
Math 4200, Final Review

This is a continuation of Reviews 1 and 2. The final exam will be comprehensive and you
should be familiar with the topics in the first two Reviews.

MH = Marsden-Hoffman, R1,R2 = Review1, 2.
As usual, when nothing else is said, A ⊂ C is a domain and f : A→ C

1. Isolated singularities : If a function f is analytic in a region containing a punctured disk
{0 < |z − z0| ≤ r} for some r > 0, we say that f has an isolated singularity at z0. Recall
from §9, 10 of R2, MH p226, that f has a Laurent expansion

f(z) =
∞∑

n=−∞

an(z − z0)n (1)

convergent in the punctured disk, and for every r1, r2 such that 0 < r1 < r2 < r the
convergence is uniform in the annulus {r1 < |z − z0| < r2}.

2. The isolated singularities are classified as (MH Def 3.3.2, R2 §10):

(a) Essential Singularity if an 6= 0 for infinitely many n < 0.

(b) Pole of order k if k ≥ 1, a−k 6= 0, and an = 0 for n < −k.

(c) Removable Singularity if an = 0 for all n < 0.

3. A function that is analytic in a region A except for poles is called meromorphic in A
(MH Def 3.3.2, 5). Examples of meromorphic functions are quotients f(z)/g(z) where
f, g : A → C are analytic and g is not identically zero. Then f/g has isolated singu-
larities at the zeros of f , these are either removable singularities or poles. For example,
tan(z) = sin(z)/ cos(z) has poles at {(n+ 1

2
)π : n ∈ Z}, the zeros of cos(z), and no other

singularities, so it is meromorphic in C. Examples of functions that are not meromorphic
are e1/z or sin(1/z) which have essential singularities at 0.

4. A function f has a pole of order k ≥ 1 at z0 if and only if for some ε > 0 there is an
analytic function φ(z) defined on |z − z0| < 0, with φ(z0) 6= 0 and f(z) = (z − z0)−kφ(z)
on {|z − z0| < ε}. (See MH Prop 3.3.4 for this and other characterizations of poles that
you should know). Compare this with the definition of a zero of order k (R2 §8). Looking
at this, we get:

5. (MH Prop 3.3.5) If f, g have zeros of order k, l respectively at z0, then f/g has

(a) A zero of order k − l at z0 if k > l,

(b) A removable singularity at z0 with f(z0) 6= 0 if k = l,

(c) A pole of order l − k at z0 if k < l.

6. Exercise: We see from the last statement that we could think of a pole as a zero of negative
order. Follow this idea by making the following definition: the order of a meromorphic
function f at z0, denoted O(f, z0), to be k if f has a zero of order k ≥ 0 at z0, and to be
−k if f has a pole of order k at z0. Prove that O(f/g, z0) = O(f, z0)−O(g, z0).



7. Residue: If z0 is an isolated singularity of f , the Residue of f at z0, denoted Res(f ; z0)
is the coefficient a−1 in the Laurent expansion (1) of f at z0. By the uniform convergence
property of (1) stated above, we have

Res(f ; z0) = a−1 =
1

2πi

∫
|z−z0|=ε

f(z) dz for any ε such that 0 < ε < r. (2)

8. Calculation of Residues : (§4.1 of MH): There is a table of formulas in MH, Table 4.1.1
on p 250. I would not recommend memorizing much, instead know how to expand. One
formula that comes up very often is 4: if g(z0) 6= 0 and h has a simple zero at z0, then g/h
has a simple pole at z0 (clear from above) and Res(g/h; z0) = g(z0)/h

′(z0). If you don’t
remember this, just do the following : g(z) = g(z0) + . . . and h(z) = h′(z0)(z − z0) + . . .,
where . . . denotes higher order. Then

g(z)

h(z)
=

g(z0) + . . .

h′(z0)(z − z0) + . . .
=

g(z0)(1 + . . .)

h′(z0)(z − z0)(1 + . . .)
=

g(z0
h′(z0)

z − z0
(1 + . . .),

where the last equality uses the basic principles 1/(1 + . . .) = 1 + . . . (say, by geometric
series) and (1 + . . .)(1 + . . .) = 1 + . . .. For example, tan z = sin z/ cos z has simple poles
at each zn = (n + 1

2
)π, for each n ∈ Z, with residue sin(zn)/ cos′(zn) = −1. A more

complicated example, needed below, would be:

Example: Let f(z) = π cot(πz). Find Res(f(z)/z2; 0) and Res(f(z)/z4; 0).

To find these residues, we first find the first few coefficients of the Laurent expansion of
cot z = cos z/ sin z by dividing the power series at 0 of cos z and sin z:

cos z

sin z
=

1

z

1− z2

2
+ z4

24
+ . . .

(1− z2

6
+ z4

120
+ . . .)

=
1

z
(1− z

2

2
+
z4

24
+. . .)(1+(

z2

6
− z4

120
+. . .)+(

z2

6
+. . .)2+. . .),

where the second factor is obtained by applying the geometric series. The terms of degree
≤ 4 in the second factor come from the first term in parenthesis and the square of the
first term in the second parenthesis:

1 +
z2

6
− z4

120
+
z4

36
+ . . . = 1 +

z2

6
+

7z4

360
+ . . . ,

so multiplying and keeping only the terms of degree ≤ 4 we get

1

z
(1− z2

2
+
z4

24
)(1 +

z2

6
+

7z4

360
) =

1

z
(1 + (−1

2
+

1

6
)z2 + (

7

360
− 1

12
+

1

24
)z4 =

1

z
− z

3
− z3

45

. so the Laurent expansion of π cot(πz) looks like

1

z
− π2

3
z − π4

45
z3 + . . . .

Dividing by z2, z4 we get Res(π cot(πz)/z2; 0) = −π2

3
and Res(π cot(πz)/z4; 0) = −π4

45
.



9. Residue Theorem (MH §4.2) Let A ⊂ C a region, let z1, . . . , zn ∈ A, and let f :
A \ {z1, . . . zn} :→ C be analytic. Then, for any domain D ⊂ A with boundary a simple
closed curve γ, ∫

γ

f(z) dz = 2πi
∑
zj∈D

Res(f ; zj). (3)

This is a variation of Theorem 4.2.1 of MH, using a somewhat different and less precise
language, just as we did in proving Cauchy’s integral formula from Green’s theorem. The
language of homotopy used in MH Thm 4.2.1 will be explained later.

Example ∫
|z|=2

tan(z) dz = −4πi

since there are two poles in |z| < 2, namely ±π/2, each with residue −1.

10. Applications of the residue theorem

(a) Counting Zeros, also called the argument principle (Explained in class, also MH
§6.2): Suppose f : A → C is analytic, D ⊂ A is a domain with boundary curve γ,
and f(z) 6= 0 for all z ∈ γ. Let a1, . . . , an be the zeros of f in D, and let kj denote
the order of aj. Then

1

2πi

∫
γ

f ′(z) dz

f(z)
= k1 + . . . kn, (4)

in other words, the number of zeros in D counting multiplicities.

Proof : Since aj is a zero of multiplicity kj, by definition we have disk ∆j centered at
aj and an analytic function φj : ∆j → C with φj(aj) 6= 0 and f(z) = (z−aj)kjφj(z).
By shrinking ∆j we may assume that φj(z) 6= 0 for z ∈ ∆j. Then on ∆j we have
f ′(z) = kj(z − aj)kj−1φj(z) + (z − aj)kjφ′j(z), so

f ′(z)

f(z)
=

kj
z − aj

+
φ′j(z)

φj(z)
=

kj
z − aj

+ analytic function,

so aj is a simple pole of f ′/f with residue kj, hence the residue theorem gives (4).

(b) Evaluation of Definite Integrals (MH §4.3). Many real definite integrals can be
computed by residues. To do this one has to find a sequence of contours (closed
curves) to which the residue theorem applies, and show that the the integrals over
the unwanted parts go to zero. Good examples are:

i. (MH Example 4.3.5):
∫∞
−∞

x2

1+x4
dx

ii. (MH Example 4.3.13) Principal value integrals:
∫∞
−∞

x
x3+1

dx.

iii. (MH Example 4.3.15) Banch cuts:
∫∞
0

3√x
1+x2

dx

iv. (MH Example 4.3.20)
∫∞
−∞

1
1+x2n

dx.

(c) Evaluation of Infinite Series (MH §4.4): The fact that π cot(πz) is meromorphic
with poles exactly the integers, each simple of residue one, and the fact that, if CN



denotes the square with vertices (N + 1
2
)(±1± i), |π cot(πz)| ≤ 2π for N large (MH

p 308), allows us to sum certain series, for instance,

∞∑
n=1

1

n2k
= −a2k−1

2
,

where a2k−1 is the coefficient of z2k−1 in the Laurent expansion of π cot(πz) at 0. We
computed above that a1 = −π2

3
and a3 = −π4

45
, therefore

∞∑
n=1

1

n2
=
π2

6
and

∞∑
n=1

1

n4
=
π4

90
, etc.

Exercises 5 and 8 of MH §4.4 indicate how to use π/ sin(πz) to evaluate alternating
sums

∑
(−1)n/n2k.

11. Elementary proof of Cauchy’s formula without assuming continuity of f ′ (MH §2.3) The
end result is, that if f : A→ C is continuous, then f is analytic if and only if

∫
∂R
f(z) dz =

0 for all rectangles R ⊂ A with sides parallel to the axes. Proofs as follows:

(a) f analytic ⇒
∫
∂R
f(z) dz = 0 is the argument of subdividing R into 4 equal pieces

and iterating, see proof of Thm 2.3.1 in MH.

(b) If f is continuos and
∫
∂R
f(z) dz = 0 for all rectangles R ⊂ A (with sides parallel to

axes), then given any disk D ⊂ A there is function F : D → C with F ′(z) = f(z).
The proof of Theorem 2.3.2 of MH gives this.

(c) The hypothesis of (a) can be weakened to assuming that f is continuous on A and
analytic except at one point. This strengthening gives a proof of Cauchy’s integral
formula (without assuming continuity of f ′), Thm 2.4.4 of MH, and therefore, by
using Cauchy’s formulas for derivatives, get f analytic → f ′ analytic (MH Thm
2.4.6, R2 §4(a)).

(d) Converse to (a) (Morera’s Theorem) now follows: f continuous and
∫
∂R
f(z) dz = 0

for all R ⊂ A ⇒ for all disks D ⊂ A, there exists F : D → C with F ′(z) = f(z) on
D ⇒ F is analytic → F ′ = f is analytic in D ⇒ f is analytic in A.

12. Homotopic curves and simply connected regions(MH §2.3) Two continuous (piecewise C1)
closed curves γ0, γ1 : [0, 1]→ A are homotopic (as closed curves) if there is a continuous
(piecewise C1) map H : [0, 1]× [0, 1] → A so that H(0, t) = γ0(t), H(1, t) = γ1(t) for all
t ∈ [0, 1] and H(s, 0) = H(s, 1) for all s ∈ [0, 1] (MH Def 2.3.7, Figure 2.3.9).

A region A ⊂ C is simply connected if every closed curve in A is homotopic (as closed
curve) to a point. (MH Def 2.3.8)

Example: Convex regions (MH Prop 2.3.9), star shaped regions (MH, Exercise 3 to 2.3)
are simply connected.

If γ0, γ1 are closed curves in A which are homotopic (as closed curves) and f is analytic
in A, then

∫
γ0
f(z) dz =

∫
γ1
f(z) dz. (MH, Thm 2.3.12)


