Justify all your answers and show all your work. Correct answers with no work could get at most half credit.

1. Let C be the curve $x=3 \cos (t), y=3 \sin (t), z=4 t, 0 \leq t \leq \pi / 2$.
(a) (5 pts) Find the velocity and acceleration vectors to C.
(b) $(5 \mathrm{pts})$ Find the length of C.
(c) $(5 \mathrm{pts})$ Find the value of $\int_{C} x d s$.
(d) (5 pts) Find the value of $\int_{C} x d x+y d y+z d z$.
2. (20 pts) Find the maximum and minimum values of the function $f(x, y)=2 x^{2}+5 y^{2}$ on the set $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.
3. Let $\mathbf{F}(x, y, z)=x y \mathbf{i}+x z^{2} \mathbf{j}+y^{2} z \mathbf{k}$.
(a) $(5 \mathrm{pts})$ Find $\operatorname{div} \mathbf{F}$.
(b) (10 pts) Find $\operatorname{curl} \mathbf{F}$
(c) (5 pts$)$ Is \mathbf{F} the gradient of a function? Explain.
4. Find the value of the following integrals. In each case you need to change variables.
(a) (10 pts)

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(x^{2}+y^{2}\right)^{10} d y d x
$$

(b) (10 pts)

$$
\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{\sqrt{4-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} d z d y d x
$$

5. (10 pts) Draw a picture of the region and find the limits for the triple integral $\iiint_{R} x d z d y d x$, where R is the region in the first octant under the plane $\frac{x}{2}+y+z=1$. You don't have to find the numerical value of the integral.
6. (10 pts) Find the value of the line integral

$$
\oint_{C}\left(x^{3}-y\right) d x+\left(x+y^{2}\right) d y
$$

where C is the boundary of the rectangle $0 \leq x \leq 2,0 \leq y \leq 1$, counterclockwise. (Suggestion: avoid doing the line integral directly.)

Justify all your answers and show all your work. Correct answers with no work could get at most half credit.

1. $(10 \mathrm{pts})$ Find the length of the curve $(\cos (3 t), \sin (3 t), 4 t), 0 \leq t \leq 4 \pi$.
2. Let $f(x, y)=x^{2} y+x y^{2}$, and let \mathbf{p} be the point $(1,2)$.
(a) (10 pts) Find the directional derivative of f at \mathbf{p} in the direction $(\mathbf{i}-\mathbf{j}) / \sqrt{2}$.
(b) (5 pts) Is the function increasing or decreasing in that direction? Explain.
(c) (5 pts) Find the unit vector in the direction of greatest increase of f at the point \mathbf{p}.
(d) (5 pts) Find the rate of increase of f at \mathbf{p} in the direction of greatest increase.
3. (15 pts) Find the maximum and minimum values of $f(x, y)=x-y$ on the set $\left\{x^{2}+y^{2} \leq 1\right\}$.
4. (15 pts) Find the volume enclosed by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=9$. Sketch.
5. Let $\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+x z \mathbf{k}$
(a) (5 pts) Find $\operatorname{curl}(\mathbf{F})$.
(b) (5 pts) Is \mathbf{F} the gradient of a function? Explain.
6. Let $\mathbf{F}(x, y)=2 x y \mathbf{i}+\left(x^{2}+2 y\right) \mathbf{j}$.
(a) (8 pts) Find a function $f(x, y)$ with $\nabla f=\mathbf{F}$.
(b) (7 pts) Evaluate $\int_{C} 2 x y d x+\left(x^{2}+2 y\right) d y$ where C is the curve formed by the line segment form $(0,0)$ to $(2,1)$ followed by the segment from $(2,1)$ to $(5,2)$.
7. (10 pts) Evaluate $\oint_{C}\left(e^{x^{2}}-2 x y\right) d x+\left(x^{2}+\cos (y)\right) d y$ where C is the boundary of the square with vertices $(0,0),(2,0),(2,1),(0,1)$, counterclockwise.
