : d(x, y) < r} is called
the ball of radius r centered at x. This set is sometimes called the
open ball of radius r centered at x.

(2) If x ∈ X and r ≥ 0, the set B̄(x, r) = {y ∈ X : d(x, y) ≤ r} is called
the closed ball of radius r centered at x. .

(3) If x ∈ X and r ≥ 0, the set S(x, r) = {y ∈ X : d(x, y) = r} is called
the sphere of radius r centered at x. .

Definition 3.2. A subset U ⊂ X is called an open set if and only if, for every
x ∈ U there exists r(= r(x)) > 0 so that B(x, r) ⊂ U .

Theorem 3.1. For any x ∈ X and r > 0, B(x, r) is an open set.

Proof. Let y ∈ B(x, r). We have to find ρ > 0 so that B(y, ρ) ⊂ B(x, r).
Guided by the picture in the Euclidean plane, we choose ρ = r−d(x, y). To
check B(y, ρ) ⊂ B(x, r), let z ∈ B(y, ρ), that is, d(y, z) < ρ = r − d(x, y).
Then, by the triangle inequality, d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) +
(r − d(x, y)) = r, thus d(x, z) < r, in other words, B(y, ρ) ⊂ B(x, r) as
desired. �

Example 3.1. If (X, d) = R2 with the usual Euclidean metric d(2), then the
balls and spheres are the usual balls and spheres, the open sets are the usual
open sets. Same holds for Rn, any n.

Example 3.2. If (X, d) = R2 with the taxicab metric d(1), then the balls
and spheres are not the usual Euclidean balls and spheres, but they give
the same open sets. One general principle at work here is: bi-Lipschitz
metrics give the same open sets. By this we mean (see Definition 1.5):
Suppose d, d′ are metrics on X and that there exist constants C1, C2 > 0
so that C1d

′(x, y) ≤ d(x, y) ≤ C2d
′(x, y). Then using B for d-balls and B′

for d′-balls, we get B′(x, r) ⊂ B(x,C2r) and B(x, r) ⊂ B′(x, r/C1). Then,
if U ⊂ X is d-open, x ∈ U and r > 0 is such that B(x, r) ⊂ U , then
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B′(x, r/C1) ⊂ U , so U is d′-open, similarly in the other direction. We will
see shortly that the necessary and sufficient condition for two metrics to give
the same open sets is that they be homeomorphic (see Def 1.5).

Example 3.3. Suppose X is any non-empty set and let d : X ×X → R be
the discrete metric of Example 1.7. Then

B(x, r) =

{
{x} if 0 < r ≤ 1

X if r > 1.

Thus every subset of X is open: if S ⊂ X is any subset and x ∈ S, then,
say, B(x, 12) = {x} ⊂ S, so S is open.

Example 3.4. If (X, d) is any metric space, the empty set is open. This is
a “vacuously true” statement, namely, the negation of Definition 3.2 would
begin: there exists x ∈ U so that . . . which could never be true for U = ∅.

Definition 3.3. A subset F ⊂ X is called a closed set if and only if its
complement X \ F is an open set.

Theorem 3.2. For all x ∈ X and for all r ≥ 0, the closed ball B̄(x, r) is a
closed set.

Proof. Just as with the proof of Theorem 3.1, we guide ourselves by the
Euclidean picture. Let x ∈ X and r ≥ 0. We have to prove that the
complement X \ B̄(x, r) = {y ∈ X : d(x, y) > r} is an open set. Given
y ∈ X \ B̄(x, r) we need to find ρ > 0 so that B(y, ρ) ⊂ X \ B̄(x, r).
Drawing the picture in R2 suggests trying ρ = d(x, y) − r. So suppose
z ∈ B(y, ρ), that is, d(z, y) < d(x, y) − r. Then the triangle inequality
gives d(x, y) ≤ d(x, z) + d(z, y), equivalently, d(x, z) ≥ d(x, y) − d(z, y) >
d(x, y) − (d(x, y) − r) = r, as desired (where the last inequality uses the
assumption d(y, z) < d(x, y) − r, and the inequality gets reversed when
subtracting).

�

Remark 3.1. This proof would be slightly shorter if we use an equivalent
form of the triangle inequality:

|d(x, z)− d(y, z)| ≤ d(x, y).

Geometrically, in any triangle the difference of the lengths of two sides is
at most the length of the third side. This inequality is easily derived from
the usual triangle inequality: Start from d(x, z) ≤ d(x, y) + d(y, z) and
subtract d(y, z) from both sides, getting d(x, z) − d(y, z) ≤ d(x, y). Then
interchange x, y to get d(y, z) − d(x, z) ≤ d(x, y), which together give the
above inequality.
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3.1.1. Review of some set theory. We briefly review some concepts and no-
tations from set theory that we will need often. See the first chapter of [7]
for more information.

If X is any set, we write 2X for the set of all subsets of X, what is often
called the power set of X. If X and Y are any sets and f : X → Y is any
function, we the function f−1 : 2Y → 2X is defined by

(3.1) f−1(A) = {x ∈ X : f(x) ∈ A}.

The set f−1(A) is called the inverse image of A or the pre-image of A.
Observe that it is defined for any function, it is by no means implied nor
needed that the original function f : X → Y be invertible. There is another
function associated to f , denoted by the same letter, namely f : 2X → 2Y ,
defined by

(3.2) f(A) = {f(x) : x ∈ A}

The pre-image function behaves very nicely with respect to all the set
operations, for example:

Theorem 3.3. If f : X → Y , then the following hold for all A,B ⊂ Y :

(1) f−1(A ∪B) = f−1(A) ∪ f−1(B),
(2) f−1(A ∩B) = f−1(A) ∩ f−1(B),
(3) Same for unions and intersections of arbitrary families of subsets.
(4) f−1(A \B) = f−1(A) \ f−1(B),

If, in addition, g : Y → Z, then we also have:
(5) (g ◦ f)−1 = f−1 ◦ g−1

Proof. The proofs of all these statements are straightforward verifications
using the definitions of the objects involved. We verify the last statement:
If A ⊂ Z, then x ∈ (g ◦ f)−1(A)⇔ (g ◦ f)(x) ∈ A⇔ g(f(x)) ∈ A⇔ f(x) ∈
g−1(A)⇔ x ∈ f−1(g−1(A))⇔ x ∈ f−1 ◦ g−1(A). �

We do not give corresponding statements for the image of sets f : 2X →
2Y because they are less useful, more complicated, and harder to remember.
They usually involve inclusions rather than equalities.

3.1.2. Continuous maps. Let (X, d) and (Y, d′) be metric spaces. Recall
from Definition 1.5(1) what it means for a map f : X → Y to be continuous.
The following theorem gives a very useful characterization of continuous
maps:

Theorem 3.4. A map f : (X, d) → (Y, d′) is continuous if and only if the
following holds: for each open set U ⊂ Y , its pre-image f−1(U) ⊂ X is also
open.
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Proof. One implication: Suppose f is continuous in the sense of Defini-
tion 1.5, suppose U ⊂ Y is open, and let x ∈ f−1(U). Since f(x) ∈ U and
U is open, there exists ε > 0 so that B′(f(x), ε) ⊂ U , where B′ denotes a d′-
ball. Since f is continuos, there exists δ > 0 so that if y ∈ X and d(x, y) < δ,
then d′(f(x(, f(y)) < ε, in other words, B(x, δ) ⊂ f−1(B′(f(x), ε) ⊂ f−1(U),
so f−1(U) is open.

The opposite implication: Suppose that for all open subsets U ⊂ Y , f−1(U) ⊂
X is open. Given x ∈ X and ε > 0, since B′(f(x), ε) ⊂ Y is open, thus
f−1(B′(f(x), ε) ⊂ X is open. Since x ∈ f−1(B′(f(x), ε), there exists δ > 0
so that B(x, δ) ⊂ f=1(B′(f(x), ε). But this says exactly that for all y ∈ X,
if d(x, y) < δ, then d′(f(x), f(y)) < ε. Therefore f is continuous.

�

Here are some immediate and useful cosequences:

Corollary 3.1. A map f : (X, d)→ (Y, d′) is continuous if and only if the
following holds: for each closed set F ⊂ Y , its pre-image f−1(F ) ⊂ X is
also closed.

Proof. By definition, F ⊂ Y is closed if and only if X \ F is open and by
Theorem 3.3, f−1(Y \ F ) = f−1(Y ) \ f−1(F ) = X \ f−1(F ) is open, which
happens if and only if f−1(F ) is closed. Hence all pre-images of closed sets
are closed if and only if all pre-images of open sets are open, as asserted. �

Corollary 3.2. The composition of continuos maps is continuous. Pre-
cisely, suppose f : (X, d)→ (Y, d′) and g : (Y, d′)→ (Z, d′′) are continuous.
Then the composition g ◦ f : (X, d)→ (Z, d′′) is continuous.

Proof. Using the last part of Theorem 3.3, if U ⊂ Z is open, then (g ◦
f)−1(U) = f−1(g−1(U)) which is open because g−1(U) is open (continuity
of g) and thus f−1(g−1(U)) is open (continuity of f). �

Corollary 3.3. Let f : (X, d) → (Y, d′) be a continuos map. Then f is
a homeomorphism if and only if f is bijective, and for all open subsets
U ⊂ X, f(U) ⊂ Y is open. The last condition can be replaced by: for all
closed subsets F ⊂ X, f(F ) ⊂ Y is closed.

Proof. If f is bijective, then f−1 : Y → X is defined, and if U ⊂ X is open,
then (f−1)−1(U) = f(U) is open, thus f−1 is also continuous and f is a
homeomorphism. Same reasoning with closed sets. �

Another variation of the same reasoning is:

Corollary 3.4. Let f : (X, d) → (Y, d′) be a bijective map (not assumed
continuous). Then f is a homeomorphism if and only if the following holds:
A subset A ⊂ X is open if and only if f(A) ⊂ Y is open. Equivalently: a
subset A ⊂ X is closed if and only if f(A) ⊂ Y is closed.
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The following examples show some immediate applications of the theo-
rems and corollaries just proved.

Example 3.5. One familiar example of how these characterizations of con-
tinuity are used is the following. Suppose f : Rn → R is a continuous
function. Then the following sets are open: {x : f(x) 6= 0}, {x : f(x) > 0},
{x : 1 < f(x) < 3}, etc, since they are pre-images of open sets in R, namely
they are f−1((−∞, 0)∪ (0,∞)), f−1((0,∞)), f−1((1, 3)), etc. Similarly, the
following sets are closed: {x : f(x) = 0}, {x : 0 ≤ f(x) ≤ 1}, etc, since they
are the pre-images of closed subsets of R, namely f−1({0}), f−1([0, 1]), etc.

Example 3.6. Let (X, d) be a discrete metric space as in Example 1.7 and let
(Y, d′) be any metric space. Then any map f : (X, d)→ (Y, d′) is continuous,
because, as we saw in Example 3.3, every subset of X is open. If (Y, d′) is
also discrete, then f : (X, d)→ (Y, d′) is a homeomorphism if and only if it
is bijective.

Example 3.7. Let d, d′ be two metrics on X. Then they have the same open
sets if and only if the identity map is a homeomorphism, as mentioned at
the end of Example 3.2.

3.1.3. The Collection of Open Sets.

Theorem 3.5. Let (X, d) be a metric space.

(1) Let {Uα}α∈A be a collection of open subsets of X indexed by a set
A. Then the union ∪α∈AUα is an open set.

(2) Let U1, · · · , Un be a finite collection of open subsets of X. Then their
intersection U1 ∩ · · · ∩ Un is an open set.

Proof. For (1), suppose x ∈ ∪α∈AUα. By definition of union, there exists
α0 ∈ A so that x ∈ Uα0 . Since Uα0 is open, there exists an r > 0 so that
B(x, r) ⊂ Uα−0. Then B(x, r) ⊂ ∪α∈AUα, so this last set is open.

For (2), suppose x ∈ U1∩· · ·∩Un. Then, by definition of intersection, x ∈ Ui
for i = 1, · · · , n. Since each Ui is open, there exists ri > 0 so that B(x, ri) ⊂
UI for i = 1, · · · , n. Let r = min{r1, · · · , rn}. Then B(x, r) ⊂ U1 ∩ · · · ∩Un,
so this last set is open. �

There is of course a corresponding theorem for closed sets:

Theorem 3.6. Let (X, d) be a metric space.

(1) Let {Fα}α∈A be a collection of closed subsets of X indexed by a set
A. Then the intersection ∩α∈AFα is a closed set.

(2) Let F1, · · · , Fn be a finite collection of closed subsets of X. Then
their untion F1 ∪ · · · ∪ Fn is a closed set.
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Proof. This follows directly from the last theorem and the properties of
complements of unions or intersections as intersections or unions of comple-
ments. For example, to prove ∩α∈AFα is closed if each Fα is closed, need to
show that X \ ∩Fα is open. But X \ ∩Fα = ∪(X \ Fα) which is a union of
open sets (since each Fα is closed), hence open by the last theorem. �

3.2. Topologies and Continuity. It turns out that a very good way of
discussing continuity is to turn the last theorems into definitions.

Definition 3.4. Let X be any non-empty set. A subset T ⊂ 2X is called a
topology on X if and only if the following hold:

(1) ∅ ∈ T and X ∈ T .
(2) If A is any index set and for each α ∈ A, Uα ∈ T , then ∪α∈AUα ∈ T .
(3) If U1, · · · , Un ∈ T , then U1 ∩ · · · ∩ Un ∈ T .

Briefly, a topology on X is a collection of subsets of X that contains ∅ and
X, and which is closed under the operations of arbitrary union and finite
intersection.

Definition 3.5. A topological space is a pair (X, T ) where X is a non-empty
set and T is a topology on X.

Definition 3.6. Let (X, T ) be a topological space. A subset U ⊂ X is called
an open set (or, if more than one topology is being discussed, a T -open set)
if and only if U ∈ T . A subset F ⊂ X is called a closed set (or a T -closed
set if needed) if and only if X \ F ∈ T .

In other words, the elements of T ⊂ 2X are the subsets of X that we
decide to call open sets. Their complements in X are the subsets that we
decide to call closed sets.

Remark 3.2. An equivalent way of defining a topology on X would be to
give the collection of its closed sets. Namely, suppose we have a collection
C ⊂ 2X with the properties:

(1) ∅ ∈ C and X ∈ C.
(2) If A is any index set and for each α ∈ A, Fα ∈ C, then ∩α∈AFα ∈ C.
(3) If F1, · · · , Fn ∈ C, then F1∪, · · · , Fn ∈ C.

(briefly, C contains ∅, X, and is closed under arbitrary intersections and
finite unions), then C is the collection of open sets of a unique topology T
on X, namely

T = {X \ F : F ∈ C}.

Sometimes it is more convenient to define a topology on X by defining the
collection of closed sets rather than the collection of open sets.
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Definition 3.7. Let (X, T ) and (Y, T ′) be topological spaces. A map f :
X → Y is called continuous if and only if, for all U ∈ T , we have that
f−1(U) ∈ T . A map f : X → Y is called a homeomorphism if and only if it
is continuous, f−1 exists, and f−1 is continuous.

Thus a map f : X → Y is called continuous if and only if the pre-image
of each T ′-open set in Y is a T -open set in X.

Remark 3.3. Just as in the notation we explained in Remark 1.4, we use the
notation f : (X, T )→ (Y, T ′) to mean:

(1) f : X → Y ,
(2) In the whole discussion, the topology T is being used in the domain

X and the topology T ′ is being used in the target Y .

Just as in the case of metric spaces, this notation is particularly important
when X = Y but T 6= T ′.

Just as with Corollary 3.1, we have the following characterization of con-
tinuity (with the same proof):

Theorem 3.7. A map f : (X, T )→ (Y, T ′) is continuous if and only if the
preimage f−1(F ) of each T ′-closed set F ⊂ Y is a T -closed subset of X.

Just as with Corollary 3.2. we have that the composition of continuous
maps is continuous (again with the same proof):

Theorem 3.8. Let (X, T ), (Y, T ′) and (Z, T ′′) be topological spaces. Let
f : (X, T ) → (Y, T ′) and g : (Y, T ′) → (Z, T ′′) be continuous maps. Then
the composition g ◦ f : (X, T )→ (Z, T ′′) is continuous.

3.2.1. Examples of Topological Spaces.

Example 3.8. Let (X, d) be any metric space, and let Td be the collection of
open sets as defined in Definition 3.2. Then, by Theorem 3.5, the collection
Td ⊂ 2X is a topology on X.

Example 3.9. In the special case that X = Rn and d is the Euclidean met-
ric of Example 1.3 we call the resulting metric topology Td the Euclidean
topology and denote it by TE .

Example 3.10. Let X be any non-empty set and let Tdisc = 2X . This is
called the discrete topology on X. Every subset of X is open. Note that this
is a special case of the last example, namely Tdisc is the same as the metric
topology of the discrete metric, see Examples 1.7 and 3.3.

Example 3.11. Let X be any non-empty set and let Tind = {X, ∅}. This
example is at the opposite extreme of the last one: it is the smallest collection
in 2X that satisfies Definition 3.4, while the last example gave the largest
one. This is often called the indiscrete topology.
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Example 3.12. Let X = {a, b} be a two element set. Then besides the dis-
crete and indiscrete topologies on X there are precisely two other topologies:
{∅, {a}, X} and {∅, {b}, X}, see Example 4 in p. 72 of [7].

Example 3.13. Let X be any infinite set and let TCF ⊂ 2X be defined by

U ∈ TCF if and only if

{
U = ∅ or

X \ U is a finite set.

The subscript CF stands for “complement of finite sets”. This topology is
perhaps more natural to define in terms of it closed sets, namely F ⊂ X is
TCF -closed if and only if either F = X or F is a finite subset of X.

It is instructive to check that TCF is a topology. It is more natural to check
that the collection of TCF -closed sets satisfies the properties of Remark 3.2.
In this paragraph, let “closed” always mean TCF -closed. Clearly X and ∅
are closed. Suppose {Fα}α∈A is a collection of closed sets. If there exists
α0 ∈ A so that Fα0 6= X, then Fα0 is a finite set, and hence ∩αFα ⊂ Fα0 is
finite, hence closed. Otherwise, ∩αFα = X, which is also closed. Similarly,
if F1, · · · , Fn is a finite collection of closed sets, then its union is either X
(if one of the Fi = X) or a finite set (otherwise), hence also closed.

Example 3.14. In the special case X = R we will call the topology TCF
the Zariski topology and denote it TZ . This is a special case of the Zariski
topology widely used in algebraic geometry, in which closed sets are common
zeros of polynomials.

3.2.2. Examples of Continuous Maps. Let (X, T ) and (Y, T ′) be topological
spaces. It should be reasonable from the definition of continuity that, for a
map f : X → Y , having many open sets in T or few open sets in T ′ should
make it easy for f to be continuous, while having few open sets in T or
many in T ′ should make continuity hard. Let’s see some examples.

Example 3.15. Let T be the discrete topology Tdisc. Then for any T ′ and
for any map f : X → Y , we have that f : (X, Tdisc)→ (Y, T ′) is continuous.
For, given any U ∈ T ′, we have that f−1(U) ⊂ X, hence f−1(U) ∈ Tdisc,
and f is continuous.

Example 3.16. Let T ′ be the indiscrete topology Tind. Then for any topology
T and for any map f : X → Y , we have that f : (X, T ) → (Y, Tind) is
continuous. For, if U ∈ Tind, then either U = ∅ or U = Y , so f−1(U) = ∅ or
X, in both cases elements of T , so f is continuous.

Example 3.17. Let (X, T ) and (Y, T ′) be arbitrary, and let f : X → Y be
a constant map: f(x) = y0 for all x ∈ X. Then f is continuous: If u ∈ T ′,
then

f−1(U) =

{
X if y0 ∈ U,
∅ otherwise.

In either case f−1(U) ∈ T and f is continuous.
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Example 3.18. Sometimes the only continuous maps are constant. For ex-
ample, let X be any set but T = Tind, and let (Y, T ′) = (R, TE). If
f : (X, T ) → (R, TE) is continuous, then, for any y ∈ R, f−1({y}) is ei-
ther ∅ or X. Since f is a function, this means that for some y0 ∈ R,
f−1({y0}) = X, in other words, f(x) = y0 for all x ∈ X and f is a constant
function. We will later see (after the discussion of connectedness) that if
T ′ = Tdisc, then any continuous map f : (R, TE)→ (Y, Tdisc) is constant.

Example 3.19. Suppose X = Y . Then id : (X, T )→ (X, T ′) is continuous if
and only if T ′ ⊂ T . For example, id : (R, TE)→ (R, TZ) is continuous (since
finite sets are closed in the Euclidean topology), while id : (R, TZ)→ (R, TE)
is not continuous (since there are Euclidean closed sets that are neither finite
nor all of R).

Example 3.20. Let f, g : R→ R be defined by f(x) = x2 and g(x) = sin(x).
Both are continuous functions (R, TE) → (R, TE). Check the following:
both are continuous functions (R, TE) → (R, TZ); f : (R, TZ) → (R, TZ) is
continuous, while g : (R, TZ)→ (R : TZ) is not continuous.

3.3. Limits.

3.3.1. Neighborhoods and Limits. Let (X, T ) be a topological space.

Definition 3.8. Let x ∈ X. A subset U ⊂ X is called a neighborhood of x if
and only if U is open and x ∈ U .

Remark 3.4. Many authors use the terminology open neighborhood for what
we have called a neighborhood, and use the word neighborhood of x to mean
a set which contains an open set containing x.

Neighborhoods can be used much as balls to extend the definitions of
various familiar concepts of metric spaces. But some care is needed. For
example, we could be tempted to make the following definition:

Definition 3.9. Let {xn} be a sequence in (X, T ). (Recall that this means
that we have a function N → X that to n ∈ N assigns xn ∈ X.) If x ∈ X,
we say that {xn} converges to x if and only if for every neighborhood U of
x there exists N ∈ N so that xn ∈ U whenever n > N .

Then we are tempted to write lim{xn} = x. We have to be careful with
this notation, since this definition need not give us what we think it does.
If we write lim{xn} = x, we are tacitly assuming that limits are unique,
that is, if {xn} converges to x and converges to y, then x = y, as we know
to be true for metric spaces, see Theorem 1.3. Now consider the following
example:

Example 3.21. Consider (R, TZ) as in Example 3.14, and let xn = n. Pick
any x ∈ R, say pick x = 7. Then {n} converges to 7: if U is a neighborhood
of 7 and U 6= R, then U = R \ F for some finite set F ⊂ R, and 7 6= F . Let
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M be the largest element of F . Then, if n > M , then n /∈ F , thus n ∈ U .
So {n} converges to x = 7. The same argument holds for any x ∈ R. So for
any x ∈ R, {n} converges to x. Thus limits are not unique, and the notation
lim{n} = x does not make sense.

3.3.2. Hausdorff Spaces, Metrizable Spaces. The proof of Theorem 1.3 could
be rephrased so that it depends on the following: if (X, d) is a metric space,

x, y ∈ X and x 6= y, and c = d(x,y)
2 , then B(x, c)∩B(y, c) = ∅. This suggests

the following condition for the uniqueness of limits:

Definition 3.10. A topological space (X.T ) is called a Hausdorff space if and
only if given any two points x, y ∈ X, x 6= y, there exists a neighborhood
Ux of x and a neighborhood Uy of y so that Ux ∩ Uy = ∅.

Theorem 3.9. Let (X, T ) be a Hausdorff space, and let {xn} be a sequence
in X. If {xn} converges to x and converges to y, then x = y.

Proof. Suppose {xn} converges both to x and y and x 6= y. Then there
exist neighborhoods Ux, Uy of x, y respectively so that Ux ∩ Uy = ∅. Since
{xn} converges to x and y there exist N1, N2 ∈ N so that xn ∈ Ux for all
n > N1 and xn ∈ Uy for all n > N2. Thus for all n > max(N1, N2) we have
xn ∈ Ux ∩ Uy, contradicting Ux ∩ Uy = ∅ �

Finally, the following terminology is useful and standard:

Definition 3.11. A topological space (X, T ) is metrizable if and only if there
exists a metric d on X so that T = Td, the metric topology.

Theorem 3.10. Suppose (X, T ) is a metrizable topological space. Then it
is Hausdorff.

Proof. Let d be a metric on X so that Td = T . If x, y ∈ X and x 6= y, then
d(x, y) > 0 and if 2c = d(x, y), then, by the triangle inequality, B(x, c) and
B(y, c) are disjoint neighborhoods of x and y. �

Example 3.22. The discussion of Example 3.21 shows that (R, TZ) is not a
Hausdorff space. In fact, if U and V are any two non-empty open sets, then
U ∩ V 6= ∅ since it is the complement of a finite set.

3.3.3. Interior, Closure, Boundary.

Definition 3.12. Let (X, T ) be a topological space and let A ⊂ X.

(1) The interior of A, denoted by A◦ is defined by

A◦ = ∪{U ⊂ X : U is open in X and U ⊂ A}.

Equivalently, A◦ is the largest open set contained in A.
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(2) The closure of A, denoted by Ā is defined by

Ā = ∩{F ⊂ X : F is closed and A ⊂ F}.
Equivalently, Ā is the smallest closed set containing A.

(3) The boundary (also called frontier of A), denoted by ∂A, is defined
by ∂A = Ā \A◦.

These sets have the following alternative characterizations:

Theorem 3.11. Let A ⊂ X.

(1) x ∈ A◦ if and only if there exists a neighborhood U of x with U ⊂ A.
(2) x ∈ Ā if and only if for every neighborhood U of x, U ∩A 6= ∅.
(3) x ∈ ∂A if and only if for every neighborhood U of x, U ∩A 6= ∅ and

U ∩ (X \A) 6= ∅.
(4) A is open if and only if A = A◦ and A is closed if and only if A = Ā.

Proof. For the first part, the definition x ∈ A◦ ⇔ x ∈ U for some U open,
U ⊂ A, which is equivalent to U being a neighborhood of x contained in A.
For the second part, from the definition we see that x /∈ Ā⇔ x ∈ X \ F for
some F closed so that A ⊂ F ⇔ x has a neighborhood U (namely, X \ F )
so that U ∩ A = ∅, which is the negation of the second statement, thus
proving this statement. The third statement is equivalent, by the first two
statements, to x ∈ Ā \A◦, thus x ∈ ∂A. The fourth statement is clear from
the definitions. �

Definition 3.13. If A ⊂ X and x ∈ X, then x is called a limit point of A if
and only if it satisfies condition (2) of Theorem 3.11: for every neighborhood
U of x, U ∩A 6= ∅.

Thus a set is closed if and only if it contains all its limit points. In a metric
space, if x is a limit point of A, for every n ∈ N we could take U = B(x, 1n
and obtain that for each n ∈ N there exists xn ∈ A with d(x, xn) < 1

n . Thus
x is the limit of the sequence {xn}.

3.4. Basis for a Topology. Let (X, T ) be a topological space.

Definition 3.14. A subset B ⊂ 2X is called a basis for T if and only if every
element of T is a union of elements of B. More explicitly, B is a basis if and
only if, for each open set U ∈ T and for every x ∈ U there exists B ∈ B
such that x ∈ B and B ⊂ U .

Example 3.23. Suppose (X, d) is a metric space. Then

B = {B(x, r) : x ∈ X, r > 0}
is a basis for Td, the metric topology, and so is

B′ = {B(x,
1

k
) : x ∈ X, k ∈ N}.
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The fact that B is a basis is immediate from the definition of open sets in
(X, d). To show that B′ is a basis, it is enough to show that for each U
open in (X, d) and for each x ∈ U there exists k ∈ N so that B(x, 1k ) ⊂ U .
This is easy to do: by the definition of open set, there exists r > 0 so that
B(x, r) ⊂ U . Choose k ∈ N so that 1

k < r. Then B(x, 1k ) ⊂ B(x, r) ⊂ U , so
we are done. This shows that B′ is also a basis for Td.

Example 3.24. Specializing the above example to Rn with d each of the
metrics d(1), d(2), d(∞) we obtain a basis Bd for the topology of Rn by balls
of different shapes and all possible radii, and the corresponding balls B′d of
radii reciprocals of natural numbers. Moreover, for each of these metrics d
could also use the collection

B∗d = {Bd(x,
1

k
) : x ∈ Qn, k ∈ N}.

Note that the centers of the balls have all their coordinates rational. The
interest of these collections is that it each is a countable collection that
generates the uncountable collection of open sets in Rn.

We now prove that B∗d is a basis for the Euclidean topology TE on Rn.
To prove this it is enough to prove that any ball B(x, r) in the metric d
is a union of elements of B∗d, in other words, given any y ∈ B(x, r) there

exists x ∈ Qn and k ∈ N so that y ∈ B(z, 1k ) ⊂ B(x, r). Since there exists
an r′ so that B(y, r′) ⊂ B(x, r) (can take r′ = r − d(x, y), see the proof of
Theorem 3.1), it enough to find z, k so that y ∈ B(z, 1k ) ⊂ B(y, r′), in other
words, just need to check the statement for y = x the center of the ball.
To reiterate, it suffices to prove that for all x ∈ Rn and for all r > 0 there
exists z ∈ Qn and k ∈ N so that x ∈ B(z, 1k ) ⊂ B(x, r).

Suppose we know the density of Qn in Rn: for all x ∈ Rn and for all
ε > 0 there exists z ∈ Qn so that d(x, z) < ε. Then the above statement is
easy to prove: Given x and r, there exists z ∈ Qn such that d(x, z) < r

2 and

there exists k ∈ N so that 1
k <

r
2 . Then, if d(y, z) < 1

k , then

d(y, x) ≤ d(y, z) + d(z, x) <
r

2
+
r

2
= r

Thus x ∈ B(z, 1k ) ⊂ B(x, r), as desired, so B∗d is a basis for Rn.

We assume that the density statement is known for R: for all x in R
and all ε > 0 there exists z ∈ Q so that |x − z| < ε. The statement
immediately follows for Rn and the metric d(∞) by applying the statement
for R in each coordinate: for any x = (x1, · · · , xn) ∈ Rn and ε > 0, for each
i there exists zi ∈ Q so that |xi − zi| < ε, thus, letting z = (z1, · · · , zn),
d(∞)(x, z) = max{|xi − zi|} < ε. Finally, it d is d(1) or d(2), then use the
comparisons of Example 1.13. For example, given x and ε, to find z ∈ Qn

with d(2)(x, z) < ε, find z ∈ Qn with d(∞)(x, z) < ε√
n

, then by (2) of

Example 1.13, d(2)(x, z) < ε.
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Remark 3.5. One use of a basis is that many statements have only to be
checked for elements of the basis. For example, if we are given a basis
BY for Ty, to check that a map f : (X, TX) → (Y, Ty) is continuous it is
enough to check that f−1(B) is open for all B ∈ BY . Namely, if U is
open in Y , then U = ∪αBα for some collection {Bα} of elements of B, thus
f−1(U) = f−1(∪αUα) = ∪αf−1(Bα) is open in X since it is a union of open
sets.

Another example of the same principle: x is a limit point of A if and only
if B ∩A 6= ∅ for all B ∈ B so that x ∈ B.

3.4.1. Defining a Topology from a Basis. It is important to be able to re-
verse the above procedure. In other words: take a non-empty set X and a
collection B ⊂ 2X , and try to define a topology on X by declaring B to be
a basis. More precisely, given B, define T ⊂ 2X to be the set of all unions
of elements of B, that is, define U ⊂ X to be an element of T if and only
if for all x ∈ U there exists B ∈ B so that x ∈ B and B ⊂ U . We need to
know that this is a topology, namely that it satisfies the three properties of
Definition 3.4. It is clear that half of (1) and (2) are satisfied: ∅ ∈ T and
T is closed under arbitrary unions. But it need not be true that X ∈ T or
that (3) is satisfied: T need not be closed under finite intersections. But if
we add these as an assumption, then T is a topology with basis B:

Theorem 3.12. Let X be a non-empty set and let B ⊂ 2X be a collection
of subsets that satisfies:

(1) For every x ∈ X there exists B ∈ B such that x ∈ B.
(2) For every B1, B2 ∈ B and for every x ∈ B1 ∩ B2 there exists B ∈ B

such that x ∈ B and B ⊂ B1 ∩B2.

Let T = {U ⊂ X : for all x ∈ U there exists B ∈ B with x ∈ B and B ⊂ U}.
Then T is a topology on X and B is a basis for T .

Proof. The first condition says that X ∈ T and the second condition implies
that T is closed under intersections of two sets: if U1, U2 ∈ T and x ∈ U1∩U2,
then there exist B1, B2 ∈ B so that x ∈ B1 ⊂ U1 and x ∈ B2 ⊂ U2. Since
x ∈ B ⊂ B1∩B2 ⊂ U1∩U2, we have that U1∩U2 ∈ T whenever U1, U2 ∈ T .
A straightforward induction argument then implies that (3) of Definition 3.4
holds. It is clear that ∅ ∈ T , and, if for all α ∈ A we have Uα ∈ T , and if
x ∈ ∪α∈AUα, then x ∈ Uα0 for some α0 ∈ A, so there exists B ∈ B so that
x ∈ B ⊂ Uα0 ⊂ ∪α∈AUα, thus ∪α∈AUα ∈ T and (2) of Definition 3.4 is also
satisfied. Thus T is a topology on X. By the definition of T it is clear that
B is a basis for T . �

3.4.2. The Product Topology. Let (X, TX) and (Y, TY ) be topological spaces.
There is a natural way to topologize the product X × Y , but this natural
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way requires the concept of basis. Let

(3.3) B = {U × V : U ∈ TX and V ∈ TY }
It is easy to check that B satisfies the conditions of Theorem 3.12. Namely,
if (x, y) ∈ X × Y , since X × Y ∈ B, (1) is clearly satisfied. If B1 = U1 × V1
and B2 = U2 × V2 and (x, y) ∈ B1 ∩ B2, then x ∈ U1 ∩ U2 and y ∈ V1 ∩ V2,
so letting B = (U1 ∩ U2) × (V1 ∩ V2), we have that (x, y) ∈ B ⊂ B1 ∩ B2,
thus (2) is also satisfied, and B is the basis for a unique topology TX×Y on
X × Y . This topology is called the product topology on X × Y .

Note that this collection B is actually closed under finite intersections,
because of the identity (which holds for arbitrary subsets of X and Y , not
just open sets):

(3.4) (U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2)
that we used above to prove (2). But B is not closed under unions. This is
easily visualized in R2 = R × R. The elements of B are “rectangles ” but
unions of rectangles need not be rectangles.

Remark 3.6. We could modify the definition of B in Equation 3.3 by letting
BX be a basis of TX and TY be a basis for TY and defining B′ ⊂ B by

B′ = {U × V : U ∈ BX and V ∈ BY }
It is easy to check that B′ also satisfies the conditions of Theorem 3.12 and
that B′ is also a basis for the product topology TX×Y . These verifications
are left as an exercise. They depend, of course, on the above identity (3.4)
for intersections of products.

Remark 3.7. In Subsection 1.2.2 we defined the cartesian product of metric
spaces. The metric topology resulting from that definition and the product
topology just defined are the same topology. It would be an instructive exer-
cise to verify this. Keep in mind the basic example of R×R and (R2, d(∞)).

Here are two useful properties of the product topology. We use the nota-
tion pX and pY for the projection maps pX : X×Y → X and pY : X×Y → Y
defined by pX(x, y) = x and pY (x, y) = y.

Theorem 3.13. Let (X, TX), (Y, TY ) and (Z, TZ) be topological spaces.

(1) The product topology TX×Y is the smallest topology that makes both
projections pX and pY continuous.

(2) A map f : Z → X × Y is continuous with respect to the product
topology if and only if both compositions pX ◦ f and pY ◦ f are con-
tinuous.

Proof. For the first part we note that pX : X × Y → X is continuous if and
only if for all open U ⊂ X, U × Y is open in X × Y . Since this is open in
the product topology, pX is continuous. Similarly, pY is continuous if and
only if for all open V ⊂ Y , X × V is continuous, so pY is also continuous
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in the product topology. Moreover, if T is any topology which makes pX
and pY continuous, then it must contain all the sets {U × Y : U ∈ TX} and
{X × V : V ∈ TY }, therefore T must contain all their two-fold intersections
{U ×V : U ∈ TX and V ∈ TY }. Since this is a basis for TX×Y we must have
TX×Y ⊂ T , thus proving the first statement.

For the second part, first note that f continuous certainly implies that
pX ◦f and py ◦Y are continuous, since compositions of continuous maps are
continuous. For the converse, if pX ◦ f is continuous, then (pX ◦ f)−1(U) =
f−1◦p−1X (U) = f−1(U×Y is open for each U ∈ TX and similarly f−1(X×V )
is open for all V ∈ TY , thus the same is true for their intersections: all
f−1(U×V ) are open. Since these sets form a basis for TX×Y , f is continuous.

�

4. Subspaces and Quotient Spaces

Let X and Y be sets and let f : X → Y be a map. We know from
Examples 3.15 and 3.16 that f is continuous if either the discrete topology
is given to X (the largest possible topology) or if the indiscrete topology
is given to Y (the smallest possible topology). We want to find optimal
intermediate topologies that make f continuous under the assumption of a
given topology on the domain or target.

Theorem 4.1. Let X and Y be sets and let f : X → Y .

(1) Given a topology TY on Y there is a smallest topology TX on X that
makes f continuous, namely TX = {f−1(U) : U ∈ TY }.

(2) Given a topology TX on X there is a largest topology TY that makes
f continuous., namely TY = {U ⊂ Y : f−1(U) ∈ TX}. (In this case
we usually only consider the case where f is surjective.)

Proof. To prove (1), note that if we let TX be as in the statement, then
X = f−1(Y ) ∈ TX and ∅ = f−1(∅) ∈ TX . Since f−1(∪Uα) = ∪f−1(Uα) and
f−1(U)∩ f−1(V ) = f−1(U ∩ V ) it follows that TX is closed under arbitrary
unions and finite intersections (since TY is), thus TX is a topology on X. If
T is any topology on X so that f is continuous, then for all U ∈ TY we have
that f−1(U) ∈ T . Therefore TY ⊂ Y , in other words, TY is the smallest
topology making f continuous.

To prove (2), we check, using the same ingredients as in the first part, that
TY is a topology on Y . If T is any topology on Y so that f is continuous,
then, given U ∈ T , we must have that f−1(U) ∈ TX , in other words, U ∈ TY ,
therefore T ⊂ TY and TY is the largest topology that makes f continuous.

Note that if U ⊂ Y \ f(X) is any subset, then f−1(U) = ∅ ∈ TX , thus
U ∈ TY . Thus TY gives Y \ f(X) the discrete topology. Since this has
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nothing to do with the map f , it is only reasonable to consider the case
where f is surjective in part (2).

�

Remark 4.1. By taking complements, we could equally well have defined
the topologies of Theorem 4.1 in terms of closed sets. In other words, for
part (1), we could have defined TX as the topology whose closed sets are
{f−1(F ) : F ⊂ Y is closed in TY }. Recall that this means that TX =
{X \ f−1(F ) : F ⊂ Y is closed in TY }. Then TX is a topology on X and it
is the smallest topology that makes f continuous.

Similarly, for part (2) of Theorem 4.1, we could define TY as the topology
whose closed sets are {F : f−1(F ) is closed in TX}. The equivalence of the
two definitions in both parts follows, as usual, from the identity f−1(Y \F ) =
X \ f−1(F ).

4.1. The Subspace Topology. We specialize the first part of Theorem 4.1
to the case that X ⊂ Y and f is the inclusion. The resulting topology of
X is called the subspace topology. More explicitly, observing that in this
case, for U ⊂ Y , f−1(U) = U ∩X, we get the following description of the
topology:

Definition 4.1. Let (Y, TY ) be a topological space, and let X ⊂ Y . The
subspace topology TX on X is defined to be TX = {U ∩X : U ∈ TY }.

The subspace topology can be hard to picture. We give a couple of situ-
ations where it is a familiar topology.

Recall that in (1.2.1) we defined a subspace of a metric space. in the
present context, suppose TY is the metric topology of a metric d on Y and
let d′ = d|X×X be the subspace metric on X.

Theorem 4.2. Let (Y, d) be a metric space, let X ⊂ Y and TY = Td the met-
ric topology. Then the subspace topology TX agrees with the metric topology
Td′ of the subspace metric d′ = d|X×X .

Proof. Observe that if x ∈ X and r > 0, then BX(x, r) = {y ∈ X : d(x, y) <
r} = {y ∈ Y : d(x, y) < r}∩X = BY (x, r)∩X, thus BX(x, r) is open in the
subspace topology, thus any open set in the metric topology is open in the
subspace topology. Conversely, if U ⊂ X is open in the subspace topology
and x ∈ U , then there exists an open set V ⊂ Y so that U = V ∩ X.
Since V is open, there exists r > 0 so that BY (x, r) ⊂ V . Then BX(x, r) =
BY (x, r)∩X ⊂ U = V ∩X, thus U is open in the metric topology of X. �

Another situation where it is simple to see the subspace topology is the
following:
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Theorem 4.3. Suppose X is open in Y . Then a subset U ⊂ X is open in
X if and only if it is open in Y . Similarly, if X is closed in Y , a subset
F ⊂ X is closed in X if and only if it is closed in Y .

Proof. Suppose X is open in Y and U ⊂ X is open in X. Then there exists
an open set V ⊂ Y such that U = X ∩V . Since X is open in Y , so is X ∩V ,
so U is open in Y . Conversely, if U ⊂ X is open in Y , then U = X ∩ U is
open in X. The proof for closed subsets is similar. �

4.2. The Quotient Topology. We now turn to the second part of Theo-
rem 4.1. This theorem justifies making the following definition:

Definition 4.2. Let (X, TX) be a topological space and let f : X → Y .

(1) The quotient topology, also called the identification topology on Y is
the topology Ty = {U ⊂ Y : f−1(U) ∈ TX}.

(2) A surjective continuous map f : X → Y between topological spaces
(X, TX) and (Y, TY ) is called an identification if TY is the quotient
(or identification) topology just defined.

Let us keep some concrete examples in mind as we develop this concept.

Example 4.1. Let S1 ⊂ R2 be the unit circle. Define f : R → S1 by
f(t) = (cos t, sin t). Let f1 = f |[0,2π] : [0, 2π] :→ S1 and let f2 = f |[0,2π) :

[0, 2π) → S1. All three of f , f1 and f2 are continuous surjections. Let’s
prove that f and f1 are identifications, but f2 is not. To show that a
continuous map f is an identification is the same as showing that for all
subsets A of the target, f−1(A) open implies that A is open. For f this is
true, because f has the property that for any open V ⊂ R, f(V ) is open
in S1. This is clear because it is clear that small (meaning, say, of length
less than π) open intervals in R have open image in S1, and all open sets
are unions of small intervals. So, if A ⊂ S1 has the property that f−1(A) is
open in R, then f(f−1(A)) is open in S1. But for a surjective map we have
that f(f−1)(A) = A, thus A is open.

To prove that f1 is an identification, let A ⊂ S1 and suppose f−11 (A) is

open in [0, 2π]. If t ∈ f−11 (A), we consider two cases:

(1) t ∈ (0, 2π). Then there exists ε > 0 so that (t − ε, t + ε) ⊂ (0, 2π)
and f1((t− ε, t+ ε)) is a neighborhood of f(t) contained in A.

(2) t = 0 or t = 2π. Then we must have that the other endpoint 2π or 0
is also in f−11 (A), since f1(0) = f1(2π) = (1, 0) ∈ S1. Then there is

an ε > 0 so that [0, ε)∪ (2π− ε] ⊂ f−11 (A), therefore f1([0, ε)∪ (2π−
ε, 2π]) = f((−ε, ε)) is a neighborhood of f1(t) which is contained in
A.

Therefore, in both cases we found a neighborhood of each point of A which
is contained in A, so A is an open set and f1 is an identification.
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But for f2 the situation is different: If A = {(cos t, sin t) : 0 ≤ t < π}, then
A is not open in S1 but f−12 (A) = [0, π) which is open in [0, 2π). Therefore
f2 is not an identification.

Let us formalize the proof just given that f is an identification:

Definition 4.3. A map f : X → Y of topological spaces is called an open
map if and only if, for all open U ⊂ X, f(U) ⊂ Y is open. Similarly, f is
called a closed map if and only if, for all closed F ⊂ X, f(F ) ⊂ Y is a closed
set.

Example 4.2. Let f : R2 → R be defined by f(x, y) = x (projection to the
first factor). Then f is an open map (because f(B(x, y), r) = (x− r, x+ r)
is open in R and the collection {B((x, y), r) : (x, y) ∈ R2, r > 0} is a basis
for the topology of R2). But f is not a closed map: let F = {xy = 1} (a
hyperbola). As the zero set of a continuous function it is a closed set, but
f(F ) = {x 6= 0} which is not closed in R.

The argument given for f in Example 4.1 shows the following:

Theorem 4.4. Let X and Y be topological spaces and let f : X → Y
be a continuous surjection and an open map. Then f is an identification.
Similarly, if f : X → Y is a continuous surjection and a closed map, then
f is an identification.

Proof. We have to prove that U ⊂ Y is open if and only if f−1(U) is open.
Since f is continuous, U open implies that f−1(U) is open. Since f is an
open map, f−1(U) open implies that f(f−1(U)), and since f is surjective,
f(f−1(U)) = U , thus U is open. Similarly, if f is a continuous surjection
and a closed map, we prove in the same way that F ⊂ Y is closed if and
only if f−1(F ) is closed, hence, by Remark 4.1, Y has the quotient topology
and f is an identification.

�

Remark 4.2. Theorem 4.4 gives sufficient conditions for f to be an identi-
fication. But these are not necessary conditions. For example, the map f1
of Example 4.1 is not an open map: [0, π) is open in [0, 2π] but f1([0, π))
is not open in S1. Also the map f of the same example is open but not
closed: Let F = { 1n + 2πn : n ∈ N}. Then F is a discrete subset of R, hence

closed, but f(F ) = {(cos( 1
n), sin( 1

n))} is not closed since it does not contain
its limit point (1, 0).

The reason that the terms “quotient” or “identification” topology are
used is that we often apply this to quotients by equivalence relations. We
could also think of quotients as making suitable identifications. We could
say the following:

Remark 4.3. Let X and Y be two sets. Then the following are equivalent:



42 TOLEDO

(1) A surjective map f : X → Y .
(2) A partition of X into disjoint sets indexed by Y , that is, a collection
{Xy}y∈Y where, for each y, Xy ⊂ X, X = ∪y∈YXy, and Xy1∩Xy2 =
∅ whenever y1 6= y2.

(3) An equivalence relation on X with equivalence classes in one to one
correspondence with Y .

The equivalences are easy to see: Given (1), define the partition in (2) by
Xy = f−1(y), and given the partition (2), define f : X → Y by f(x) = y
if and only if x ∈ Xy. Thus (1) is equivalent to (2). Similalrly, given a
partition (2), define an equivalence relation on X by x1 ∼ x2 if and only
if there is a y ∈ Y so that x1 ∈ Xy and x2 ∈ Xy. This is easily checked
to be an equivalence relation, and its equivalence classes are in one to one
correspondence with Y , thus we have (3). Finally, given (3), define the
partition of X to be the equivalence classes. Since these are in one to one
correspondence with Y , we can label them as {Xy}y∈Y , and this gives (2).

The following theorem gives a useful characterization of the quotient
topology.

Theorem 4.5. Let X,Y and Z be topological spaces. Suppose that maps f
and g are given as in the following diagram, and that f is an identification.

X

Y

f

?

g
- Z

g ◦
f

-

Then g is continuous if and only if g ◦ f is continuous.

.

Proof. If g is continuous then certainly g ◦ f is continuous by Corollary 3.2.
What is specific to the identification topology is the converse, which is proved
as follows: if g ◦ f is continuous, then for each open U ⊂ Z, (g ◦ f)−1(U) is
open in X. But (g ◦ f)−1(U) = f−1(g−1(U)), thus, since f is an identifica-
tion, g−1(U) is open in Y , so g is continuous. �

.

This theorem is usually applied in the following equivalent form. Suppose
that f : X → Y is an identification as in the theorem, and suppose we are
given a continuous map h : X → Z with the property that h is constant
on the fibers of f (the sets f−1(y), y ∈ Y . In other words, suppose that
h(x) = h(x′) whenever f(x) = f(x′). Then we can define a map g : Y → Z
by as follows: given y ∈ Y , choose x ∈ X so that f(x) = y, and define
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g(x) = h(x). The above condition implies that this is well=defined: Given
y ∈ Y , if we choose x′ so that f(x′) = y, then f(x) = f(x′), so, by the
assumption on h, h(x) = h(x′), so the point g(y) depends just on y, and not
on the representative x chosen to define g(y). We then have the following
theorem:

Theorem 4.6. In the following diagram, suppose that X,Y and Z are topo-
logical spaces, f is an identification and h is constant on the fibers of f , so
that the map g as in the above discussion is well-defined.

X
h

- Z

Y

f

?

g

-

Then g is continuous if and only if h is continuous.

Proof. Since, by the definition of g, h = g◦f , this is the same as Theorem 4.5.
�

Example 4.3. We can apply this Theorem to the identification f : R → S1

of Example 4.1. Say we take Z = R, then we obtain the familiar fact that
there is a one-to-one correspondence between continuous periodic functions
on R, with period 2π, and continuous functions on the circle S1.

4.3. Surfaces as Identification Spaces. We now apply Theorem 4.6 to
define various surfaces. The procedure is in some cases similar to what we
saw in Example 4.1 when we saw the circle could be described either as
a quotient of R or as a quotient of [0, 2π]. See Chapter 4 of [5] for more
discussion (and pictures) of this procedure.

Example 4.4. We can picture the torus (= surface of a doughnut) as a surface
of revolution in R2, obtained by rotating a circle of radius one centered at
(2, 0, 0) about the z-axis. As such it has parametric equations (x, y, z) =
((2+cosφ) cos θ, (2+cosφ) sin θ, sinφ), 0 ≤ θ, φ ≤ 2π. In the same way that
we showed in Example 4.1 that S1 is an identification space of R, we can
show that the torus is an identification space of R2, where the equivalence
relation on R2 is (x, y) ∼ (x+2πm, y+2πn) for all m,n ∈ Z. We can picture
the equivalence classes as translating (x, y) by any element of 2πZ2, where
Z2 ⊂ R2 is the integral lattice. From now on it would be convenient to
reparametrize to get rid of the factors of 2π, and let’s agree that by torus we
mean the quotient of R2 by the equivalence relation (x, y) ∼ (x+m, y + n)
for all m,n ∈ Z. This quotient space is denoted R2/Z2, and we write
p1 : R2 → R2/Z2 for the natural map (“projection”) that to (x, y) assigns
its equivalence class (x, y) + Z2.
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Now, there is a more economical way to represent the torus, just as we did
with S1 in Example 4.1. Namely, let S = [0, 1] × [0, 1] be the unit square.
Then the composition of the inclusion of S in R2 with the projection of
R2 to R2/Z2 is surjective, and identifies certain points on the boundary of
S: let ∼ be the equivalence relation (x, 0) ∼ (x, 1) and (0, y) ∼ (1, y) on S
(meaning that these are the equivalence classes with more than one element,
the points (x, y) with 0 < x, y < 1 are equivalent just to themselves). Note
also that (0, 0) ∼ (0, 1) ∼ (1, 0) ∼ (1, 1), thus this one equivalence class has
4 elements, while the equivalence classes (x, 0) ∼ (x, 1) for 0 < x < 1 and
(0, y) ∼ (1, y), for 0 < y < 1 have two elements. We write p : S → S/ ∼ for
the natural map that to (x, y) assigns its equivalence class.

The conventional way of describing this identification space is to draw a
square and indicate by arrows which sides are identified and how. Sides with
similar arrows are identified, imagining that we travel at the same speed on
both sides in direction of the arrow, and identify corresponding points. The
identfiication space T = S/ ∼ just defined would be indicated as follows:

Figure 4.1. Torus

We will see more examples below of how these conventions are used to
define identification spaces.

The above convention describes the set S/ ∼. The topology on this set
is the identification topology resulting from the topology on S. This just
follows from the definitions, but, if we want to picture the topology explicitly,
we picture the sets p−1(U). It is enough to give a basis. If (x, y) ∈ So, the
interior of S, then we can take balls B((x, y), ε) ⊂ So for small enough ε. If
we take a point (x, 0) with 0 < x < 1, then any set p−1(U) that contains
(x, 0) must also contain the equivalent point (x, 1) and a neighborhood of
that point. So in our basis we could choose neighborhoods of p((x, 0)) to
have pre-image BS((x, 0), ε)∪BS((x, 1), ε) for ε(x) sufficiently small. By BS
we mean a ball in the metric space S as a subspace of R2. Similarly for
(0, y) we could choose BS((0, y), ε) ∪BS((1, y), ε). The picture is:

Finally for a corner we get BS((0, 0)ε) ∪ BS((1, 0), ε) ∪ BS((0, 1), ε) ∪
BS((1, 1), ε):
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Figure 4.2. Neighborhoods in Identification Space

Figure 4.3. Neighborhood of the Corner

The two description we have given of the torus T can be summarized in
the following commutative diagram

S ⊂ R2 p1- R2/Z2

T = S/ ∼

p

?

g

-

By Theorem 4.6 we see that g is continuous. Moreover, from the very
definition of S/ ∼, we see that g is a bijection: each point of S contains at
least one member of each equivalence class in R2/Z2, thus g is surjective.
And two points in S are equivalent under ∼ if and only if they are equivalent
in R2 under translation by the integral lattice Z2, so g is injective. From the
definitions of the topologies we see that g is an open map: The images of
the basic open sets just described for T are the sets whose pre-image under
p1 are the sets ∪{B((x + m, y + n)ε) : m,n ∈ Z}, which are open in R2.
Since an open continuous bijection is a homeomorphism, we see that g is a
homeomorphism.

Since we have these two descriptions of the torus, we choose the more
economical one as the official definition:

Definition 4.4. The torus T is the identification space T = S/ ∼ of the unit
square S as just defined in the previous example.

We can use the same pattern to define other surfaces. For example:
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Definition 4.5. The Klein Bottle K is the identification space K = S/ ∼
of the unit square S where (x, 0) ∼ (x, 1) and (0, y) ∼ (1, 1 − y), with the
quotient topology.

Thus using the convention we explained above when describing the torus,
K can be described by the diagram

Figure 4.4. The Klein Bottle

Note that the horizontal arrows go in the same direction indicating (x, 0) ∼
(x, 1) while the vertical arrows go in the opposite direction indicating (0, y) ∼
(1, 1− y). The quotient topology can be explicitly defined and illustrated in
a fashion analogous to the discussion of the torus in Example 4.4.

While the identification of the torus T with a surface in R3 is easy to
visualize (see, for example, p. 300 of [6]), the Klein bottle can only be
realized as a surface with self-intersections. See p. 308 of [6] for pictures
and explanation.

Here’s a more familiar surface. Make sure you make a paper model to
make the definition concrete.

Definition 4.6. The Möbius Band M is the identification space M = [0, 1]×
[−1, 1]/(0, y) ∼ (1,−y), with the quotient topology. (This is also called the
closed Möbius band. A variation of the definition would be the open Möbius
band, the quotient [0, 1]× (−1, 1)/(0, y) ∼ (1,−y))

Thus the identification picture for M would be

Follow the identifications to verify that the top and bottom line combine
to give a closed curve (homeomorphic to a circle). In fact, the horizontal line
in the middle, {(x, 0) : 0 ≤ x ≤ 1}, is a circle, and every pair of horizontal
lines equidistant from this central line also gives a circle (twice as long as
the middle one). Verify this in the identification picture, and also in a paper
model.

Finally, as a more challenging exercise in visualization, we could define
the surface of genus two as the quotient of an octagon in the plane by the
identifications in the boundary indicated by: See the pictures in pp. 300–
301 of [6] to see in more detail how the identifications on the boundary of
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Figure 4.5. The Möbius Band

Figure 4.6. A Surface of Genus 2

the octagon indicated on the top picture leads to the surface in the bottom
picture.

5. Connected Spaces

A topological space X is said to be disconnected if there exist open sets
U, V ⊂ X, both non-empty, so that U ∩V = ∅ and X = U ∪V . If such open
sets exist, we say that U, V disconnect X. A topological space is said to be
connected if it is not disconnected, in other words:

Definition 5.1. A topological space X is connected if and only if, whenever
U, V ⊂ X are disjoint open sets such that X = U ∪ V , then either U = ∅ or
V = ∅.

Theorem 5.1. The following conditions on a topological space X are equiv-
alent:

(1) X is connected.
(2) If E,F ⊂ X are disjoint closed subsets so that X = E ∪ F , then

either E = ∅ or F = ∅.
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(3) The only subsets of X that are both open and closed are X and ∅.
(4) Every continuous map f : X → {0, 1}, (where {0, 1} has the discrete

topology) is constant.

Proof. By taking complements it is clear that (1) and (2) are equivalent. A
subset A ⊂ X is both open and closed if and only if both A and X \ A are
open, and these two sets are disjoint and their union is X, so (1) and (3) are
equivalent. If f : X → {0, 1} is a continuous function, then U = f−1({0})
and V = f−1({1}) are disjoint open sets whose union is X, and if U, V
are disjoint open sets whose union is X, then the function which is 0 on U
and 1 on V is a continuous function from X to {0, 1}, so (1) and (4) are
equivalent. �

One reason for the choice of definition of connectedness is to make the
following theorem clear:

Theorem 5.2. Let X,Y be topological spaces and let f : X → Y be a
surjective continuous map. If X is connected, then Y is connected.

Proof. Suppose Y is not connected and suppose U, V disconnect Y . Then
f−1(U) and f−1(V ) disconnect X, since they are disjoint open sets whose
union is X, and the surjectivity of f guarantees that they are both non-
empty. �

Corollary 5.1. Suppose f : X → Y is a homeomorphism. Then X is
connected if and only if Y is connected.

Example 5.1. It is easy to give examples of disconnected spaces: A discrete
space with more than one point, R \ {0} = (−∞, 0) ∪ (0,∞), etc, are dis-
connected spaces. It is harder to give examples of connected spaces. One
non-trivial example of a connected space would be the space (R, TZ) of Ex-
ample 3.14, because, as we saw in Example 3.22, any two non-empty open
sets in (R, TZ) have non-empty intersection, so we cannot possibly discon-
nect this space.

The main non-trivial example of a connected space is the unit interval.
Note that the proof of connectedness has to use the completeness of R, which
we do in the form of the existence of the infimum of a non-empty set which
is bounded below.

Theorem 5.3. The interval [0, 1] ⊂ R is connected.

Proof. Suppose [0, 1] = U ∪ V where U, V are disjoint open sets with union
[0, 1], and label them so that 0 ∈ U . If V 6= ∅, then a = inf(V ) ∈ R exists.
Moreover, a must be a limit point of V (if this is not a familiar fact, prove
it as an exercise in the definitions). In particular, since [0, 1] is closed in R,
a ∈ [0, 1] We cannot have a ∈ U because U would be a neighborhood of a
disjoint from V , contradicting that a is a limit point of V . We cannot have
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a ∈ V because, if so, we would first have a > 0 because 0 ∈ U , and then,
since V is open, there would be an ε > 0 so that (a−ε, a] ⊂ V , contradicting
that a is a lower bound for V . Thus V = ∅ and [0, 1] is connected. �

Once we have this example of a connected space we can derive many
others. In order to do this, it is useful to use the following concept:

Definition 5.2. A topological space X is said to be path connected if and
only if, for all x, y ∈ X there exists a continuous map φ : [0, 1] → X with
φ(0) = x and φ(1) = y. We call such a map φ a path from x to y.

Theorem 5.4. Suppose X is path connected. Then X is connected.

Proof. Suppose X is not connected, and let U, V be disjoint, non-empty open
sets whose union is X. Pick x ∈ U and y ∈ V . If X were path connected
there would be a continuous map φ : [0, 1] → X with φ(0) = x ∈ U and
φ(1) = y ∈ V , thus φ−1(U) and φ−1(V ) would be non-empty, disjoint open
sets with union [0, 1], contradicting the connectedness of [0, 1]. Thus X is
not path connected, proving the theorem. �

Examples of path connected spaces are plentiful, so we get many examples
of connected spaces.

Definition 5.3. A subset C ⊂ Rn is called convex if and only if, for all
x, y ∈ C, the straight line segment xy ⊂ C.

Theorem 5.5. Let C ⊂ Rn be convex. Then C is path connected, in par-
ticular, C is connected.

Proof. Let x, y ∈ C. Since xy ⊂ C, the map φ : [0, 1] → Rn defined by
φ(t) = (1− t)x+ ty has image contained in C and is therefore a path from
x to y in C. �

This gives many examples of connected subspaces of Rn:

Example 5.2. The following spaces are convex, hence connected:

(1) Rn for any n
(2) Any interval in R.
(3) Any half-space in Rn: let l : Rn → R be any linear function and

c ∈ R, then {x : l(x) > c} as well as {x : l(x) ≥ c}.
(4) Any ball (open or closed) in any of the metrics d(1), d(2), d(∞) of

Definition 1.2.

The class of convex sets is relatively small, we can visualize many other
path connected spaces. In order to systematically do this, it is useful to
have a concept of concatenation of paths. There are many ways to do this,
for instance, for many purposes we do not need the domain of our paths to
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be [0, 1], any interval would do. For other purposes we will see later, it is
useful to always use the domain [0, 1]. Let us make the following definition:

Definition 5.4. Let φ, ψ : [0, 1] → X be continuous maps, and assume that
φ(1) = ψ(0). We define the concatenation of φ and ψ, (also called the
composition of φ and ψ), denoted φ ·ψ, to be the map [0, 1]→ X defined by

φ · ψ(t) =

{
φ(2t) if 0 ≤ t ≤ 1

2 ,

ψ(2t− 1) if 1
2 ≤ t ≤ 1.

Also, let the inverse path of φ to be the map φ−1 : [0, 1]→ X defined by

φ−1(t) = φ(1− t).

In particular, φ−1 is a path from φ(1) to φ(0).

Warning: The meaning of inverse path is different from the meaning of
inverse function, even though the same notation is used. It should be clear
from the context what is meant.

This definition is easy to visualize. Say φ(0) = x, φ(1) = ψ(0) = y and
ψ(1) = z. Then we are saying that a path from x to y can be followed by
a path from y to z to form a path from x to z. Note that this is the same
construction that we used in Example 1.9 to define a distance function of a
surface in R3, except that now we are making the construction more precise.
Since we choose to parametrize the paths by [0, 1], in order to concatenate
the two paths, we re-parametrize φ to have domain [0, 12 ] and ψ to have

domain [12 , 1] and then literally put the re-paremetrized paths next to each
other. The inverse path means running along the same path in the opposite
direction. Clearly the inverse path is continuous, and for the continuity of
the concatenation we just need to check the following:

Lemma 5.1. If φ, ψ : [0, 1] → X are continuous, and φ(1) = ψ(0), then
φ · ψ : [0, 1]→ X is also continuous.

The proof follows immediately from the following useful general principle,
that we state explicitly for future use:

Lemma 5.2. Suppose X,Y are topological spaces, X = A∪B, where A and
B are closed subsets. Suppose we are given maps f : A→ Y and g : B → Y
such that f |A∩B = g|A∩B. Define a map F : X → Y by

F (x) =

{
f(x) if x ∈ A,
g(x) if x ∈ B.

Then F is well defined, and it is continuous if and only if f and g are both
continuous (in the subspace topology). The same statement holds if A and
B are both open sets.
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Proof. It is clear that F is well-defined, since f and g agree on A ∩ B.
Since F |A = f and F |B = g, the continuity of F implies that of f and g.
Conversely, if f and g are both continuous and C ⊂ Y is a closed set, then
F−1(C) = (F−1(C)∩A)∪(F−1(C)∩B) = f−1(C)∪g−1(C). By Theorem 4.3
we have that f−1(C) and g−1(C), which by hypothesis of continuity are
closed in A, B respectively, are also closed in X. Thus F−1(C) is closed in
X, so F is continuous. The proof for the case in which A and B are open
sets is similar.

�

Lemma 5.1 follows immediately by taking X = [0, 1] = [0, 12 ] ∪ [12 .1] =
A∪B and f , g the restrictions of the definition of φ·ψ to the two subintervals.

Example 5.3. The space (R2, dFR) of Example 1.8 (the French railway met-
ric) is clearly path connected: given x, y ∈ R2, if they are in the same ray
from the origin the straight line segment joining them gives a path between
them, otherwise we concatenate the path from x to 0 with the path from 0
to y to join them by a path.

Example 5.4. A simple application of Lemma 5.1 is to show that for n ≥ 2,
Rn \ {0} is path connected. Let x, y ∈ Rn \ {0}. If 0 /∈ xy, then φ(t) =
(1 − t)x + ty is a path from x to y. If 0 ∈ xy, then y is a (negative)
multiple of x. Since n ≥ 2, we can choose a vector z linearly independent
from x, hence also linearly independent from y. Let φ(t) = (1 − t)x + tz
and let ψ(t) = (1 − t)z + ty. Then φ(t) and ψ(t), being linear non-trivial
combinations of x and z, are never 0, so these are paths in Rn \ {0} from
x to z and from z to y respectively, so by Lemma 5.1, φ · ψ is a path in
Rn \ {0} from x to y, thus this space is path connected.

Question: Why doesn’t the above argument work for n = 1?

We finally have a way to distinguish some topological spaces that should
“obviously” not be homeomorphic :

Theorem 5.6. There is no homeomorphism between R and Rn for n ≥ 2.

Proof. Suppose f : Rn → R were a homeomorphism, n ≥ 2. Then f |Rn \ {0} :
Rn \ {0} → R \ {f(0)} would be a homeomorphism. But Rn \ {0} is con-
nected for n ≥ 2 while R \ {f(0)} = (−∞, f(0))∪ (f(0),∞) is disconnected,
contrary to Corollary 5.1. �

Remark 5.1. It is more difficult to prove that Rn and Rm are not homeo-
morphic for m 6= n, m,n ≥ 2. More subtle topological invariants are needed
to distinguish these spaces.

Remark 5.2. Using the same ideas as in the proof of Theorem 5.6 it is not
hard to prove that [0, 1] and [0, 1] × [0, 1] are not homeomorphic. This of
course means that a segment and a rectangle are not homeomorphic. This
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can be used, together with the calculations of the equality sets in the triangle
inequality for the Euclidean and Taxicab distances in R2 (see Examples 1.2
and 1.4) to complete a proof in the homework problems that these two
metric spaces are not isometric (since the equality sets Ed(x, z) are not
homeomorphic, see the discussion in Example 1.15).

5.1. Connected Components. Let X be a topological space. Define a
relation on X by x ∼ y if and only if there is a connected subset C ⊂ X
so that x ∈ C and y ∈ C. This is an equivalence relation: It is clearly
reflexive (x ∼ x since {x} is connected), it is clearly symmetric (x ∼ y if
and only if y ∼ x). It requires a proof to show that it is transitive. To
show that x ∼ y and y ∼ z implies x ∼ z, it would be natural to take
connected subsets C1, C2 ⊂ X so that x, y ∈ C1 and y, z ∈ C2 and argue
that C1 ∪ C2 is connected. The first part of the following lemma (for a
collection of two connected sets) shows that this is indeed the case, proving
this is an equivalence relation:

Lemma 5.3. (1) Let {Cα}α∈A be a collection of connected subsets of
X, and assume that ∩Cα 6= ∅. Then ∪Cα is connected.

(2) Let C ⊂ X be connected. Then its closure C̄ is connected.

Proof. We use the fourth characterization of connectedness from Theorem 5.1.
L For the first part, let ∪Cα → {0, 1} be continuous, and x0 ∈ ∩Cα. Then
f |Cα is a constant, which must be f(x0). Thus f(x) = f(x0) for all x ∈ ∪Cα,
thus f is constant and ∪Cα is connected.

For the second part, suppose f : C̄ → {0, 1} is a continuous function, let
x ∈ C̄, and let a = f(x). Then f−1({a}) is an open set containing x, thus,
by part (2) of Theorem 3.11, f−1({a})∩C 6= ∅. Let y ∈ C∩f−1({a}). Then
f(y) = a. Since C is connected, f |C is constant, so this constant must be a,
so f(x) = a for any x ∈ C̄, thus C̄ is connected. �

We are therefore justified in making the following definition:

Definition 5.5. Let X be a topological space. Define two equivalence rela-
tions on X:

(1) Let x be equivalent to y if and only if there is a connected subset
C ⊂ X containing x and y. The equivalence classes are called the
connected components of X.

(2) Let x be equivalent to y if and only if there exists a path in X from
x to y. The equivalence classes are called the path components of X.

For the second part of the definition, note that the relation in question is
clearly reflexive. The inverse path shows that it is symmetric, and concate-
nation of paths shows that it is transitive. Thus it also is an equivalence
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relation. It is clear that path components are contained in connected com-
ponents, and in many, but not all, situations they coincide. See Chapter 4,
Section 6 of [7] for an example where the two notions differ.

Example 5.5. Connected components (and path components) can be used
to distinguish topological spaces. It is clear that homeomorphic spaces have
the same number of connected components, and the same is true for path
components. This can be used, for example, to prove that the subsets of
R2 in the shape of the letter X and the shape of the letter Y are not
homeomorphic. There is a point p ∈ X with the property that X \ {p}
has 4 connected components, while for every q ∈ Y , Y \ {q} has at most
3 connected components. So there could be no homeomorphism between
X and Y . It is a standard exercise to use similar reasoning to classify the
letters of the Roman alphabet up to homeomorphism.

Here are some general properties of connected components:

Theorem 5.7. Let X be a topological space and let x ∈ X, and let Cx
denote the connected component of X containing x.

(1) Cx is the largest connected subset of X containing x: If A ⊂ X is
connected and x ∈ A, then A ⊂ Cx.

(2) Cx is closed in X.

Proof. By definition, Cx = {y ∈ X : there exists a connected setB such that
x, y ∈ B} = ∪{B ⊂ X : B is connected and x ∈ B} is a union of connected
sets with non-empty intersection. By Lemma 5.3, Cx is connected. More-
over, if A is any connected set containing x, then A is an element of this
collection, so A is contained in its union, in other words, A ⊂ Cx, as as-
serted. To prove the second part, use the second part of Lemma 5.3: C̄x is
connected, hence C̄x ⊂ Cx, hence Cx is closed.

�

5.2. Locally Path Connected Spaces.

Definition 5.6. A topological space is called locally path connected if it has
a basis consisting of path connected open sets.

Remark 5.3. We could state the condition more explicitly as follows: X is
locally path connected if and only if for every x ∈ X and every open subset
U ⊂ X with x ∈ U , there exists a path connected open set V such that
x ∈ V ⊂ U .

Remark 5.4. In general, given any property P of open sets, a space X is
said to be locally P if and only if it has a basis of open sets with property
P. For example, a space is locally connected if it has a basis of connected
open sets.
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Example 5.6. (1) If X ⊂ Rn is an open set, then it is locally path con-
nected since the ballsB(x, r) contained inX form a basis, are convex,
hence path connected.

(2) Let A = {(x, sin( 1x) : 0 < x < 1
2π} ⊂ R2, and let X = Ā. Then

X = A ∪ B where B = {(0, y) : −1 ≤ y ≤ 1}. X is connected since
A is connected, but it is not locally connected, hence not locally
path connected. Small neighborhoods in X of points in B are not
connected. See Chapter 4, Section 6 of [7] for more details.

Theorem 5.8. Suppose X is connected and locally path connected. Then
X is path connected.

Proof. Let x ∈ X. Let U = {y ∈ X : there exists a path φ : [0, 1] →
X from x to y}. We will show:

(1) U is open: For any y ∈ U there exists an open, path connected
set V ⊂ X so that y ∈ V . If z ∈ V , then there exists a path
ψ : [0, 1]→ V with ψ(0) = y and ψ(1) = z, Then φ ·ψ : [0, 1]→ X is
a path from x to z, thus z ∈ U , thus given any y ∈ U there exists an
open set V ⊂ X so that y ∈ V ⊂ U , therefore U is open, as claimed.

(2) X \ U is open: Suppose y ∈ X \ U . There exists a path connected
open set V ⊂ X so that y ∈ V . Let z ∈ V . Then there exists a
path ψ : [0, 1] → V from y to z. If there were a path φ : [0, 1] → X
from x to z, then φ ·ψ−1 would be a path from x to y, contradicting
the choice of y. Thus z ∈ X \ U , so by the same reasoning as above
X \ U is open.

Finally, since x ∈ U we know that U 6= ∅. Since X is connected we must
have X \ U = ∅, in other words, X = U , thus X is path connected. �

Remark 5.5. The proof of Theorem 5.8 can be applied to connectedness by
other classes of paths, not necessarily the same as the class of continuous
paths. All that is needed is that the class of paths be closed under concate-
nation and inverse. If X ⊂ Rn two such classes of paths are the piecewise
linear paths, meaning continuous paths φ : [0, 1] → X ⊂ Rn so that there
exists a subdivision of [0, 1] into subintervals so that the restriction of φ to
each subinterval is a linear map to Rn. The class of piecewise differentiable
paths is defined in exactly the same way. Then we can make the following
definitions:

Definition 5.7. Let X ⊂ Rn. We say that X is

(1) piecewise linearly connected if given any x, y ∈ X there exists a
piecewise linear path φ : [0, 1]→ X from x to y. It is locally piecewise
linearly connected if it has a basis of piecewise linearly connected
open sets.

(2) piecewise differentiably connected and locally piecewise differentiably
connected are defined in exactly the same way.
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Theorem 5.9. Let X ⊂ Rn

(1) Suppose X is connected and locally piecewise linearly connected. Then
X is piecewise linearly connected.

(2) Suppose X is connected and locally piecewise differentiably connected.
Then X is piecewise differentiably connected.

Proof. Same as the proof of Theorem 5.8. �

Corollary 5.2. Let U ⊂ Rn be open and connected. Then U is piecewise
linearly connected.

Proof. Since balls in Rn are convex, hence piecewise linearly connected, U
is locally piecewise linearly connected. Apply the theorem. �

5.3. Existence Theorems. One application of connectedness is to prove
existence theorems for solutions of equations. One familiar theorem from
real analysis is the intermediate value theorem, that we can formulate in
more generality:

Theorem 5.10. Let X be a connected space and let f : X → R be continu-
ous. Suppose for some x, y ∈ X we have that f(x) = a < f(y) = b. Then,
given any number c ∈ (a, b), there exists z ∈ X with f(z) = c.

Proof. Suppose not: there is c ∈ (a, b) so that c /∈ f(X). Then f(X) =
(f(X) ∩ (−∞, c)) ∪ (f(X) ∩ (c,∞)) is the disjoint union of two non-empty
open sets, contradicting the fact that f(X), as the continuous image of a
connected space, must be connected (Theorem 5.2). �

As application of the intermediate value theorem we will prove the version
of the implicit function theorem that we need. We note that the same
proof would work for the zero set of any smooth function from an open set
U ⊂ Rn+1 to R, but we will be mainly using the case n = 2, so we will
just state this case. The theorem is easier to visualize when n = 1, and
it would be useful to do this when looking at the theorems, proofs, and
examples. There is also a version of the theorem for functions with target
Rm for m > 1, but the proof is more involved in this case; it would require
the inverse function theorem where we use the intermediate value theorem.

By a smooth function we mean a C∞-function, although C1 would be
enough in this theorem. Using C∞ is often an expedient way of avoiding
counting how many derivatives are used in a proof.

Theorem 5.11. Let U ⊂ R3 be open and let f : R3 → R be a smooth
function. Let S = {(x, y, z) ∈ R3 : f(x, y, z) = 0} be the zero set of f .

Suppose (x0, y0, z0) ∈ S and suppose that ∂f
∂z (x0, y0, z0) 6= 0. Then there exist

ε, δ > 0 and a smooth function g : B((x0, y0), δ)→ (z0−ε, z0+ε) ⊂ R so that
S∩ (B(x0, y0), δ)× (z0− ε, z0 + ε)) = {(x, y, g(x, y)) : (x, y) ∈ B((x0, y0), δ)}.
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The theorem says that, under the hypothesis of the non-vanishing of ∂f
∂z

at (x0, y0, z0), there is a neighborhood of the form B1 × B2, where B1 and
B2 are balls in R2, R respectively, so that S ∩ (B1 × B2) is the graph of a
function g : B1 → B2. In other words, the relation f(x, y, z) = 0 defines z
“implicitly” as a function of x and y for (x, y) close enough to (x0, y0).

Proof. We may assume ∂f
∂z (x0, y0, z0) > 0 (otherwise change f to −f). Let

c = 1
2
∂f
∂z (x0, y0, z0) > 0. By continuity of ∂f

∂z , there exists a neighborhood of

(x0, y0, z0) on which ∂f
∂z (x, y, z) > c, and we may take this neighborhood to

be of the form B((x0, y0), δ0)×(z0−ε, z0+ε) for some δ0, ε > 0. In particular
for each (x, y) ∈ B((x0, y0), δ1) we have that f(x, y, z) is a strictly increasing
function of z for z0 − ε ≤ z ≤ z0 + ε. It follows that f(x0, y0, z0 + ε) > 0,
f(x0, y0, z0 − ε) < 0, and, by continuity of f , there exists δ > 0 so that
f(x, y, z0+ε) > 0 and f(x, y, z0−ε) (choose a δ1 the works for f(x, y, z0+ε),
a δ2 that works for f(x, y, z0 − ε), both smaller than δ0, and let δ be the
smaller of δ1, δ2).

By the intermediate value theorem (Theorem 5.10), for each (x, y) ∈
B((x0, y0), δ) there exists a z ∈ (z0− ε, z0 + ε) so that f(x, y, z) = 0. Since f
is a strictly increasing function of z, this value of z is unique, call it g(x, y).
This gives us the desired function g : B((x0, y0), δ)→ (z0 − ε, z0 + ε), since,
by construction of g, we have that S ∩ (B((x0, y0), δ) × (z0 − ε, z0 + ε)) =
{(x, y, g(x, y) : (x, y) ∈ B((x0, y0), δ)}.

It remains to prove that g is a smooth function. It is easy to see that
g is continuous. This is an easy consequence of the uniqueness: given
(x1, y1, z1) ∈ B((x0, y0) × (z0 − ε, z0 + ε) and given ε′ > 0 sufficiently
small, repeat the same construction to find a δ′ > 0 and a function, say
h, so that S ∩ (B((x1, y1), δ

′) × (z1 − ε′, z1 + ε′)) = {(x, y, h(x, y) : (x, y) ∈
B((x1, y1), δ

′)}. By the uniqueness of the solution, we must have g = h on
B((x1, y1), δ

′), hence g((B((x1, y1), δ
′) ⊂ (z1−ε′, z1+ε′). Since z1 = g(x1, y1)

and ε′ > 0 is arbitrary, this is exactly the statement of continuity of g at
(x1, y1).

We will next check that g is differentiable. By definition of differentiability
of f , we have that

f(x+∆x, y+∆y, z+∆z)−f(x, y, z) = (fx+ε1)∆x+(fy+ε2)∆y+(fz+ε3)∆z

where fx, fy, fz denote the partial derivatives of f with respect to the indi-
cated variable, each evaluated at the point (x, y, z), and εi, i = 1, 2, 3, are
functions of x,∆x, y,∆y, z,∆z so that εi → 0 as (∆x,∆y,∆z)→ (0, 0, 0).

Suppose we evaluate this on the graph z = g(x, y). We have that both
terms in the left hand side vanish, thus

0 = (fx + ε′1)∆x+ (fy + ε′2)∆y + (fz + ε′3)∆g
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where ε′i(x,∆x, y,∆y) = εi(x,∆x, y,∆y, g(x, y),∆g). Since g is continuous,
∆g → 0 as (∆x,∆y)→ (0, 0), thus ε′i → 0 as (∆x,∆y)→ (0, 0).

Solving the above equation for ∆g we get

∆g = −fx + ε′1
fz + ε′3

∆x− fy + ε′2
fz + ε′3

∆y

which makes sense since fz > c > 0, so there is no problem in dividing by
fz + ε′3. Moreover this can be re-written as

∆g = −(
fx
fz

+ ε′′1)∆x− (
fy
fz

+ ε′′2)∆y

where ε′′i → 0 as (∆x,∆y)→ (0, 0), thus g is differentiable and

(5.1) gx = −fx
fz

(x, y, g(x, y)) and gy = −fy
fz

(x, y, g(x, y))

from which it is clear that the partial derivatives gx, gy are continuous, thus
g is of class C1. This procedure can be continued to show that g is C∞. �

Example 5.7. Let f(x, y, z) = x2 + y2 + z2 − 1. Then the set {(x, y, z) :
f(x, y, z) = 0} is the unit sphere S2 ⊂ R3. Let (x0, y0, z0) = (0, 0, 1), the

north pole. Then ∂f
∂z (0, 0, 1) = 2 6= 0, and we can see visually that we

can choose δ = ε = 1 in the statement of the implicit function theorem

(although our proof requires a smaller ε) , and g(x, y) =
√

1− x2 − y2. If
(x0, y0, z0) is any other point of the upper hemisphere, that is, if z0 > 0,

then g(x, y) =
√

1− x2 − y2 also works, but the largest δ we can take is

1 −
√
x20 + y20 (and we could choose ε = z0). If (x0, y0, z0) is in the lower

hemisphere, that is, z0 < 0, then we must choose g(x, y) = −
√

1− x2 − y2
and the largest size of the δ would be 1 −

√
x20 = y20 (and we could take

ε = |z0|). Finally, if (x0, y0, z0) is on the equator, that is, if z0 = 0, then
for all δ > 0 and ε > 0, whenever (x, y, z) ∈ S2 ∩ (B((x0, y0), δ) × (−ε, ε)),
so is (x, y,−z), so this intersection cannot be a graph z = g(x, y). This
does not contradict the implicit function theorem, because at these points
∂f
∂z (x0, y0, 0) = 0, so the implicit function theorem does not apply. This also

shows the necessity of the condition ∂f
∂z (x0, y0, z0) 6= 0 in the statement of

the theorem.

6. Smooth Surfaces

We now define what is meant by a topological surface and a differentiable
surface. The same concepts can be defined in any dimension, they are called
topological manifold and differentiable manifold or smooth manifold.

Definition 6.1. A topological space S is called:

(1) A topological surface if it is a Hausdorff space with a countable basis
and it has the property that every x ∈ S has a neighborhood U
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which is homeomorphic to an open set in R2, in other words, there
exists a covering {Uα}α∈A for some index set A, and for each α ∈ A
there exists a homeomorphism φα : Uα → Vα, where Vα ⊂ R2 is
open. These homeomorphisms are called coordinate charts.

(2) A differentiable surface or a smooth surface if it is a topological
surface and the above homeomorphisms (or coordinate charts) can
be chosen to have the following property: whenever Uα∩Uβ 6= ∅, the

homeomorphism φα ◦ φ−1β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ) is smooth.

The maps φα ◦ φ−1β are called the transition maps between charts.

Remark 6.1. Many clarifications are in order concerning these definitions:

(1) In a first reading ignore the conditions that S be Hausdorff and have
a countable basis. These conditions are needed for correctness of the
definition, but will be automatic in all the examples we will see.

(2) The important condition for us is that S look locally like the plane
R2. It is clear how to state this topologically. The terminology of
charts comes from the usual picture we have of maps of the earth,
where we take small pieces of the surface of the earth and consider
them as part of a plane. The collection of charts is usually called an
atlas.

(3) In R2 there is a notion of differentiable function. This uses more
than the topology of R2, it also uses the linear structure. It is not
clear how to transfer this concept to a more general space. The
point of the definition of differentiable surface is to make sense of
differentiable function. A function f : S → R will be defined to be
differentiable if it is differentiable in every chart. In other words, if
and only if, for all α ∈ A, f ◦ φ−1α : Vα → R is differentiable. The
latter statement makes sense because Vα ⊂ R2, but, for the definition
to be independent of the chosen chart, we need the condition stated
in the second part of the definition.

(4) Observe that (φα ◦ φ−1β )−1 = φβ ◦ φ−1α . Thus the condition that

the maps φα ◦ φ−1β be smooth for all α and β for which they are

defined implies that their inverses are also smooth. A smooth map
between open sets in Rn that is invertible and whose inverse is also
smooth is called a diffeomeorphism. Thus all the transition maps
are diffeomorphisms.

And examples are also in order:

Example 6.1. Let U ⊂ R2 be an open set. Then it is a smooth surface: we
know it is Hausdorff, has countable basis, and it can be covered by one chart
id : U → U , so the conditions of the second part are automatic.

Example 6.2. The implicit function theorem gives us many examples of
smooth surfaces. Let U ⊂ R3 be open and let f : U → R be smooth.
Let S = {(x, y, z) ∈ R3 : f(x, y, z) = 0} be the zero set of f and finally make
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the most important assumption: the gradient ∇f 6= 0 at any point of S.
Recall that ∇f = (∂f∂x ,

∂f
∂y ,

∂f
∂z ), so the the assumption is that at each point

of S at least one of the partial derivatives of f does not vanish. We have
the following theorem:

Theorem 6.1. Under the above hypothesis, the space S is a smooth surface.

Proof. Let pz : R3 → R2 be the projection with kernel the z-axis, that is,
pz(x, y, z) = (x, y), and define px, py similarly. Given any (x0, y0, z0) ∈ S at

least one partial derivative does not vanish at this point. Say ∂f
∂z (x0, y0, z0) 6=

0. Then the implicit function theorem gives a neighborhood U of (x0my0, z0),
U = B((x0, y0), δ)×(z0−ε, z0+ε) and a smooth function g : B((x0, y0), δ)→
(z0 − ε, z0 + ε) so that S ∩ U = {(x, y, g(x, y)) : (x, y) ∈ B((x0, y0), δ)}. In
particular we see that pz|S∩U : S∩U → B((x0, y0), δ) is a chart, with inverse
map G(x, y) = (x, y, g(x, y)).

If (x1, y1, z1) ∈ S is another point, we can use the same reasoning. If
∂f
∂z (x1, y1, z1) 6= 0, we obtain a similar chart pz|S∩V , and, if they intersect,
that is, U ∩ V ∩ S 6= ∅, then on this intersection the inverse of pz is also G,
so the transition function is pz ◦G = id is smooth.

If ∂f
∂z (x1, y1, z1) = 0, then some other partial does not vanish. Sup-

pose, say ∂f
∂y (x1, y1, z1) 6= 0. Then the implicit function theorem gives us

a neighborhood V = B((x1, z1), δ
′)× (y1− ε′, y1 + ε′) and a smooth function

h : B((x1, z1), δ
′)→ (y1−ε′, y1+ε′) so that S∩V = {(x, h(x, z), z)) : (x, z) ∈

B((x1, z1), δ
′)}. Therefore py|S∩V : S∩V → B((x1, z1), δ

′) is a chart, with in-
verse H(x, z) = (x, h(x, z), z). If this neighborhood S∩V of (x1, y1, z1) inter-
sects the neighborhood S∩U of (x0, y0, z0) considered above, then the transi-
tion maps associated to this intersection are py ◦G(x.y) = py(x, y, g(x, y)) =
(x, g(x, y)) and its inverse map pz ◦H(x, z) = pz(x, h(x, z), y) = (x, h(x.z))
which are smooth maps. Since S can be covered by charts of these forms and
we have checked that the transition functions that can occur are smooth,
we see that S is indeed a smooth surface.

�

Example 6.3. We now specialize the general principle of Theorem 6.1 and
its proof to the case of the unit sphere S2 ⊂ R3 defined by f(x, y, z) =
x2 + y2 + z2− 1 = 0. Let us cover S2 by the six sets U±z , U±y , U±x defined by

U+
z = S2∩{z > 0}, U−z = S2∩{z < 0}, U+

y = S2∩{y > 0}, and so on. Write

px, py, pz for the restrictions to S2 of the orthogonal projections of R3 → R2

with kernel the corresponding axis, so px(x, y, z) = (y, z), py(x, y, z) = (x, z)
and pz(x, y, z) = (x, y). Let D be the open unit disk in R2 and define
charts φ±z : U±z → D by φ±z = pz|U±z , and define φ±y : U±y → D and φ±x :

U±x → D in the similar way using the projections py, px respectively. These
maps are indeed charts, because there inverses are given, as in the proof of
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Theorem 6.1, by the graph of the implicit function. Thus (φ+z )−1(x, y) =

(x, y,
√

1− x2 − y2), (φ−z )−1(x, y) = (x, y,−
√

1− x2 − y2), (φ+y )−1(x, z) =

(x,
√

1− x2 − z2, z), etc. From this it is easy to compute the transition
maps. For example, for U+

z ∩ U+
y we have

φ+z ◦ (φ+y )−1(x, z) = pz((x,
√

1− x2 − z2, z) = (x,
√

1− x2 − z2),
which is smooth. In fact, we know that it must be a diffeomorphism of
φy(U

+
z ∩ U+

y ) = {(x, z) ∈ D : z > 0} onto φz(U
+
z ∩ U+

y ) = {(x, y) ∈ D : y >
0}. To check this directly, observe that, since this map is

(x, z)→ (x,
√

1− x2 − z2),
which is the identity on the first coordinate, it is a diffeomorphism if and
only if the map z →

√
1− x2 − z2 of the second coordinate is a diffeomor-

phism of the interval (0,
√

1− x2) to itself. This is indeed the case by the
restriction imposed on the interval. Without this restriction the map on
the second coordinate would not be injective, for instance, it would fail on
(−
√

1− x2,
√

1− x2) where it is two-to-one from this interval onto half the
interval.

In the same way we can check that all other transition maps are diffeo-
morphisms. Thus S2 is a smooth surface.

Example 6.4. To show that the condition ∇F 6= 0 at every point of S is
needed, let’s look at a few examples:

(1) f(x, y, z) = xyz. Then ∇f = (yz, xz, xy) = (0, 0, 0) when at leat two
of x, y, z vanish. The zero set S is the union of the coordinate planes,
is not locally homeomorpic to the plane along any of the coordinate
axes. The origin is also a singular point, looking more complicated
than the others.

(2) f(x, y, z) = x2+y2−z2. Then ∇f = (2x, 2y,−2z) = (0, 0, 0) exactly
at the origin, which is lies on S and is a singular point. S is a cone
with vertex at the origin.

(3) f(x, y, z) = x2 − y2z. Then ∇f = (2x,−2yz, y2) = (0, 0, 0) precisely
on the z-axis x = y = 0. The zero set S is the union of the z-axis
and the surface shown below, called the Whitney umbrella, because
the negative z-axis (not shown) would be its handle.

6.1. Smooth surfaces as metric spaces. In Example 1.9 we started the
discussion of how a smooth surface S = {f = 0} ⊂ R3, where ∇f never
vanishes on S, can be made into a metric space with its intrinsic distance.
We can now finish the discussion that this metric is defined for all connected
smooth surfaces.

Theorem 6.2. Let S be the zero set of a function f as in Example 6.2.
Then S is locally piecewise differentiably path connected. In particular, if S
is connected, then S is piecewise differentiably path connected.
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Figure 6.1. The Whitney Umbrella

Proof. The proof of Theorem 6.1 gives us that S can be covered by open
sets U ⊂ R3 which are graphs of functions g : B → I where B ⊂ R2 is a
ball and I ⊂ R is an open interval: U ∩ S = {(x, y, g(x, y) : (x, y) ∈ B} or
U ∩ S = {x, g(x, z), z) : (x, z) ∈ B} or U ∩ S = {(g(y, z), y, z) : (y, z) ∈ B}
as the case may be. Since B is convex, in particular piecewise differentiably
path connected, and g is smooth, given any two points in U ∩ S, they can
be connected by a smooth path: project the two points to B, connect their
projections by a straight line segment, and map this segment back to U∩S by
the smooth map (x, y)→ (x, y, g(x, y)) or one of its two variants permuting
the coordinates as the case may be. Thus S is locally differentiably path
connected. Then Theorem 5.9 does the rest. �

Therefore, if S is a connected smooth surface in R3, we can define the
intrinsic distance d : S × S → R as in Example 1.9:

(6.1) d(x, y) = inf{L(γ) : γ a piecewise differentiable path from x to y}.

This infimum is defined, since x and y can always be connected by a piecewise
differentiable path. But this infimum need not be attained. For example, if
S = R2 \ {0}, then the infimum defining d(x,−x) = 2|x| is not attained
by a path in S. But in many situations it is attained. We will show some
examples in section 6.1.2 below.

6.1.1. Arc Length. Let S ⊂ R3 be a smooth surface and let γ : [0, 1] → S
be a piecewise differentiable path. Recall this means that the composition
γ : [0, 1]→ S ⊂ R3 is piecewise differentiable. Write γ(t) = (x(t), y(t), z(t)).
Then the length of γ, L(γ) is defined to be

(6.2) L(γ) =

∫ 1

0
|γ′(t)| dt =

∫ 1

0

√
x′(t)2 + y′(t)2 + z′(t)2 dt,
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which we could also write as

(6.3) L(γ) =

∫
γ

√
dx2 + dy2 + dz2 =

∫
γ
ds,

where traditionally we write ds2 = dx2 + dy2 + dz2. If γ is piecewise differ-
entiable then this integrals are always defined.

It will be important for calculations to be able to change coordinates. If
our curve lies in the domain of some coordinate chart, as in Definition 6.1,
then the inverse of this chart gives a differentiable map from an open set
U ⊂ R2 to S, in other words, we can express (x, y, z) in this chart in S as
functions of two variables, say (u, v) ∈ U . Then γ corresponds to a curve
(u(t), v(t)), 0 ≤ t ≤ 1, and we can work out the length of γ by the chain
rule. It would be convenient to write x = (x, y, z). Then γ(t) = x(u(t), v(t)),
γ′(t) = xuu

′(t) + xvv
′(t) (where the subscripts denote partial derivatives)

and γ′(t) ·γ′(t) = (xuu
′+xvv

′) ·(xuu′+xvv
′) = (xu ·xv)u′2+2(xu ·xv)u′′v′+

(xv ·xvv)v′2. This last equation is usually written symbolically in differential
form as

(6.4) ds2 = (xu · xv)du2 + 2(xu · xv)dudv + (xv · xv)dv2,
or as

(6.5) ds2 = g11du
2 + 2g12dudv + g22dv

2,

where the gij are the coeffients of Equation 6.4: g11 = xu · xu, g12 = xu · xv
and g22 = xv · xv. They are smooth functions of u, v and geometrically,
g11(u, v) = xu · xv is the magnitude squared of the tangent vector at (u, v)
of the curve obtained by varying u and holding v constant, g22(u, v) has the
same interpretation with u and v interchanged, while g12 is the dot product
between the tangent vectors of the two curves just considered.

Example 6.5. One familiar example is the use of polar coordinates in R2: x =
r cos θ, y = r sin θ. Then dx = cos θ dr− r sin θ dθ, dy = sin θ dr+ r cos θ dθ
and ds2 = dx2 +dy2 = (cos θ dr− r sin θ dθ)2 + (sin θ dr+ r cos θ dθ)2 which
simplifies to

(6.6) ds2 = dr2 + r2 dθ2,

which is the familiar formula for arclength in polar coordinates. We should
be a bit careful when using polar coordinates, since they do not follow the
assumption we made above that it be the inverse of a chart. The transfor-
mation (r, θ) → (r cos θ, r sin θ) is not invertible unless we carefully restrict
its domain, and its image does not cover all of R2 in an invertible way. But,
with our knowledge of the identification topology, we can say, for instance,
that polar coordinates give a map [0,∞] × [0, 2π] → R2 which identifies
0× [0, 2π] to a point, and identifies (r, 0) with (r, 2π) for each r ∈ [0∞). It
is an instructive exercise that polar coordinates give a homeomorphism of
this identification space to R2. There are other convenient identifications we
could use to explain polar coordinates, for example, we could take [0,∞)×R
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and identify 0 × R to a point, and identify (r, θ) with (r, θ + 2πn) for each
integer n. Or we could use [0,∞)× I where I ⊂ R is any interval of length
2π and use the appropriate identifications on the boundary.

Example 6.6. Another example is the use of spherical coordinates on the
unit sphere S2 ⊂ R3. If x = (x, y, z) ∈ S2, let φ denote the angle between x
and the positive z-axis, and let θ be the angle between the projection of x
to the xy-plane and the positive x-axis. Then we have x = sinφ cos θ, y =
sinφ sin θ, and z = cosφ. Consequently dx = cosφ cos θ dφ − sinφ sin θ dθ,
dy = cosφ sin θ dφ+sinφ cos θ dθ, and dz = − sinφ dφ. A short computation
gives

(6.7) ds2 = dφ2 + sin2 φ dθ2.

6.1.2. Absolute Minimizers. We now give some examples of curves of min-
imum length joining two points. The simplest example is of course a line
segment in the plane, say the segment (x, 0), 0 ≤ x ≤ a for some fixed
a > 0. Suppose γ is a piecewise smooth curve joining (0, 0) and (a, 0). Then
γ(t) = (x(t), y(t)), 0 ≤ t ≤ 1, and x(0) = 0, x(1) = a. So

L(γ) =
∫ 1
0

√
x′(t)2 + y′(t)2dt ≥

∫ 1
0

√
x′(t)2dt ≥(6.8) ∫ 1

0 x
′(t)dt = x(1)− x(0) = a,

which shows that any curve from (0, 0) to (a, 0) has length at least a. Since
the line segment has length a, this shows that the line segment is gives the
absolute minimum of the length of connecting curves.

Note that the calculation in 6.8 actually gave more: the length of any
curve connecting the y axis with the line x = a is at least a.

This calculation can also be done in polar coordinates (taking, perhaps,
some care with the identifications explained in Example 6.5 in the case
where the curve crosses the boundary of the chosen domain of the coordinate
system). If γ is a curve from the origin to a point on the circle r = a, in
other words, γ(t) = (r(t), θ(t)), where r(0) = 0 and r(1) = a, then

L(γ) =
∫ 1
0

√
r′(t)2 + r(t)2θ′(t)2 dt ≥

∫ 1
0

√
r′(t)2 dt ≥(6.9) ∫ 1

0 r
′(t) dt = r(1)− r(0) = a,

which shows that the length of any curve from the origin to the circle r = a
is at least a. Since a line segment from the origin to this circle has length a,
this shows again that line segments minimize length between their endpoints.

Finally, let’s discuss the case of the unit sphere S2 ⊂ R3. Let’s take curves
γ from the north pole N = (0, 0, 1) to a point other than the south pole,
in other words, to a point with φ = α, where 0 < α < π, say the point
(0, sinα, cosα) corresponding to θ = π

2 and φ = α in spherical coordinates
of Example 6.6. As before, we take a curve γ(t) = (φ(t), θ(t)) with φ(0) = 0
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and φ(1) = α and compute:

L(γ) =
∫ 1
0

√
φ′(t)2 + sin2 φ(t) θ′(t)2 dt ≥

∫ 1
0

√
φ′(t)2 dt ≥(6.10) ∫ 1

0 φ(t) dt = φ(1) = φ(0) = α,

showing that any curve from the north pole N (corresponding to φ = 0) to
a point on the parallel z = cosα (corresponding to φ = α) has length at
least alpha. Since the great circle arc from the north pole to this point has
length α, this shows the following theorem. In the theorem, the shortest
great circle arc joining x and y, y 6= ±x, we mean the following. First,
the great circle determined by x and y we mean the intersection with S2

of the plane < x,y > determined by x and y (the span of x and y on the
language of liner algebra). They determine a plane because x 6= ±y. This
intersection is a circle of radius 1 containing x and y, and by the shortest
great circle arc we mean the shorter of the two arcs in this circle joining x
and y. There is a shorter one again because x 6= ±y.

Theorem 6.3. Let x,y ∈ S2, y 6= ±x, and let γ be the shortest great circle
arc joining x and y. Then γ is the shortest curve on S2 joining x and y.

Proof. If x = N the north pole, then y would be different form the south
pole, and we have just proved that the shortest great circle arc minimizes
length. If x is any other point on S2, then there is a rotation R of R3 that
takes x to N : R(x) = N . Then R(y) is different from the south pole, thus
the shortest great circle arc from R(x) to R(y) minimizes, so does R−1 of
this arc, which is the shortest great circle arc joining x and y. �

Remark 6.2. If y = −x, say if we take N and the south pole N, then the
computation of Equation 6.10 with α = π shows that any great circle arc
passing through N and −N is still length minimizing, its length is π. But
there are infinitely many such arcs, one for each value of θ. So minimizers
exist, but are not unique. But this is good enough to give us the following
theorem:

Theorem 6.4. The spherical metric of Example 1.6 is the same metric on
S2 as the intrinsic metric of Example 1.9.

Proof. We have seen that for any x,y ∈ S2,

cos−1(x · y) = inf{L(γ) : γ a piecewise differentiable path from x to y},

since, for x the north pole, the left hand side is φ, where (φ, θ) are the
spherical coordinates of y, and so is the right hand side. �

6.2. Geodesics. We now study length minimizing curves in the general
smooth surface, generalizing the discussion in the plane and sphere. A look
at the sphere shows that the concept of length minimizing is more subtle
than in the plane. Experience has shown that it is easier to look at these
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curves from the point of view of differential equations. We begin by deriving
this equation as a necessary condition for minimizing length.

6.2.1. The First Variation Formula for Arclength. Let S ⊂ R3 be a smooth
surface and let γ : [0, L0]→ S be a smooth curve, parametrized by arclength,
of length L0. To derive a necessary condition for γ to be the shortest curve
joining its endpoints P = γ(0) and Q = γ(1), it is natural to consider
variations of γ, meaning smooth maps

γ̃ : [0, L0]× (−ε, ε)→ S with γ̃(s, 0) = γ(s) for all s ∈ [0, L0].

If, in addition, we have that

γ̃(0, t) = P, γ̃(L0, t) = Q for all t ∈ (−ε, ε),

we say that γ̃ is a variation of γ preserving the endpoints. Thus a variation
of γ is a one parameter family of curves, depending on a t ∈ (−ε, ε), where
the curve t = 0 is γ. A variation of γ preserves endpoints if all these curves
join P and Q. Moreover, it is assumed that this family is a smooth map of
the rectangle [0, L0]× (−ε, ε) to S. Note that s is arclength on γ but not on
the other curves. Let

L(t) =

∫ L0

0
(γ̃s(s, t) · γ̃s(s, t))1/2 ds

be the length of the t-th curve of the variation s → γ̃(s, t). A necessary
condition for γ to be length minimizing is that for every variation of γ
preserving the endpoints, dL

dt (0) = 0.

Let’s compute this derivative for an arbitrary variation (not necessarily
preserving endpoints), and then specialize to endpoint preserving. First,
differentiating under the integral sign we get

dL

dt
=

∫ L0

0

1

2
(γ̃s(s, t) · γ̃s(s, t))−1/2(2 γ̃st(s, t) · γ̃s(s, t)) ds.

Evaluating at t = 0 and using the fact that γ̃(s, 0) = γ(s) is parametrized
by arclength, equivalently, γ̃s(s, 0) · γ̃s(s, 0) = 1, we get

dL

dt
(0) =

∫ L0

0
γ̃st(s, 0) · γ̃s(s, 0) ds.

Next, integrate by parts, using the formula

(γ̃t(s, 0) · γ̃s(s, 0))s = γ̃ts(s, 0) · γ̃s(s, 0) + γ̃t(s, 0) · γ̃ss(s, 0)

and noting that, by the smoothness of γ̃, we have equality of mixed partials:
γ̃st = γ̃ts:

dL

dt
(0) = (γ̃t(s, 0) · γ̃s(s, 0))|L0

0 −
∫ L0

0
γ̃(s, 0) · γ̃ss(s, 0) ds
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Let us simplify this formula. First recall that γ̃(s, 0) = γ(s), thus γ̃s(s, 0) =
γ′(s) and γ̃ss(s, 0) = γ′′(s). Next, define a vector field V (s) along γ by

V (s) = γ̃t(s, 0).

This is called the variation vector field. It tells us how we are moving away
from γ at t = 0. More precisely, V (s) is a vector based at γ(s) and is
the velocity vector of the curve t → γ̃(s, t) at t = 0, so it is telling us the
velocity at which γ(s) initially moves under the variation. Observe that if
the variation preserves endpoints, then V (0) = 0 and V (L0) = 0, since these
point do not move at all.

Using this notation, we can rewrite the above formula as

dL

dt
(0) = V (s) · γ′(s)|L0

0 −
∫ L0

0
V (s) · γ′′(s) ds.

Noting that V (s) is a vector tangent to S at the point γ(s), the inner product
under the integral sign is the same as V (s) · γ′′(s)T , where γ′′(s)T denotes
the tangential component of γ′′(s). So we can finally rewrite the formula as

(6.11)
dL

dt
(0) = V (s) · γ′(s)|L0

0 −
∫ L0

0
V (s) · γ′′(s)T ds.

This is called the first variation formula for arclength.

6.2.2. The Geodesic Equation. Let us now see what the first variation for-
mula implies for our original problem, where the variation preserves end-
points. Then the first term of formula 6.11 vanishes, we get just the second
term, which must vanish for all possible variation vector fields V .

Theorem 6.5.
∫ L0

0 V (s) ·γ′′(s)T ds = 0 for all possible variations of γ with

fixed endpoints if and only if the tangential component γ′′T of γ′′ vanishes:
γ′′(s)T = 0 for all s ∈ [0, L0].

Example 6.7. Before proceeding to the proof of the theorem, let us look
at the example of the sphere S2. Using spherical coordinates, let γ be the
curve, depending on φ, given by holding φ constant, in other words, for fixed
φ, 0 < φ < π, the curve

γ(θ) = (sinφ cos θ, sinφ sin θ, cosφ),

which is a “parallel” on the sphere. It is parametrized proportional to ar-
clength s, thus γ′′(θ) is a constant multiple of γ′′(s). Then

γ′′(θ) = (− sinφ cos θ,− sinφ cos θ, 0),

which is perpendicular to the sphere if and only if it is a multiple of the
vector γ(θ), which happens if and only if cosφ = 0, that is, φ = π/2,
in other words, γ is the equator. Thus the only parallel that satisfies the
equation γ′′(s)T = 0 is the equator, which is the only parallel that is a great
circle.
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Figure 6.2. Equator and Meridians are Geodesics

This confirms that our differential equation does characterize great circles,
which our intuition tells us are the geodesics on the sphere. (Note also that
in this variation of the equator, the equator is a local maximum, rather than
a local minimum. In fact, as a function of the parameter φ in the variation,
L(φ) = 2π sinφ which has a maximum at φ = π/2.) In the same spirit we
can readily verify that all the meridians θ = const are geodesics. Note that
φ is arclength along the meridians.

Proof of the Theorem. Let us begin with two observations:

(1) Since γ′′T · γ′ = 0 (because γ′ · γ′ is a constant), if we let N(s) be
a unit vector field along γ perpendicular to γ′(s), then γ′′T (s) is a
multiple of N(s). This multiple is traditionally written κg(s) and (up
to sign) is called the geodesic curvature of γ. This terminology will be
discussed later, for the moment let’s just write γ′′(s)T = κg(s)N(s)
for some smooth function κg.

(2) It suffices to take V (s) to be a multiple of N(s): V (s) = f(s)N(s)
for some smooth function f on [0, L0]. Then the integral in question

becomes
∫ L0

0 f(s)κg(s) ds and we need to prove that if this integral
is 0 for all f arising from variations of γ, then κg(s) = 0 for all
s ∈ [0, L0].

We need the following lemma:

Lemma 6.1. Let (a, b) ⊂ R be an interval. Then there is a smooth function
φ : R→ R that is positive on (a, b) and vanishes on R \ (a, b).

Proof. First check that the function defined by

f(x) =

{
e−1/x if x > 0,

0 if x ≤ 0.

is smooth (of class C∞). In fact, all its derivatives are defined and vanish
at 0. Then, if a < b, the function φ(x) = f(x − a)f(b − x) satisfies the
requirements of the lemma. This is the picture for (a, b) = (0, 1):
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Figure 6.3. Smooth “Bump” Function

�

Now we can prove the theorem. Following observation (2) above, suppose
κg(s0) 6= 0, say κg(s0) > 0 for some s0 ∈ (0, L0). Then there exists an
interval (a, b) ⊂ (0, L0) containing s0 on which κg > 0. We may also assume
that γ|(a,b) : (a, b)→ U ⊂ S where one of the projections px, py, pz, let’s call
it p, maps U diffeomorphically to its image V . Let g : V → U be the inverse
of p|U , as in the proof of Theorem 6.1. Let φ be as in the Lemma and let

f = φ|[0,L0]. Then
∫ L0

0 f(s)κg(s) ds > 0, contradicting the assumption,
provided that the field f(s)N(s) is a variation field, that is, provided that
there exists a variation γ̃ : [0, L0] × (−ε, ε) → S, written γ̃(s, t), of γ with
γ̃t(s, 0) = f(s)N(s). But this is indeed the case. For example, we can define
γ̃ by

γ̃(s, t) =

{
g(p(γ(s) + tf(s)N(s))) if s ∈ (a, b),

γ(s) otherwise.

in other words, form the variation γ(s) + tf(s)N(s) by curves in R3 that
give the desired variation vector field f(s)N(s) but need not lie on S, and
force them to lie on S by projecting to S in the indicated manner. This uses
that p is defined on all of R3, so that p(γ(s) + tf(s)N(s)) makes sense. To
get the correct derivative with respect to t at t = 0 we use that for t = 0 we
are on S. Since g and p|U are inverse to each other, one gets from the chain
rule that

γ̃t(s, 0) = (dp(γ(s))g ◦ dγ(s)p)(
∂

∂t
(γ(s) + tf(s)N(s))|t=0)

= (dp(γ(s))g ◦ dγ(s)p)(f(s)N(s))

= f(s)N(s),

because dp(x)g ◦ dxp = id on the tangent space to S at any x ∈ U ⊂ S, and
dg, dP denote, as usual, the differentials of g and p. �

Definition 6.2. A smooth curve γ : (a, b) → S is called a geodesic in S if it
satisfies γ′′(s)T = 0 for all s ∈ (a, b).
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Note that if γ is a geodesic, then |γ′(s)| is constant, that is, γ is a con-
stant speed curve, equivalently, parametrized proportional to arclength. The
reason is that (γ′ · γ′)′ = 2γ′′ · γ′ = 2γ′′T · γ′ = 0 if γ is a geodesic.

There are several notations used for γ′′T . For instance,

Definition 6.3. Let γ : (a, b) → S be a smooth curve and V : (a, b) → R3

a smooth vector field along γ, meaning that V is a smooth map and for all
s ∈ (a, b), V (s) ∈ Tγ(s)S, the tangent plane to S at γ(s).

(1) The tangential component V ′(s)T is called the covariant derivative
of V and is denoted DV/DS.

(2) γ is a geodesic if and only if Dγ′/Ds = 0 for all s ∈ (a, b).

Other notations forDγ′/Ds = 0 are commonly used, for exampleD2γ/Ds2 =
0, Dγ′γ

′ = 0, and some others.

6.2.3. The Geodesic Equation in Local Coordinates. To study the geodesic
equation γ′′(s)T = 0 in more detail, we restrict γ to an interval that lies in
the domain of some chart, and we use the notation of the second paragraph
of Subsection 6.1.2, namely we have the smooth map x : U → S which
is the inverse of the chart, where U ⊂ R2 is open and we use u, v for the
coordinates on U .

For each point P ∈ S we write TPS for the tangent plane of to S at P .
This is the two-dimensional subspace of R3 of vectors which are tangent to
S at P . For each (u, v) ∈ U , the vectors xu(u, v) and xv(u, v) form a basis
for Tx(u,v)S. The curve γ(s) = x(u(s), v(s)) for some curve (u(s), v(s)) in U .
We compute γ′′. First, by the chain rule, γ′ = xuu

′ + xvv
′, differentiating

once more using the product rule and chain rule, and combining some terms,
we get

γ′′ = xuu
′′ + xvv

′′ + xuu(u′)2 + 2xuvu
′v′ + xvv(v

′)2.

Notice that the first two terms are tangential. So, to find γ′′T we need to
find the tangential component of the sum of the last three terms. We do
not need to do this explicitly at this moment (more will be said later), all
we need is the general shape of the formula. The tangential component of
the sum of the last three terms is of the form

q1(u, v, u
′, v′)xu + q2(u, v, u

′, v′)xv,

where q1 and q2 are quadratic functions of u′, v′ with coefficients smooth
functions of u, v, written more explicitly below. Putting this together we see
that the equation γ′′T = 0 is equivalent to a system of second order ODE’s

u′′ + Γ1
11u
′2 + 2Γ1

12u
′v′ + Γ1

22v
′2 = 0(6.12)

v′′ + Γ2
11u
′2 + 2Γ2

12u
′v′ + Γ2

22v
′2 = 0

where the six coefficients Γijk = Γijk(u, v) are smooth functions on U .
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We will later discuss how to obtain formulas for the coefficients. For
the time being all we need is that it is a system of second order ODE’s
where the coefficients of u′′, v′′ are 1. There is a standard existence and
uniqueness theorem for the initial value problem, together with a theorem
on the smooth dependence of the solution on the initial conditions. Let us
write u = u(s) = ((u(s), v(s)) for a solution of the system 6.12. Let us write
p for a point in U and v for a vector in R2, which we think of as a tangent
vector to U at p.

Theorem 6.6. Given any p0 ∈ U and any v0 ∈ R2 there exists a neigh-
borhood W of (p0,v0) in U × R2 and an interval (−a, a) ⊂ R so that
for any (p,v) ∈ W there exists a unique solution u(s) = (u(s), v(s)) of
the system 6.12 satisfying the initial conditions u(0) = p and u′(0) = v.
Let u(s, p,v) denote this solution. It depends smoothly on the initial con-
ditions p,v in the sense that the map u : (−a, a) × W → U given by
(s, p,v) 7→ u(s, p,v) is smooth.

A proof of this theorem, stated for a system x′(t) = f(t,x(t)) of first
order equations, where U ⊂ Rn is an open set, I ⊂ R is an open interval, and
f : I×U → Rn is a smooth map, can be found in any rigorous text on ODE’s,
for example, in Chapter 2 of [2] or Chapter 4 of [1]. (See also Chapter 4 of
[3], paticularly sections 4.6 and 4.7 for a discussion of the geodesic equation.)
A second order system in n unknown functions is equivalent to a first order
system in 2n unknown functions. Note that our system is equivalent to
a first order system of a more special form, x′(t) = f(x), an autonomous
system (f does not depend on t).

Our solution u(s, p,v) satisfies the identity

(6.13) u(rs, p,v) = u(s, p, rv) for any r ∈ R
because both sides are solutions of the ODE with value p and first derivative
rv at s = 0.

Fix p ∈ U . To simplify the calculations, we may make a linear change
of coordinates (u, v) so that p = (0, 0) = 0 (by translating the coordinates)
and so that, at 0, the differential of our parametrization x of S , d0x : R2 =
T0R2 → Tx(0)S, is an isometry. This last requirement is achieved as follows.

The set {v ∈ R2 : |d0x(v)| = 1} is an ellipse. If it is a circle, multiply
by a factor to make the circle of radius one. If it is not a circle, apply
the linear transformation with eigenvectors pointing in the direction of the
axes and eigenvalues the inverses of the semi-axes, to take this ellipse into
a circle of radius one. Another way of saying this is that, at 0, dx2 + dy2 +
dz2 = du2+dv2, equivalently, that the coefficients gij of Equation 6.5 satisfy
g11(0) = g22(0) = 1 and g12(0) = 0.

By Theorem 6.6, for any v0 so that |v0| = 1, there exists a neighborhood
V of v0 and an a > 0 so that the solution u(s, 0.v) exists for all (s,v) ∈
(−a, a) × V . By the compactness of the circle S1 = {|v| = 1}, it can be
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covered by finitely many such V , and taking b to be the smallest of the
corresponding a’s, we get the following lemma:

Lemma 6.2. There exists b ∈ (0,∞] so that the solution u(s, 0,v) of the
geodesic equation 6.12 is defined for all (s,v) ∈ (−b, b)× S1.

In other words, for any fixed length c < b all geodesics through 0 in all
directions v ∈ S1 are defined up to c. Note that b = ∞ is possible, in fact,
it is the ideal situation.

The reason for requiring that d0x be an isometry is to insure that s is
arclength along these solutions u(s, 0,v) with |v| = 1, where |v| is the
Euclidean length in R2. Otherwise we would have to use the length mea-
surement |d0x(v)| =

√
g11(0)v21 + 2g12(0)v1v2 + g22(0)v22 where gij are as in

Equation 6.5 and v = (v1, v2).

Using the formula 6.13, for any v ∈ R2, v 6= 0, we have u(1, 0,v) =
u(|v|, 0,v/|v|) is defined provided |v| < b, with b as in Lemma 6.2. In other
words, the map v 7→ u(1, 0,v) is defined and smooth on the ball {|v| < b}.
Let us call this map f : B(0, b)→ U , and let’s compute its differential at 0,
d0f(v) = limt→0(f(tv) − f(0))/t = limt→0 f(tx)/t = limt→0 u(1, 0, tv)/t =
limt→0 u(t, 0,v)/t = u′(0, 0,v) = v, where the second to last equality is
Equation 6.13 and the last equality is the definition of u(s, p,v) in terms of
initial conditions. Thus we get d0f = id. By the inverse function theorem
we get that there exists an ε > 0 so that f |B(0,ε) is a diffeomorphism of
B(0, ε) onto its image.

6.2.4. Exponential Map and Geodesic Polar Coordinates. We transfer the
information just obtained in local coordinates back to the surface S. Recall
that 0 ∈ U ⊂ R2, that x : U → S is a diffeomorphism onto its image,
P = x(0) and that d0x : T0U = R2 → TPS is an isometry.

For V ∈ TPS, let γ(s, P, V ) be the solution of γ′′(s)T = 0 satisfying
γ(0) = P and γ′(0) = V . Our discussion of the geodesic equation in the the
local coordinates (u, v) ∈ U proves the following theorem:

Theorem 6.7. (1) There is b ∈ (0,∞] so that γ(1, P, V ) is defined for
all v ∈ B(0, b) ⊂ TPS.

(2) Define a map expP : B(0, b) → S by expP (V ) = γ(1, P, V ). Then
the differential dP expP : TPS → TPS is the identity.

(3) There exists ε > 0 so that expP |B(0,ε) is a diffeomorphism of B(0, ε)
onto its image.



72 TOLEDO

Proof. For any r ≤ b, where b is as in Lemma 6.2, we have the following
diagram

B(0, r) ⊂ R2 d0x- B(0, r) ⊂ TPS

U

f

? x - S

expP

?

where the left half is the discussion in local coordinates just finished in
subsection 6.2.3, and the right half is the map just defined. We have just
proved the three parts of this theorem for the left half of the diagram, the
diffeomeorphism x transfers the theorem to the right half. For part (1) take
r = b, for part (3) take r = ε as in the last sentence of subsection 6.2.3.

�

The traditional notation and terminology for this map comes from the fact
that in some examples the matrix exponential could be seen as a special case
of this map:

Definition 6.4. The map expP : B(0, b) → S defined in (2) of Theorem 6.7
is called the exponential map at P .

To make matters concrete, let’s keep in mind the example S = S2 and
P = N the north pole. The rays through the origin in TNS

2 are mapped to
the meridians (great circles through N). Note that expN is defined on the

Figure 6.4. Exponential Map for the Sphere

whole tangent space (b =∞ in Theorem 6.7), but its restriction to the ball
of radius r is a diffeomorphism only for r < π.

The parametrization of a neighborhood of P ∈ S by the ball B(0, ε) ⊂ TpS
turns out to be a very natural one. We will change notation, forget the
arbitrary parametrization x(u, v) of subsection 6.2.3 and for the rest of this
section we will use the convenient letters u, v for rectangular coordinates
in TPS with respect to some orthonormal basis e1, e2, and the convenient
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notation x for the map expP : B(0, ε)→ S, that is, x(u, v) = expP (ue1+ve2)
for (u, v) ∈ B(0, ε) ⊂ R2. A glance at Figure 6.4 suggests that we should also
use the associated polar coordinates (r, θ) so that u = r cos θ, v = r sin θ).
When doing so, we will use the usual abbreviated, if somewhat inaccurate
notation x(r, θ) for x(r cos θ, r sin θ).

Definition 6.5. The parametrization x : B(0, ε) → S just defined will be
called a normal coordinates centered at P . When this parametrization is
expressed in polar coordinates, the coordinates r, θ will be called geodesic
polar coordinates centered at P .

Figure 6.4 also suggests that the curves r = const and θ = const should
be perpendicular to each other. This is indeed the case:

Theorem 6.8. (Gauss’s Lemma): In a geodesic polar coordinate system
x : B(0, ε) → S, xr · xθ = 0. Equivalently, in this coordinate system,
ds2 = dr2 + g(r, θ)2 dθ2 for some positive smooth function g.

Proof. This follows immediately from the first variation formula 6.11. For
fixed r0 < ε, and any θ ∈ [0, 2π], the curve γ(·, θ) : [0, r0] → S given by
γ(r, θ) = x(r, θ) is a geodesic of length r0, so its length L(θ) is independent
of θ. For any fixed θ0, γ(r, θ) is then a variation of γ(·, θ0) by geodesics
of constant length, keeping γ(0, θ) = P fixed, and variation vector field
V (r) = xθ(r, θ) Thus formula 6.11 reads

0 = L′(θ0) = xθ · xr|r=r0r=0 = xθ(r0, θ0) · xr(r0, θ0).
Since r0, θ0 are arbitrary, this means that xθ ·xr = 0 everywhere, as asserted.
Recalling formulas 6.4 and 6.5, we see that xr · xr = 1 (since, for each θ,
x(r, θ) is a unit speed geodesic), xr ·xθ = 0 (as just proved) and xθ ·xθ = g22.
Since g22 is a positive smooth function, we can write g22 = g2 for some
positive smooth function g. �

Now that we have geodesic polar coordinates, we can repeat the reasoning
we used in Equations 6.9 and 6.10 in any surface. First, Gauss’s Lemma
justifies the following terminology:

Definition 6.6. In a geodesic polar coordinate system centered at P , the
curves r 7→ x(r, θ), 0 ≤ θ ≤ 2π, are called the geodesic rays through P . The
curves θ 7→ x(r, θ) are called the geodesic circles centered at P .

Theorem 6.9. Let x : BT (0, ε) → S be a geodesic polar coordinate system
centered at P , where BT denotes the ball in the Euclidean metric of the
tangent plane TPS.

(1) For any 0 ≤ r0 < r1 < ε and any fixed θ, the geodesic segments
x(r, θ), r0 ≤ r ≤ r1 are the shortest piecewise differentiable curves
in S joining a point in the geodesic circle r = r0 to a point in the
geodesic circle r = r1.
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(2) In particular, the geodesic rays through P are the shortest piece-
wise differentiable curves in S joining P to any other point Q in
x(BT (0, ε)). This length is dS(P,Q), where dS is the intrinsic dis-
tance on S as defined in Example 1.9 or Definition 1.2(5).

(3) Let BS(P, r) denote the ball of given center and radius in the intrinsic
distance dS. Then, for any r < ε, BS(P, r) = x(BT (0, ε)).

Proof. We argue as we did in polar or spherical coordinates in Equations 6.9
or 6.10. Consider first a smooth curve γ(t) = x(r(t), θ(t)), 0 ≤ t ≤ 1 lying
in the image of the geodesic polar coordinate system, and suppose that
r(0) = r0 and r(1) = r1. Then we have

L(γ) =

∫ 1

0

√
r′(t)2 + g(r(t), θ(t))2 θ′(t)2 dt ≥(6.14) ∫ 1

0

√
r′(t)2 dt ≥

∫ 1

0
r′(t) dt = r(1)− r(0) = r1 − r0.

Observe that the first inequality is strict unless θ′ = 0, that is, θ is constant,
that is, γ lies on a geodesic ray. The second inequality is strict unless r′ ≥ 0,
that is, r is an increasing function of t, that is, we are covering a segment
x(r, θ), r1 ≤ r ≤ r2, monotonically. Thus L(γ) > r2 − r1 unless γ covers
a segment monotonically. Since the length of the segment is r2 − r1, it is
an absolute minimizer among the curves considered: smooth curves lying in
x(BT (0, ε)).

If γ is just piecewise smooth, but still lies in the coordinate system, divide
[0, 1] into subintervals by taking 0 = t0 < t1 < · · · < tn = 1, where γi|[ti−1,ti]

is smooth. Let ρi = r(ti). The same reasoning as in Equation 6.14, but
refined to take into account the possibility that ρi < ρi−1, gives the more
useful inequality

L(γi) ≥
∫ ti

ti−1

√
r′(t)2 dt ≥

{∫ ti
ti−1

r′(t) dt = ρi − ρi−1 if ρi−1 < ρi,∫ ti
ti−1
−r′(t) dt = ρi−1 − ρi if ρi < ρi−1.

By more useful inequality we mean that the first inequality is useless in
the second case, because it gives a negative lower bound, while the second
inequality is equally useless in the first case.

In either case we get the inequality L(γi) ≥ |ρi − ρi−1|, with equality if
and only if γi travels monotonically along a segment x(r, θi), for some fixed
θi, and with ρi−1 ≤ r ≤ ρi, or ρi ≤ r ≤ ρi−1 as the case many be. We thus
get

L(γ) =
∑

L(γi) ≥
∑
|ρi − ρi−1| ≥

∑
(ρi − ρi−1) = ρn − ρ0 = r1 − r0,

with equality L(γ) = r1−r0 if and only of all these inequalities are equalities
and ρ0 < ρ1 · · · < ρn. In particular, each γi must be a segment traveled in
monotonically increasing fashion. Since γ is a continuous path, all the θi
must be the same (modulo 2π), hence γ is a segment. Thus segments of
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geodesic rays absolutely minimize length in the class of piecewise smooth
paths in the image of the geodesic coordinate system.

Finally, if γ([0, 1]) does not lie on the image of the geodesic polar coordi-
nate system, then, for some R, r1 < R < ε, γ does not lie in the image of
the closed ball B̄T (0, R). By the continuity of γ there is τ , 0 < τ < 1 so that
γ(τ) lies on the geodesic circle of radius R and γ([0, τ ]) lies in the image
of B̄T (0, R). (This can be proved as follows: writing γ(t) = x(r(t), θ(t)), r
is a continuous function of t with r(0) = 0 and r(t) > R for some t. Thus
there exist t1, 0 < t1 < t, so that r(t1) = R. Let τ = inf{t1 : r(t1) = R}.
It is easily seen that 0 < τ < 1 and has the required property.) Then
L(γ) ≥ L(γ|[0,τ ]) ≥ R − r0 > r1 − r0, so it cannot be length minimizing.
This proves the first statement of the theorem. See Figure 6.5 for a sketch
of what a geodesic coordinate system may look like. The wavy curves repre-
sent some of the possibilities we considered in the proof. The geodesic rays
realize the distance between geodesic circles.

The remaining two statements in the theorem are easy consequences of
the first.

�

Figure 6.5. Geodesic Rays Minimize Length

Remark 6.3. (1) Observe that Theorem 6.9 says, in particular, that suf-
ficiently small balls B(P, r) in the intrinsic distance dS look roughly
like the balls in the Euclidean metric in the plane. In particular,
there is a unique minimizing segment from the center P to any other
point Q ∈ BS(P, r). This is in marked contrast with the Taxicab
metric of Example 1.4 or the Supremum distance of Example 1.5
where there are uncountably many shortest curves joining P and Q,
no matter how close P and Q are.

(2) It follows easily from Theorem 6.9 that the topology of the intrinsic
metric dS is the subspace topology on S ⊂ R3. This fact can also be
proved from first principles, without using this detailed theorem.
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6.3. A First Glance at Gaussian Curvature. We study in more detail
the function g(r, θ) in the expression for ds2 in geodesic polar coordinates
given by Gauss’s Lemma (Theorem 6.8)

(6.15) ds2 = dr2 + g(r, θ)2 dθ2.

Recall that we can also use rectangular coordinates u, v on TPS and

dr2 + g(r, θ)2 dθ2 = g11 du
2 + 2g12 dudv + g22 dv

2,(6.16)

were g11(0) = g22(0) = 1 and g12(0) = 0,

where gij are smooth functions of u, v, their values at 0 being a consequence
of d0 expP = id (Theorem 6.7 (2)). The two coordinates are related by the
usual formulas u = r cos θ, v = r sin θ. Let us expand the function g(r, θ) in
powers of r with coefficients that are functions of θ:

(6.17) g(r, θ) = f0(θ) + f1(θ)r + f2(θ)r
2 + f3(θ)r

3 +O(r4),

where O(r4) stands for a function h(r, θ) so that |h(r, θ)|/r4 ≤ C, where
C is an absolute constant (independent of θ). Polar coordinates are singu-
lar at the origin, but the fact that the functions gij in right hand side of
Equation 6.16 are smooth in u, v imposes strong restrictions on the possible
coefficients fi(θ) of g(r, θ). To derive these restrictions, write dr, dθ in terms
of du. dv:

dr = (udu+ vdv)/r, u/r, v/r homogenous of degree 0(6.18)

dθ = (udv − vdu)/r2, u/r2, v/r2 homogenous of degree − 1

where r = (u2+v2)
1
2 . Recall that a function φ(u, v) is said to be homogeneous

of degree k if φ(tu, tv) = tkφ(u, v) for all t > 0. If k ≥ 0 homogenous
polynomials of degree k are homogeneous functions of degree k, but there
are homogeneous functions that are not polynomials. For example, u/r and
v/r are homogeneous of degree 1, but are not linear functions.

We can expand the left hand side of Equation 6.16 in powers of r using
Equation 6.17. If we express dr and dθ in terms of du and dv by using
the formulas 6.18, we must get the expression on the right hand side of
Equation 6.16, where the coefficients gij are smooth functions of u, v, so that
the homogenous of degree k in its Taylor expansion have to be homogeneous
polynomials of degree k in u, v. This polynomial restriction if very strong,
and gives the following conclusions:

The coefficients fi(θ) in Equation 6.17 satisfy;

(1) f0(θ) = 0. (Otherwise, there would be a term f0(θ)
2dθ2 homoge-

neous with coefficients of du, dv homogeneous of degree −2.)
(2) f1(θ) = 1. ( Because the terms homogeneous of degree 0 are dr2 +

f1(θ)
2r2dθ2, but this must be the same as du2 + dv2 = dr2 + r2dθ2,

thus f1(θ) = 1.)
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(3) f2(θ) = 0. (Because dr2 + (r + f2(θ)r
2 + . . . )2dθ2 = dr2 + (r2 +

2f2(θ)r
3 + . . . )dθ2 and the term homogeneous of degree 1 must be

2f2(θ)(udv − vdu)2/r which, in terms of u, v has coefficient of dv2

equal to 2f2(θ)u
2/r, which is not a polynomial in u unless it is

identically zero, thus f2 = 0.)
(4) f3(θ) = c where c is a constant, independent of θ. (Because dr2 +

(r+f3(θ)r
3 + . . . )2dθ2 = dr2 +(r2 +2f3(θ)r

4 + . . . )dθ2 and the term
homogeneous of degree 2 must be the same as 2f3(θ)(udv − vdu)2,
the coefficient of dv2 is 2f3(θ)u

2 which is a quadratic polynomial in
u, v if and only if f3(θ) = c, a constant independent of θ

We summarize:

Theorem 6.10. Let r, θ be a geodesic polar coordinate system centered at
P ∈ S. Then ds2 = dr2 + g(r, θ)2dθ2 where g(r, θ) = r + cr3 +O(r4).

Definition 6.7. The Gaussian curvature of S at P is the number K(P ) =
−6c, with c as in the theorem.

Remark 6.4. This is not the traditional definition of Gaussian curvature,
but it is a convenient one for us. Gauss’s original definition was extrinsic,
and his Theorema Egregium was the statement that K is intrinsic. See
Subsection 6.4 below for the meaning of intrinsic.

Example 6.8. (1) If S = R2, then geodesic polar coordinates are the
usual polar coordinates, ds2 = dr2+r2dθ2, g(r, θ) = r and K(P ) = 0
for all P ∈ R2.

(2) If S = S2 and N is the north pole, then we have seen that ge-
odesic polar coordinates are the same as spherical coordinates of
Example 6.6, with φ = r and ds2 = dr2 + sin2 r dθ2, thus g(r, θ) =
sin r = r− r3/6 + . . . , thus K(N) = 1 (this explains the factor −6).
Since there is a rotation of S2 taking N to any other point P , S2 ,
K(P ) = 1 for all P ∈ S2.

Remark 6.5. Here is a nice interpretation of the Gaussian curvature K(P ).
In a geodesic polar coordinate system centered at P , the length of the geo-
desic circle Cr = {(r, θ) : 0 ≤ θ ≤ 2π} is given by

L(Cr) =

∫ 2π

0
g(r, θ) dθ =

∫ 2π

0
(r − (K(P )/6)r3 +O(r4)) dθ(6.19)

= 2πr − (K(P )π/3)r3 +O(r4).

Thus K(P ) measures the deviation of the formula for circumference from
the usual Euclidean formula. For example, for R2 we get L(Cr) = 2πr while
for S2 we get L(Cr) = 2π sin r = 2πr − πr3/3 + . . . , thus geodesic circles
on the sphere are shorter than their counterparts in R2, as suggested by
Figure 6.4.
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6.4. A Quick Glance at Intrinsic Geometry. Gauss discovered the in-
trinsic geometry of surfaces, and introduced the geodesic polar coordinates
to study it in detail. Intrinsic geometry means the part of the geometry
of S ⊂ R3 that depends on intrinsic measurements on S, and not on its
embedding in R3. Intrinsic measurements are those that can be reduced to
the study of measurements within surface, such as length, angles, area.

We have seen one example in the homework problems. Consider the
cylinder C = {x2 + y2 = 1} ⊂ R3, parametrized by x : R2 → C ⊂ R3 where

(6.20) x(u, v) = (cosu, sinu, v).

Since x(u + 2π, v) = x(u, v), we can view x as a map (R2/ ∼) → C, where
(u, v) ∼ (u + 2nπ, v) for all n ∈ Z. It is easy to check that this map is a
homeomorphism. But more is true: we saw in the homework that this map
takes geodesics u′′ = 0, v′′ = 0 in R2 to geodesics in C (spirals and vertical
lines) and this map preserves the length of curves. So this map x is an
isometry between the intrinsic metrics of the surfaces R2/ ∼ and C.

There is a quick way for checking that a smooth map is an isometry be-
tween intrinsic metrics: check that it preserves ds2, thus it preserves length
of curves, thus preserves intrinsic metrics. More formally, to say that a
smooth map f : S1 → S2 between smooth surfaces S1, S2 preserves ds2 is the
same as saying that, for all P ∈ S1, the differential dP f : TPS1 → Tf(P )S2
is an isometry between the two inner product spaces TPS1, Tf(P )S2 ⊂ R3.

In our example of x : (R2/ ∼)→ C this is checked as follows:

dx · dx = dx2 + dy2 + dz2 = (− sinu du)2 + (cosu du)2 + dv2 = du2 + dv2,

thus the integrands for arclength correspond, thus lengths of curves corre-
spond, and this map is an isometry in the sense of metric spaces. (This is
a sufficient condition for isometry of metric spaces. It turns out that it is
also a necessary condition, but necessity is harder to prove.)

Another example, let et γ : R → R2 be any smooth curve parametrized
by arclength, periodic of period 2π, and suppose γ(u1) 6= γ(u2) if u1 − u2 is
not an integral multiple of 2π. Write γ(u) = (x(u), y(u)). Define a surface
Cγ ⊂ R3 by the formula

(6.21) y(u, v) = (x(u), y(u), v),

called the cylinder on γ. Then the map y : R2/ ∼→ Cγ is also an isometry,
thus the map f : C → Cγ defined byf(x(u, v)) = y(u, v) is an isometry.
Since there are infinitely many surfaces isometric to the cylinder C. The
isometries, and continuous deformations from one to another.

We have been a bit sloppy since the “surface” R2/ ∼ is a quotient of
R2 rather than a subspace of R3. But it is a smooth surface in the sense
of Definition 6.1. What this means is that we have to enlarge the context
in which we consider lengths of curves, we should not restrict ourselves to
surfaces in R3. We will do this next semester.
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To finish, let us remark that the Gaussian curvature is invariant under
isometries. Since it is 1 for any open subset of S2 and 0 for any open subset
of R2, we get that no open subset of S2 can be isometric to an open subset
of R2.

References

[1] V. I. Arnold, Ordinary Differential Equations, MIT Press, 1973.
[2] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations,

McGraw-Hill, 1955.
[3] M. A. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.
[4] K. F. Gauss, General Investigations of Curved Surfaces, Dover, 2005.
[5] A. Hatcher, Notes on Introductory Point-Set Topology, available at

http://www.math.cornell.edu/ hatcher/Top/TopNotes.pdf
[6] D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, Chelsea Pub. Co.
[7] B. Mendelson, Introduction to Topology, Dover Publications, 1990.
[8] J. Oprea, Differential Geometry and its Applicationos, Prenetice-Hall 1997.
[9] A. Pressley, Elementary Differential Geometry, Springer, 2002.

[10] J. Stillwell, Geometry of Surfaces, Universitext, Springer-Verlag, 1992.


