
Math 4200, Review for Midterm 2

Be familiar with Chapters 2 and 3 of the text, except for 2.3 which we’ll do later. The best way
to prepare for the test is to know how to do all the assigned homework problems, including the
review problems. Here is a reminder of the most important topics:

1. Definition of line integrals (contour integrals)
∫
γ
f(z)dz (Def 2.1.1), how to compute

them, and how to estimate them: (Prop 2.1.6) if |f(z)| ≤M on γ, then∫
γ

|f(z)dz| ≤
∫
γ

|f(z)||dz| ≤Ml(γ) (where l(γ) = length of γ). (1)

2. Path Independence of line integrals (Thm 2.1.9) and its relation to anti-derivatives (Thm
2.1.7)

3. Cauchy’s Theorem (Preliminary version, variation of Thm 2.2.1): If γ is a simple closed
curve which bounds a domain D on which f is analytic and f ′ is continuous, then∫

γ

f(z) dz = 0.

Know how to prove this from Green’s theorem and the Cauchy-Riemann equations, and
how to apply this to compute integrals.

4. Cauchy’s Integral Formula (Variation on Thm 2.4.4): Suppose f is analytic in a region
A ⊂ C, γ is a simple closed curve in A that is the boundary of a domain D ⊂ A. Then,
for all z in the interior of D we have

f(z) =
1

2πi

∫
γ

f(ζ) dζ

ζ − z
. (2)

This is the most important formula in the whole course! Make absolutely sure that you
remember it, know what it says, and know its most important consequences. The best
way to remember some of the consequences would be to have a general idea of how to
derive them from Cauchy’s formula and general principles. Here’s a list of important
consequences, and a brief explanation of why each one is true. Look through this and try
to get a global picture of how things fit together. It will always be assumed that A ⊂ C
is an open, connected set, and f : A→ C an analytic function.

(a) Cauchy’s formulas for the derivatives (Thm 2.4.6): under the same assumptions of
f and γ,

f (k)(z) =
k!

2πi

∫
γ

f(ζ) dζ

(ζ − z)k+1
for k = 1, 2, 3, . . . : (3)

in particular, f is infinitely differentiable. (Differentiate (2) under the integral sign.)



(b) Cauchy’s inequalities (Thm 2.4.7): If {|z − z0| ≤ R} ⊂ A, γ is the boundary circle
|z − zo| = R, and |f(z)| ≤M on γ, then for k = 1, 2, 3, . . .,

|f (k)(z0)| ≤
k!

Rk
M

(Specialize (3) to z = z0 and γ the circle |z−zo| = R, and apply the basic estimation
principle (1).)

(c) Liouville’s Theorem (Thm 2.4.8): If f is a bounded entire function (meaning f
analytic on all of C and there exists a constant M so that |f(z)| ≤M for all z ∈ C),
then f is constant. (For any z0 ∈ C, apply the last inequality with k = 1 and let
R→∞ to get f ′(z0) = 0. Since z0 was arbitrary, f ′(z) ≡ 0, hence f is constant.)

(d) Fundamental Theorem of Algebra (Thm 2.4.9): If p(z) is a polynomial of degree
at least one, then it has a complex root: there exists z0 ∈ C so that p(z0) = 0.
(If not, 1/p(z) would be an entire function, and, since |p(z)| → ∞ as |z| → ∞,
1/p(z)→ 0, hence 1/p(z) would be bounded and entire, hence constant by Liouville,
contradicting that the degree of p(z) is at least one.)

(e) Mean Value Property of analytic functions (Thm 2.5.2): f : A → C analytic, and
the closed disk |z − zo| ≤ r ⊂ A. then

f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ) dθ; (4)

in words, the value of an analytic function at the center of a disk is the average of its
values in he boundary circle. (Specialize (2) to z = z0 and γ the circle |z − zo| = r.)

(f) Sub-Mean Value Inequality (not explicitly stated in the text): Under the same as-
sumptions as in the last paragraph.

|f(z0)| ≤
1

2π

∫ 2π

0

|f(z0 + reiθ)| dθ; (5)

in words, the absolute value at the center of a disk is not larger than its average on
the boundary circle. (Apply the first standard inequality (1) to equation (4).)

(g) Maximum Modulus Principle, Local Version (Thm 2.5.1): If f : A → C is analytic
and |f | has a relative maximum at z0 ∈ A, then f is identically constant in a
neighborhood of z0. Said more informally: |f | can have no local maxima. (Since |f |
is continuous, at a local maximum the right hand side of (5) must be strictly smaller
(for small r) than the left hand side.)

(h) Maximum Modulus Principle, Global Version (Thm 2.5.6): If f : A → C analytic
and not constant, D ⊂ A is closed and bounded subset, then the maximum value of
|f | on D must occur on the boundary of D. (Follows easily from the local version).

(i) Mean Value property of Harmonic Functions (Thm 2.5.9): if u : A→ R is harmonic,
then, for any disk {|z − z0| ≤ r} ⊂ A, we have

u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ) dθ; (6)

(On disks can always find conjugate harmonic function v, apply (4) to f = u+ iv).



(j) Local and Global Maximum and Minimum Principle for Harmonic Functions (Thms
2.5.10 and 2.5.11): harmonic functions can have no local maxima nor local minima
(critical points must be saddle points), etc.

(k) Power Series Expansions of Analytic Functions (Taylor’s Theorem, Thm 3.2.7) Sup-
pose f : A → C is analytic, z0 ∈ A and suppose {|z − z0| < R} ⊂ A. Then on
{|z − z0| < R} we have a convergent power series that converges to f :

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n (7)

(For any r, 0 < r < R, start from Cauchy’s integral formula (2) choosing D =
{|z− z0| ≤ r} and γ = {|z− z0| = r}, and expand the factor 1/(ζ − z) that appears
inside the integral (2) by a convergent geometric series:

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

(ζ − z0)
1

(1− z−z0
ζ−z0 )

=
∞∑
n=0

(z − z0)n

(ζ − z0)n+1
.

Since the continuous function |f(ζ)| ≤ M on γ for some constant M , we see that,
for each fixed z, f(ζ)

∑
(z − z0)n/(ζ − z0)n+1 is majorized by the series of constants

(M/r)
∑

(|z − z0|/r)n, hence converges uniformly in ζ to f(ζ)/(ζ − z). Substitute
this sum for the integrand in Cauchy’s formula (2) and then appeal to uniform
convergence to interchange summation and integration:

f(z) =
1

2πi

∫
f(ζ)

∞∑
n=0

(z − z0)n

(ζ − z0)n+1
dζ =

∞∑
n=0

(
1

2πi

∫
γ

f(ζ) dζ

(ζ − z0)n+1

)
(z − z0)n

Finally, use Cauchy’s formulas for derivatives (3) to identify the coefficient of (z−z0)n
to be the same as its coefficient in Taylor’s formula (7).)

(l) Analytic Convergence Theorem (Thm 3.1.8): If fn : A→ C is a sequence of analytic
functions, f : A → C is a function, and suppose that for every closed disk D ⊂ A,
fn → f uniformly on D. Then f is analytic and f ′n → f ′ uniformly on every closed
disk D ⊂ A. (If fn → f uniformly on D, then the Cauchy integrals (2) for fn
converge to that of f , so f is represented by a Cauchy integral, so it is analytic. (a
quicker proof base on Morera’s theorem, that we have not yet discussed, is given in
the text). Since fn → f uniformly on D, the integral formulas (3) for f ′n converge
to that for f ′, and the convergence is uniform on every smaller sub-disk).

5. Be familiar with the basic tests for convergence of infinite series (Prop 3.1.3) and for
uniform convergence of series of functions (Thm 3.1.7). Have the notion of uniform
convergence (Def 3.1.4) very clear in your mind. Know the most important consequences:
uniform limit of continuous functions is continuous (Prop 3.1.6), integral of a uniform
limit is the limit of the integrals (Prop 3.1.9)).

6. Power Series : A series

∞∑
n=0

an(z − z0)n



has a radius of convergence R ∈ [0,∞] characterized by: the series converges for |z−z0| <
R and diverges for |z− z0| > R. (Thm 3.2.1). It represents an analytic function inside its
circle of convergence (Thm 3.2.3) and it can be differentiated term by term (Thm 3.2.4).
These are just special cases of the Analytic Convergence Theorem.

7. Know the geometric and exponential series

1

1− z
=
∞∑
n=0

zn for |z| < 1, ez =
∞∑
n=0

zn

n!

and how to derive others from these, for example, 1/(1 − z)2 either by squaring or by
differentiation, log(1− z) by integration, cos(z) = (eiz + e−iz)/2, etc.

8. Order of zeros, isolation of zeros: If f : A→ C is analytic, c ∈ A and f(c) = 0, then there
are two possibilities (Prop 3.2.9):

(a) It is a zero of order n if and only if f(c) = f ′(c) = . . . = f (n−1)(c) = 0 and f (n)(c) 6= 0.
If c is a zero of order n, then there is an r > 0 and an analytic function φ(z) so that
φ(z) 6= 0 for any z with |z − c| < r and f(z) = (z − c)nφ(z) for |z − c| < r.

(b) It is a zero of infinite order: f (n)(c) = 0 for all n. In this case there is an r > 0 so
that f(z) = 0 for all z with |z − c| < r.

9. Laurent Expansion; If 0 ≤ R1 < R2 ≤ ∞, and z0 ∈ C, let A = R1 < |z − z0| < R2} be an
annulus centered at z0. If f : A → C is analytic, then f has a Laurent expansion (Thm
3.3.1, in different notation):

f(z) =
∞∑

n=−∞

an(z − z0)n (8)

which converges absolutely in A and, for each r1, r2 such that R1 < r1 < r2 < R2, the
series converges uniformly on {r1 ≤ |z − z0| ≤ r2}. The coefficients are given by the
formula

an =
1

2πi

∫
γ

f(ζ) dζ

(ζ − z0)n+1
, n ∈ Z (9)

where γ is any circle |ζ − z0| = r, R1 < r < R2.

10. If R1 = 0 we say that f has an isolated singularity at z0. If z0 is an isolated singularity,
then either an 6= 0 for infinitely many negative n ∈ Z, called an essential singularity, or
an 6= 0 for only finitely many n, which is called a pole of order k if k ≥ 1, a−k 6= 0 and
an = 0 for all n < −k. If an = 0 for all n < 0 we say that f has a removable singularity
at z0.

11. Examples: e1/z =
∑

(1/n!)(1/zn) has an essential singularity at 0, while ez/z2 has a
second order pole at 0 and sin(z)/z has a removable singularity at 0.


